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Abstract: Scheduling for a construction project with a limited number of machines is a critical and
well-studied problem. Most studies assume that task processing times are exact; in practice, delays
frequently occur, rendering the initial work plan invalid. Therefore, adaptability is crucial to the
success of a project. This work introduces a fuzzy optimization model for the planning of construction
projects executed simultaneously and having only one backhoe. The model assumes imprecise task
processing times, represented by triangular fuzzy sets, that accept delays up to a permitted degree
of tolerance. The model solution obtains a fuzzy work plan. This is a robust plan that supports
incidents (delays). A method to apply the model was created. The fuzzy model can help construction
companies reduce delays in the delivery of their projects and avoid excessive penalties. The model
was implemented in the CPLEX solver, which can quickly obtain an optimal solution for small and
medium instances. For large instances, the model must be solved with metaheuristics. This scientific
contribution is important for future work since it consists of the application of fuzzy optimization in
a specific area of civil engineering.

Keywords: construction project; fuzzy optimization; fuzzy sets; penalties; single-machine task
scheduling; decision-making

MSC: 90C70

1. Introduction

The construction sector contributes directly to the national and global economies, so
new and diverse technologies are implemented every day to manage projects efficiently.
Managing construction projects requires the application of knowledge, skills, tools, and
techniques in all programmed activities [1].

The existing uncertainty during execution is one of the fundamental limitations to
delivering a construction project on time. The delay in delivery is due to a sum of delays in
each of the tasks that are performed. This problem occurs because construction projects
are executed in uncertain environments, which can be caused by weather conditions, site
conditions, equipment conditions, late delivery of materials, worker productivity, inflation,
etc. [2]. For example, in Saudi Arabia, 70% of public construction projects are delayed due to
various factors that create uncertainty [3]. Peru and developing countries are no strangers
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to this reality; due to economic factors, small and medium construction companies lack the
machinery to execute two or more construction projects simultaneously.

To plan the time and estimate the cost of a project, it is necessary to take into account
the uncertainty that exists in the different phases, for example, in the processing time of
the tasks. The duration and cost of tasks in a construction project are rarely known with
precision, which leads to estimation errors by experts [4]. Uncertainty can be of the random
or imprecise types. Randomness is modeled with probability theory; in this work, it is
assumed that the task processing time of a construction project is imprecise, i.e., the desired
time for the duration of the task is known, but not the exact time it takes to execute in
reality. This type of uncertainty can be modeled with fuzzy logic.

To handle uncertainty in project scheduling, two approaches are used: reactive or
proactive. In the reactive approach, project managers continuously review and modify
plans in response to incidents. However, frequent plan revisions are not desirable from
a resource planning perspective. The proactive approach is preferable, meaning a robust
model that can withstand incidents and is easily adaptable. In project task scheduling, to
create plans that optimize resources with a proactive approach, stochastic optimization and
fuzzy optimization can be used.

In most construction projects, the processing time of tasks is considered to be exact.
In real situations, it is always imprecise due to the various phenomena that generate
uncertainty.

As far as is known, in the literature review, there are few works on mathematical opti-
mization applied to the scheduling in construction projects that contemplate the imprecision
in task processing time.

Senouci and Mubarak [5] proposed a multi-objective optimization model for the
scheduling of construction projects under extreme weather conditions. Using applicative
examples, it was verified that the model minimized the time and cost of the projects but
did not consider the imprecision in task processing time.

Several works model the imprecision that occurs in the execution of projects with
fuzzy logic. For example, Itoh and Ishii [6] proposed an optimization model for projects
with fuzzy processing times and due dates; the model minimized the number of delayed
jobs. Niu et al. [7] addressed a scheduling problem with fuzzy processing times. They
modeled the uncertainty using triangular fuzzy numbers, managing to find a sequence of
jobs that minimized Makespan. Knyazeva et al. [8] developed a fuzzy project scheduling
problem with limited resources and deadlines. However, it does not deal with construction
projects that have the following characteristics for their execution: the delivery date is fixed,
a heavy penalty is applied per day of delay, a single machine is used for several projects,
and the machine works in the open field and is likely to suffer more delays than a machine
in a factory where there are control systems and automated processes.

In other models, uncertainty in project duration and cost is often modeled with
triangular fuzzy sets. For example, Al-Zarrad and Fonseca [9] proposed a model to find
time–cost trade-off alternatives while taking into account uncertainty in project time and
cost. This helps to reduce the risk of projects going over budget or being delayed. Nguyen
et al. [10] developed a hybrid model using fuzzy logic to address the trade-off between
time, cost, and quality in construction projects. The model accounts for uncertainties in
project time, cost, and quality. However, in these studies, task processing times are not
considered fuzzy.

In developing countries, small and medium-sized construction companies often lack
machinery, resulting in a single machine being used for several projects. Arce et al. [11]
proposed an optimization model to obtain the optimal work plan for a machine, minimizing
the total penalty generated by delays in the delivery of construction projects. The model
was applied to the case of a backhoe loader to develop 18 tasks that correspond to four
construction projects executed simultaneously. In this model, uncertainty was not taken
into account.



Mathematics 2024, 12, 1088 3 of 18

In this work, we study the problem of minimizing the total penalty generated by
delays in the delivery of construction projects executed simultaneously and operated by
a single backhoe. We suppose that the distributions probability for the task processing
times is unknown, that is, the problem cannot be treated with stochastic optimization. We
propose a fuzzy optimization model; triangular fuzzy sets are used to model the existing
imprecision in the task processing time. The efficiency of the model is analyzed by applying
it to small, medium, and large instances.

2. Materials and Methods
2.1. Scheduling of Single-Machine Construction Projects

Arce et al. [11] modeled the scheduling problem for a set of construction projects,
P = {Project 1, Project 2, . . ., Project n}, that are executed simultaneously with only one
backhoe loader. The execution of the projects requires the completion of a set of tasks,
T = {T1, T2, . . ., Tm}, each with an exact (deterministic) processing time.

Figure 1 shows the tasks for a machine in the execution of “n” projects.
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The following mixed integer linear programming model (MILP) was obtained:

minZ =
n

∑
p=1

(mp ∗ spb) (1)

subject to:
xi − xj ≥ tj − M ∗ yij (2)

xj − xi ≥ ti − M(1 − yij) (3)

xj − xi ≥ ti (4)

xu + tu + spa − spb = fp (5)

where:
xi, spa, spb, ti ∈ Z+

0
yij ∈ {0, 1}

where:
xi: Start of the task i
ti: Task processing time i
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xu: Start of the last task u of the project P
tu: Task processing time u
spa: Variable that does not generate a penalty in the project P
spb: Variable that generates a penalty in the project P
fp: Project delivery time P
mp: Penalty per day of project delay P
yij: Binary variable
M: A very large integer

Where (1) minimizes the total penalty, (2) and (3) are non-interference constraints, (4)
represents precedence constraints, and finally (5) represents lead-time constraints.

2.2. Fuzzy Sets

Let X be the universe of discourse; a fuzzy set Ã in X is a set of ordered pairs:

Ã =
{
(x, µÃ(x)), x ∈ X

}
(6)

where µÃ : X → [0, 1] is called a membership function, and µÃ(x) represents the degree to
which x belongs to the set Ã [12].

For our purposes, we restrict ourselves to fuzzy sets on the real line. A membership
function can be triangular, trapezoidal, sigmoidal, etc.

2.3. Linear Programming with Fuzzy Resources

A linear programming (LP) model is given by:

max z = c ∗ x
subject to :

Ax ≤ b
x ≥ 0

where the parameters c (profits or costs), b (availability of resources), and A (the matrix of
technological coefficients) are known numbers in exact form. However, in real problems,
some of the parameters indicated may be imprecise.

If it is assumed that the imprecision of the resources is modeled with linear fuzzy sets,
as in Figure 2, we are faced with an LP model with fuzzy resources, which is formulated as
follows:

max z = c ∗ x
subject to :

(Ax)i ≤ b̃i ; i = 1, 2, . . . , m
x ≥ 0

(7)

where c ∈ Rn, A is a matrix mxn¸ and the symbol b̃i indicates diffuse resources.
For each resource, i, consider a desirable amount, ti, but the possibility that it could

be extended to ti + di is accepted, where di is the maximum degree of imprecision (see
Figure 2).

To solve (7), different methods have been proposed [13]. In this work, the Verdegay
method is used.

2.4. Verdegay Method

Suppose that, in the model (7), the membership functions are linear (see Figure 2),
with the equation as follows:

µi(x) =


1 ; (Ax)i < ti

1 − [(Ax)i−ti ]
di

; ti ≤ (Ax)i ≤ ti + di

0 ; (Ax)i > ti + di

(8)
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When (Ax)i < ti, the constraints are satisfactorily met, therefore, the degree of sat-
isfaction is maximum [µi(x) = 1]. When (Ax)i > ti + di, violation of the restrictions is
not accepted, as they exceed the given tolerance. Therefore, the degree of satisfaction is
zero [µi(x) = 0]. When ti ≤ (Ax)i ≤ ti + di, the violation of the constraints is accepted,
and the degree of satisfaction decreases while moving away from it, ti. It is important to
note that the level of compliance with the constraints reflects the level of satisfaction of the
decision-maker.

The goal is to find the optimal solution for [µi(x) = 1], i = 1, 2, . . . , m. However, it
may be acceptable to obtain an optimal solution for a value µi(x) greater than αi, which is
considered a minimum satisfaction level fixed a priori. This should be determined based
on the nature of the problem and in interaction with the decision-maker.

According to Verdegay [14], for the linear Equation (8), problem (7) is transformed
into the following parametric PL problem:

max z = c ∗ x
subject to :

(Ax)i ≤ ti + (1 − α)di , ∀i
x ≥ 0 , α ∈ [0, 1]

Let β = 1 − α, this classic model is expressed in the following way:

max z = c ∗ x
subject to :

(Ax)i ≤ ti + β ∗ di , ∀i
x ≥ 0 , β ∈ [0, 1]

where β is the degree of imprecision accepted.

2.5. A Fuzzy Optimization Model for Single-Machine Construction Projects Scheduling

Considering that the imprecision in the task processing time executed by a machine in
construction projects can be modeled with a fuzzy set using the deterministic model (see
Section 2.1), the following fuzzy PL model is proposed.

minZ∗ =
n

∑
p=1

(mp ∗ spb) (9)

subject to:
xi − xj + M ∗ yij ≥ t̃j (10)

xj − xi − M ∗ yij ≥ −M + t̃i (11)
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xj − xi ≥ t̃i (12)

xu + spa − spb = fp − t̃u (13)

where:
xi, spa, spb ∈ R+

0 , ti ∈ Z+

yij ∈ {0, 1}

Constraints (10)–(13) are fuzzy. t̃i is the resource, and i is fuzzy task processing time.

2.6. Solution of the Proposed Model

The imprecision in the processing time of the tasks performed by the machine is
represented by fuzzy triangles, as shown in Figure 3.
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Where:
ti : Task processing time i.
di : Maximum task tolerance i.
β : The degree of imprecision accepted by the project manager depending on the execution
conditions and in coordination with the construction engineers.

The following mixed integer linear programming model (Algorithm 1) was obtained
by applying the Verdegay method (see Section 2.4) to the proposed fuzzy model:

Algorithm 1. Mixed Integer Linear Programming model

Input: Set of “T” tasks to perform a set of “P” projects
Output: Scheduling of tasks for the realization of “P” projects
For each β = {0, 0.1, 0.2, 0.3, . . . , 1}
minZ∗ =

n
∑

p=1
(mp ∗ spb) (14)

subject to:
xi − xj + M ∗ yij ≥ tj + β ∗ dj (15)
xj − xi − M ∗ yij ≥ −M + ti + β ∗ di (16)
xj − xi ≥ ti + β ∗ di (17)
xu + spa − spb = fp − (tu + β ∗ du) (18)
where:

xi, spa, spb ∈ R+
0 ; ti ∈ Z+

yij ∈ {0, 1}
β ∈ [0, 1]
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3. Results

We implemented the model using IBM ILOG CPLEX Optimization Studio software,
version student 12.4. The software was run on a personal computer equipped with an Intel
(R) Core (TM) i5-8250U CPU @ 1.60 GHz 1.80 GHz and 6.00 GB RAM.

3.1. Case Study

To apply the proposed fuzzy model, we used a case study presented in [11] as a
reference. However, we took into account the imprecision in the processing time of the
tasks. The data used in this new case study were collected through interviews with experts
selected by purposive sampling.

A construction company in the province of Jaen, Peru plans to execute four construc-
tion projects simultaneously but only has one backhoe to perform 18 tasks. The network
of tasks for the backhoe was designed with non-interference, precedence, and deadline
constraints (see Figure 4).
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Additionally, we have data on the time used by the backhoe loader to execute each
task. This time is imprecise, so the decision-maker would only accept up to a maximum
tolerance, as shown in Table 1. The imprecision is represented using triangular fuzzy sets.
For example, in Figure 5, we observe the triangular fuzzy set for task T6. The expected
processing time is 15 days, but it can be delayed up to 2 days.

Table 1. Processing time and maximum tolerance for backhoe.

Task Processing Time Days Tolerance Days

T1 10 1

T2 17 2

T3 13 1

T4 20 2

T5 14 1
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Table 1. Cont.

Task Processing Time Days Tolerance Days

T6 15 2

T7 21 2

T8 30 3

T9 25 3

T10 16 2

T11 18 2

T12 23 2

T13 12 1

T14 20 2

T15 26 3

T16 18 2

T17 14 1

T18 28 3
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The delivery time per construction project and the penalty per day of delay can be
seen in Table 2.

Table 2. Delivery time and penalty per day of delay.

Projects Delivery Time Days Penalty Dollars/Day

P1 95 1000

P2 205 1600

P3 280 2500

P4 330 3000

The parametric MILP model (19) was obtained by applying the proposed model to the
case study and by using the Verdegay method.

The objective function is given by the following:

minZ∗ = 1000s1b + 1600s2b + 2500s3b + 3000s4b (19)
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The above is subject to the following restrictions of non-interference (15) and (16),
precedence (17), and delivery time (18). Table 3 presents all the non-interference restrictions
for task processing, totaling 170.

Table 3. Non-interference restrictions of the parametric model.

Non-Interference Restrictions

x1 − x2 + 5000y1,2 ≥ 17 + 2β x10 − x5 − 5000y5,10 ≥ −4986 + β

x2 − x1 − 5000y1,2 ≥ −4990 + β x5 − x11 + 5000y5,11 ≥ 18 + 2β

x1 − x3 + 5000y1,3 ≥ 13 + β x11 − x5 − 5000y5,11 ≥ −4986 + β

x3 − x1 − 5000y1,3 ≥ −4990 + β x5 − x12 + 5000y5,12 ≥ 23 + 2β

x1 − x4 + 5000y1,4 ≥ 20 + 2β x12 − x5 − 5000y5,12 ≥ −4986 + β

x4 − x1 − 5000y1,4 ≥ −4990 + β x5 − x13 + 5000y5,13 ≥ 12 + β

x1 − x5 + 5000y1,5 ≥ 14 + β x13 − x5 − 5000y5,13 ≥ −4986 + β

x5 − x1 − 5000y1,5 ≥ −4990 + β x5 − x14 + 5000y5,14 ≥ 20 + 2β

x1 − x6 + 5000y1,6 ≥ 15 + 2β x14 − x5 − 5000y5,14 ≥ −4986 + β

x6 − x1 − 5000y1,6 ≥ −4990 + β x6 − x7 + 5000y6,7 ≥ 21 + 2β

x1 − x7 + 5000y1,7 ≥ 21 + 2β x7 − x6 − 5000y6,7 ≥ −4985 + 2β

x7 − x1 − 5000y1,7 ≥ −4990 + β x6 − x8 + 5000y6,8 ≥ 30 + 3β

x1 − x8 + 5000y1,8 ≥ 30 + 3β x8 − x6 − 5000y6,8 ≥ −4985 + 2β

x8 − x1 − 5000y1,8 ≥ −4990 + β x6 − x9 + 5000y6,9 ≥ 25 + 3β

x1 − x10 + 5000y1,10 ≥ 16 + 2β x9 − x6 − 5000y6,9 ≥ −4985 + 2β

x10 − x1 − 5000y1,10 ≥ −4990 + β x6 − x10 + 5000y6,10 ≥ 16 + 2β

x1 − x11 + 5000y1,11 ≥ 18 + 2β x10 − x6 − 5000y6,10 ≥ −4985 + 2β

x11 − x1 − 5000y1,11 ≥ −4990 + β x6 − x12 + 5000y6,12 ≥ 23 + 2β

x1 − x13 + 5000y1,13 ≥ 12 + β x12 − x6 − 5000y6,12 ≥ −4985 + 2β

x13 − x1 − 5000y1,13 ≥ −4990 + β x6 − x13 + 5000y6,13 ≥ 12 + β

x1 − x14 + 5000y1,14 ≥ 20 + 2β x13 − x6 − 5000y6,13 ≥ −4985 + 2β

x14 − x1 − 5000y1,14 ≥ −4990 + β x7 − x8 + 5000y7,8 ≥ 30 + 3β

x1 − x15 + 5000y1,15 ≥ 26 + 3β x8 − x7 − 5000y7,8 ≥ −4979 + 2β

x15 − x1 − 5000y1,15 ≥ −4990 + β x7 − x10 + 5000y7,10 ≥ 16 + 2β

x1 − x17 + 5000y1,17 ≥ 14 + β x10 − x7 − 5000y7,10 ≥ −4979 + 2β

x17 − x1 − 5000y1,17 ≥ −4990 + β x7 − x11 + 5000y7,11 ≥ 18 + 2β

x2 − x3 + 5000y2,3 ≥ 13 + β x11 − x7 − 5000y7,11 ≥ −4979 + 2β

x3 − x2 − 5000y2,3 ≥ −4983 + 2β x7 − x14 + 5000y7,14 ≥ 20 + 2β

x2 − x4 + 5000y2,4 ≥ 20 + 2β x14 − x7 − 5000y7,14 ≥ −4979 + 2β

x4 − x2 − 5000y2,4 ≥ −4983 + 2β x7 − x15 + 5000y7,15 ≥ 26 + 3β

x2 − x5 + 5000y2,5 ≥ 14 + β x15 − x7 − 5000y7,15 ≥ −4979 + 2β

x5 − x2 − 5000y2,5 ≥ −4983 + 2β x8 − x9 + 5000y8,9 ≥ 25 + 3β

x2 − x6 + 5000y2,6 ≥ 15 + 2β x9 − x8 − 5000y8,9 ≥ −4970 + 3β

x6 − x2 − 5000y2,6 ≥ −4983 + 2β x8 − x10 + 5000y8,10 ≥ 16 + 2β

x2 − x8 + 5000y2,8 ≥ 30 + 3β x10 − x8 − 5000y8,10 ≥ −4970 + 3β

x8 − x2 − 5000y2,8 ≥ −4983 + 2β x8 − x11 + 5000y8,11 ≥ 18 + 2β

x2 − x10 + 5000y2,10 ≥ 16 + 2β x11 − x8 − 5000y8,11 ≥ −4970 + 3β
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Table 3. Cont.

Non-Interference Restrictions

x10 − x2 − 5000y2,10 ≥ −4983 + 2β x8 − x12 + 5000y8,12 ≥ 23 + 2β

x2 − x11 + 5000y2,11 ≥ 18 + 2β x12 − x8 − 5000y8,12 ≥ −4970 + 3β

x11 − x2 − 5000y2,11 ≥ −4983 + 2β x8 − x13 + 5000y8,13 ≥ 12 + β

x2 − x14 + 5000y2,14 ≥ 20 + 2β x13 − x8 − 5000y8,13 ≥ −4970 + 3β

x14 − x2 − 5000y2,14 ≥ −4983 + 2β x8 − x14 + 5000y8,14 ≥ 20 + 2β

x2 − x15 + 5000y2,15 ≥ 26 + 3β x14 − x8 − 5000y8,14 ≥ −4970 + 3β

x15 − x2 − 5000y2,15 ≥ −4983 + 2β x9 − x10 + 5000y9,10 ≥ 16 + 2β

x3 − x4 + 5000y3,4 ≥ 20 + 2β x10 − x9 − 5000y9,10 ≥ −4975 + 3β

x4 − x3 − 5000y3,4 ≥ −4987 + β x9 − x11 + 5000y9,11 ≥ 18 + 2β

x3 − x5 + 5000y3,5 ≥ 14 + β x11 − x9 − 5000y9,11 ≥ −4975 + 3β

x5 − x3 − 5000y3,5 ≥ −4987 + β x9 − x13 + 5000y9,13 ≥ 12 + β

x3 − x6 + 5000y3,6 ≥ 15 + 2β x13 − x9 − 5000y9,13 ≥ −4975 + 3β

x6 − x3 − 5000y3,6 ≥ −4987 + β x9 − x14 + 5000y9,14 ≥ 20 + 2β

x3 − x7 + 5000y3,7 ≥ 21 + 2β x14 − x9 − 5000y9,14 ≥ −4975 + 3β

x7 − x3 − 5000y3,7 ≥ −4987 + β x9 − x15 + 5000y9,15 ≥ 26 + 3β

x3 − x8 + 5000y3,8 ≥ 30 + 3β x15 − x9 − 5000y9,15 ≥ −4975 + 3β

x8 − x3 − 5000y3,8 ≥ −4987 + β x9 − x17 + 5000y9,17 ≥ 14 + β

x3 − x9 + 5000y3,9 ≥ 25 + 3β x17 − x9 − 5000y9,17 ≥ −4975 + 3β

x9 − x3 − 5000y3,9 ≥ −4987 + β x10 − x11 + 5000y10,11 ≥ 18 + 2β

x3 − x11 + 5000y3,11 ≥ 18 + 2β x11 − x10 − 5000y10,11 ≥ −4984 + 2β

x11 − x3 − 5000y3,11 ≥ −4987 + β x10 − x12 + 5000y10,12 ≥ 23 + 2β

x3 − x14 + 5000y3,14 ≥ 20 + 2β x12 − x10 − 5000y10,12 ≥ −4984 + 2β

x14 − x3 − 5000y3,14 ≥ −4987 + β x10 − x14 + 5000y10,14 ≥ 20 + 2β

x3 − x15 + 5000y3,15 ≥ 26 + 3β x14 − x10 − 5000y10,14 ≥ −4984 + 2β

x15 − x3 − 5000y3,15 ≥ −4987 + β x10 − x15 + 5000y10,15 ≥ 26 + 3β

x4 − x5 + 5000y4,5 ≥ 14 + β x15 − x10 − 5000y10,15 ≥ −4984 + 2β

x5 − x4 − 5000y4,5 ≥ −4980 + 2β x11 − x12 + 5000y11,12 ≥ 23 + 2β

x4 − x6 + 5000y4,6 ≥ 15 + 2β x12 − x11 − 5000y11,12 ≥ −4982 + 2β

x6 − x4 − 5000y4,6 ≥ −4980 + 2β x11 − x13 + 5000y11,13 ≥ 12 + β

x4 − x7 + 5000y4,7 ≥ 21 + 2β x13 − x11 − 5000y11,13 ≥ −4982 + 2β

x7 − x4 − 5000y4,7 ≥ −4980 + 2β x12 − x13 + 5000y12,13 ≥ 12 + β

x4 − x8 + 5000y4,8 ≥ 30 + 3β x13 − x12 − 5000y12,13 ≥ −4977 + 2β

x8 − x4 − 5000y4,8 ≥ −4980 + 2β x12 − x14 + 5000y12,14 ≥ 20 + 2β

x4 − x9 + 5000y4,9 ≥ 25 + 3β x14 − x12 − 5000y12,14 ≥ −4977 + 2β

x9 − x4 − 5000y4,9 ≥ −4980 + 2β x12 − x15 + 5000y12,15 ≥ 26 + 3β

x4 − x11 + 5000y4,11 ≥ 18 + 2β x15 − x12 − 5000y12,15 ≥ −4977 + 2β

x11 − x4 − 5000y4,11 ≥ −4980 + 2β x12 − x17 + 5000y12,17 ≥ 14 + β

x4 − x12 + 5000y4,12 ≥ 23 + 2β x17 − x12 − 5000y12,17 ≥ −4977 + 2β

x12 − x4 − 5000y4,12 ≥ −4980 + 2β x13 − x14 + 5000y13,14 ≥ 20 + 2β
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Table 3. Cont.

Non-Interference Restrictions

x4 − x15 + 5000y4,15 ≥ 26 + 3β x14 − x13 − 5000y13,14 ≥ −4988 + β

x15 − x4 − 5000y4,15 ≥ −4980 + 2β x13 − x15 + 5000y13,15 ≥ 26 + 3β

x5 − x6 + 5000y5,6 ≥ 15 + 2β x15 − x13 − 5000y13,15 ≥ −4988 + β

x6 − x5 − 5000y5,6 ≥ −4986 + β x14 − x15 + 5000y14,15 ≥ 26 + 3β

x5 − x7 + 5000y5,7 ≥ 21 + 2β x15 − x14 − 5000y14,15 ≥ −4980 + 2β

x7 − x5 − 5000y5,7 ≥ −4986 + β x14 − x16 + 5000y14,16 ≥ 18 + 2β

83.x5 − x9 + 5000y5,9 ≥ 25 + 3β x16 − x14 − 5000y14,16 ≥ −4980 + 2β

x9 − x5 − 5000y5,9 ≥ −4986 + β x14 − x17 + 5000y14,17 ≥ 14 + β

x5 − x10 + 5000y5,10 ≥ 16 + 2β x17 − x14 − 5000y14,17 ≥ −4980 + 2β

Table 4 presents all precedence restrictions for task processing, totaling 22.

Table 4. Parametric model precedence restrictions.

Precedence Restrictions

x9 − x1 ≥ 10 + β x9 − x7 ≥ 21 + 2β x16 − x12 ≥ 23 + 2β

x7 − x2 ≥ 17 + 2β x13 − x7 ≥ 21 + 2β x17 − x13 ≥ 12 + β

x10 − x3 ≥ 13 + β x15 − x8 ≥ 30 + 3β x18 − x14 ≥ 20 + 2β

x12 − x3 ≥ 13 + β x12 − x9 ≥ 25 + 3β x17 − x15 ≥ 26 + 3β

x10 − x4 ≥ 20 + 2β x13 − x10 ≥ 16 + 2β x18 − x16 ≥ 18 + 2β

x14 − x4 ≥ 20 + 2β x17 − x10 ≥ 16 + 2β x16 − x17 ≥ 14 + β

x8 − x5 ≥ 14 + β x14 − x11 ≥ 18 + 2β

x11 − x6 ≥ 15 + 2β x15 − x11 ≥ 18 + 2β

Table 5 presents the restrictions on project delivery times.

Table 5. Parametric model delivery time restrictions.

Delivery Time Restrictions

x15 + s1a − s1b = 69 − 3β

x17 + s2a − s2b = 191 − β

x16 + s3a − s3b = 262 − 2β

x18 + s4a − s4b = 302 − 3β

Where:
xi, spa, spb ∈ R+

0 ; ti ∈ Z+; yij ∈ {0, 1}; β ∈ [0, 1]

3.2. Case Study Evaluation

For the case study, 11 degrees of imprecision (degrees of delay) β = {0, 0.1, 0.2, 0.3, . . . ,
1} generated eleven work plans for the backhoe in the construction projects (schedule).

As an illustrative example, the graphs of the three work plans corresponding to
β = {0, 0.3, 1} are shown in Figures 6–8.
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Regarding the degree of imprecision β = 0 (see Figure 6), results show there is no
tolerance for delay in the processing of tasks. For example, if task T4 of Project 2, which
must be completed on day 136, is delayed, the execution of task T2 cannot begin on
day 136, rendering the work plan infeasible.

For a degree of imprecision of β = 0.3 (see Figure 7), this implies that a delay of up to
30% is acceptable for all tasks. For instance, task T4 of Project 2 should end on day 126.3
(refer to Table 6), but the plan allows for a delay until day 126.9 while remaining valid.

Table 6. Detailed solution of the case study with β = 0.3 (degree of delay).

Work Plan Task Start
(xi)

Expected Processing
Time (ti)

Task Delay
(ri)

Final Processing
Time (ti + ri)

Delivery
Time (fp)

Project
Delay (spb)

Penalty
(mp)

T5 0 14 0.3 14.3
T8 14.3 30 0.9 30.9
T6 45.2 15 0.6 15.6
T11 60.8 18 0.6 18.6
T15 79.4 26 0.9 26.9 95 11.3 $1000
T4 106.3 20 0.6 20.6
T3 126.9 13 0.3 13.3
T10 140.2 16 0.6 16.6
T2 156.8 17 0.6 17.6
T7 174.4 21 0.6 21.6
T13 196 12 0.3 12.3
T17 208.3 14 0.3 14.3 205 17.6 $1600
T1 222.6 10 0.3 10.3
T9 232.9 25 0.9 25.9
T12 258.8 23 0.6 23.6
T16 282.4 18 0.6 18.6 280 21 $2500
T14 301 20 0.6 20.6
T18 321.6 28 0.9 28.9 330 20.5 $3000

Optimum Penalty $153,460
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For β = 1 (see Figure 8), results show that up to the maximum delay tolerance can be
accepted in all tasks, e.g., task T4 of Project 2 must finish on day 148, but the plan accepts a
delay up to day 150, and the work plan would still be valid.

The T4 task for β = 0 does not accept any delay, while for β = 0.3, it accepts a delay of
up to 0.6 of a day, and for β = 1, it accepts a delay of up to 2 days. The same is true for the
other tasks, i.e., as greater tolerance for delays is accepted, the work plan becomes more
robust but loses optimality.

On the other hand, for β = 0, β = 0.3 y β = 1, the maximum completion times of the
work plans in the execution of the four projects are 340, 350.5, and 375 days respectively,
(see Figures 6–8); that is to say, there is a gain in robustness, but more time is used in the
work plan.

For the analysis of the minimization of the total penalty generated by the delays in
the delivery of the four construction projects, any of the degrees β of delay can be used; as
an example, we take β = 0.3. Upon observing Table 6, it is evident that the construction
projects were delivered with delays of 11.3, 17.6, 21, and 20.5 days, respectively, resulting
in a total penalty of $153,460. In addition, the work plan implemented for the backhoe was
confirmed, which minimized the total penalty generated by the delays in the delivery of
the four construction projects.

Table 7 shows the values of the objective function (optimal penalty) for each degree
of delay. For example, for β = 0, β = 0.3 y β = 1, the optimum penalties are s/85,600,
s/153,460, and s/311,800, respectively, i.e., the greater the degree of delay that is tolerated,
the higher the penalty is.

Table 7. Tolerated degree of delay in tasks and the optimum penalty.

β Z∗ (Dollars)

0 85,600
0.1 108,220
0.2 130,840
0.3 153,460
0.4 176,080
0.5 198,700
0.6 221,320
0.7 243,940
0.8 266,560
0.9 289,180
1 311,800

In order to verify the fuzzy model robustness, incidences were simulated in the task
processing time (see Table 8). With these incidences, the final work plan was obtained (see
Table 9).

Table 8. Incidents (delays) in task processing time.

Task Delay Hours Delay Days

T5 6 0.25
T8 8 0.33
T6 0 0.00
T11 10 0.42
T15 7 0.29
T4 12 0.50
T3 4 0.17
T10 11 0.46
T2 13 0.54
T7 0 0.00
T13 6 0.25
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Table 8. Cont.

Task Delay Hours Delay Days

T17 5 0.21
T1 0 0.00
T9 8 0.33
T12 14 0.58
T16 8 0.33
T14 0 0.00
T18 12 0.50

Table 9. Final work plan.

Final Work
Plan

Task Start
(xi)

Processing
Time (ti)

Delivery Time
(fp)

Project Delay
(spb)

Penalty
(mp)

T5 0 14.25
T8 14.3 30.33
T6 45.2 15.00

T11 60.8 18.42
T15 79.4 26.29 95 10.69 $1000
T4 106.3 20.50
T3 126.9 13.17

T10 140.2 16.46
T2 156.8 17.54
T7 174.4 21.00

T13 196 12.25
T17 208.3 14.21 205 17.51 $1600
T1 222.6 10.00
T9 232.9 25.33

T12 258.8 23.58
T16 282.4 18.33 280 20.73 $2500
T14 301 20.00
T18 321.6 28.50 330 20.1 $3000

Optimum Penalty $150,831

Figure 9 shows that the final work plan (red line) is part of the fuzzy work plan (black
line).

3.3. Application of Fuzzy Model

To apply the fuzzy model in construction projects, it is suggested to follow these steps:

Step 1: Managers should review their portfolios of pending construction projects.
Step 2: Experts in the execution of construction projects must create a table indicating,

for each task, the start time, processing time, and maximum tolerance time for
the machine to complete the task. The experts should also indicate the degree of
imprecision in the delays (β), which can be tolerated for all tasks.

Step 3: With the data from Step 2, the rectangular triangular fuzzy set representing the
maximum delay to be tolerated must be designed for each task.

Step 4: Enter the parameters required by the model: for each task, enter the start time and
the fuzzy set representing the processing time, the degree of delay tolerated for all
tasks, the delivery time for each project, and the penalty for each day of delay.

Step 5: Solve the MILP auxiliary model using a linear programming solver. The decision
variables obtained are xi (start of task i).

Step 6: With the parameters and decision variables, the fuzzy work plan for the machine is
elaborated.

Step 7: With the incidents (delays) within the tolerances for each task, the final work plan
for the machine must be elaborated.
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3.4. Fuzzy Model Efficiency

To analyze efficiency, the model was applied to four case studies with a degree of
tolerance in delay of β = 0.3. The results are shown in Table 10.

Table 10. Cases evaluation results.

Projects Tasks Computer
Processing Time (s) Optimum Target Value

(Dollars)

Case 1 2 8 2.48 yes 204.30

Case 2 3 15 3.20 yes 17,340.00

Case 3 4 18 37.01 yes 153,460.00

Case 4 4 27 29,700.00 ------ ------

For Cases 1, 2, and 3, it was observed that, when the number of tasks increased, the
computer processing time (computational cost) increased; when adding Case 4, it was
observed that the growth of the computational cost was exponential, i.e., it is a highly
complex problem (see Figure 9).

It was also observed that, for the first three cases, the optimal solution was obtained.
However, for Case 4, the model did not obtain any solution in a time of 8.25 h (29,700.00 s).

Figure 10 illustrates the exponential growth of the computational cost, which was
caused by an increase in tasks in the studied cases.

For small and medium instances (up to approximately 25 tasks), the optimal solution
was obtained; for large instances, no solution was found.
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4. Discussion

The planning of construction projects requires tools that assist project managers in
decision-making. Scheduling tasks for a construction project with a limited number of
machines is a critical and well-studied problem. However, most studies assume that task
processing times are exact. In practice, delays frequently occur, rendering the initial work
plan invalid. Therefore, adaptability is crucial for successfully developing a project.

A fuzzy optimization model has been proposed for the planning of construction
projects executed simultaneously with only one backhoe and considering non-interference,
precedence, and lead-time constraints. The model assumes imprecise task processing
times, represented by fuzzy sets with triangular membership functions, that accept delays
up to a permitted degree of tolerance. The optimization tool CPLEX was used for the
implementation. For previously known input data from a set of tasks, the model solution
obtained a fuzzy work plan; this is a robust plan that supports incidents (delays) in task
processing time. A method to apply the model was created.

The results obtained showed that the procedure can help construction project man-
agers in their decision-making from a proactive approach, since it has, at its disposal,
adaptable and optimized work plans concerning delays in the delivery of projects with
the characteristic that, even with greater degrees of delay of the tasks, the model grants a
completion time that supports the delays.

The results also indicate that the fuzzy optimization model can help construction
companies reduce delays in the delivery of their projects and avoid excessive penalties.
The scientific contribution provided by the research is very important for future work since
it consists of the application of fuzzy optimization in a specific area of civil engineering.

To analyze efficiency, the model was applied to four case studies. In the first three
studies, which involved instances with small and medium numbers (up to 25 tasks), the
optimal solution was obtained in less than 37.1 s. However, in the fourth case, which
involved a larger number of tasks, no solution was obtained within 8.25 h. When the
number of tasks increases, the computational cost grows exponentially. This means that the
problem is highly complex.

Finally, as a result of the research, possibilities for future research are opened up:
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(i) Extend the proposed model to deal with construction projects that contemplate im-
precision with multiple machines.

(ii) Use metaheuristics to solve the fuzzy optimization model when the number of tasks
is large.
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