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Abstract: The study of linear codes over local rings, particularly non-chain rings, imposes difficulties
that differ from those encountered in codes over chain rings, and this stems from the fact that local
non-chain rings are not principal ideal rings. In this paper, we present and successfully establish a new
approach for linear codes of any finite length over local rings that are not necessarily chains. The main
focus of this study is to produce generating characters, MacWilliams identities and generator matrices
for codes over singleton local Frobenius rings of order 32. To do so, we first start by characterizing all
singleton local rings of order 32 up to isomorphism. These rings happen to have strong connections
to linear binary codes and Z4 codes, which play a significant role in coding theory.
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1. Introduction

All rings considered in this article are finite commutative and have an identity. A ring
R is defined to be local if it has a unique maximal ideal, denoted J(R) or simply J, called the
Jacobson radical. Furthermore, it is well established that all finite commutative Frobenius
rings can be decomposed as a product of local Frobenius rings. Thus, studying codes over
local rings is essential, as most structural coding theory findings have been transferred to
such rings. The idea that the class of Frobenius rings is the appropriate class to describe
codes is well known, and this is largely due to the fulfilment of both MacWilliams theorems.
For more details on the theory of rings, we refer to [1–4] and the references therein.

Linear codes of length N over R correspond to subsets of RN which are R-submodules
of R. When N is divisible by the characteristic of the residue field R/J, then these codes
are called repeated-root codes; otherwise, they are simple codes. Using Gray maps, linear
codes over fields were related to those over chain rings. While codes over chain rings have
been extensively investigated, codes over local non-chain rings have not gained as much
attention. The main reason for this disparity is because chain rings are principle ideal rings
(PIRs), and as PIRs are characterized as direct sums of chain rings, many conclusions on
chain rings may also be applied to PIRs. However, to fully determine codes over Frobenius
rings, it is essential to consider local rings which are not chains, even though this imposes
challenges, since the rings are not PIRs. We recommend references [5–15] to readers.

This paper mainly concentrates on determining fundamental coding results over local
Frobenius rings, with a specific focus on rings of order 32, to clarify the significance of
general results. The study of singleton local rings was accomplished in [2], and their
relevance in coding theory was demonstrated through connections to linear binary and
Z4 codes, see [16]. We proceed to investigate, in this article, two crucial tools in coding
theory: MacWilliams relations and generator matrices. In [17], the authors discussed these
tools over local Frobenius rings with small order, i.e., 16, based on the classification of local
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Frobenius rings with order 16 provided in [18]. Thus, we aim to concentrate on rings of
order 32 and utilize them as examples. First, we present a constructive approach to finding
a generating character χ associated with any singleton local Frobenius ring with invariants
p, n, r, t. Given such an χ, determining the MacWilliams relations when working with rings
of order 32 becomes straightforward.

On the other hand, generator matrices are highly advantageous for linear codes
because they not only generate the code but also make it easier to compute the code
size. Chain rings have a well-established standard form that satisfies this purpose, but
this however cannot be said for codes with alphabets of local (non-chain) rings. In this
regard, we introduce a natural generalization to local non-chain Frobenius rings whose
orders are 32. We also demonstrate, through several numerical examples, why such a
generator matrix does not necessarily result in determining the code size.

Following the preliminary definitions and results presented in Section 2, the classifica-
tion of singleton local Frobenius rings with invariants p, n, r, t is described in
Section 3, with special attention to giving the full details of characterizing rings of or-
der 32. The method for finding, in general, generating characters for singleton Frobenius
rings is given in Section 4. Additionally, specific generating characters are determined for
all singleton local Frobenius rings of order 32. Subsequently, the matrix associated with
the weight enumerator is obtained. Section 5 focuses on the results concerning generator
matrices for linear codes over such rings of order 32.

2. Preliminaries

Throughout this section, we introduce some notations and basic facts which will be uti-
lized later in our discussion. From now on, suppose that R is a finite commutative singleton
local ring with identity, and J denotes its Jacobson radical. We will rely on the following well-
established results from the theory of finite rings and coding theory (see [2,3,6,8,15,19]).

First, we define Jacobson radical J of R as the maximal ideal of R. The order of R, is
|R| = pmr, where p is a prime number, and that of J is p(m−1)r under the condition Jm = 0.
The additive order of 1 in R (characteristic) is of the form pn, such that 1 ≤ n ≤ m and
R/J ∼= GF(pr) = F. Moreover, R has a coefficient subring S of the form GR(pn, r), known
as the maximal Galois subring of R. It has been shown that there exists π in J such that

R = S + Sπ, J = pS + πS. (1)

A chain ring is a ring for which its J is principal. When m = n, then R is commutative,
and J is generated by the element p. Moreover, R can be constructed over Zpn as a
Galois extension,

R = Zpn [a] ∼= Zpn [x]/(g(x)),

where a has a multiplicative order of pr − 1 and g(x) is a monic basic polynomial (irre-
ducible modulo p) of degree r over Zpn . Elements of R can be uniquely expressed (p-adic
expression) as a sum of terms involving αi ∈ Γ(r) = (a) ∪ {0},

γ = α1 + pα1 + p2α2 + · · ·+ pn−1αn−2. (2)

Suppose t is the additive order of π; ptπ = 0. We characterize the integers p, n, r and t as
the invarints of R. The group of units of R, U(R), is decomposed as

U(R) = (a)× H, (3)

where H = 1 + J is called the one group.
We define the socle of R, soc(R), as the sum of all minimal ideals of R. As the rings

under consideration are commutative rings, then the socle coincides with the annihilator
of J. In the literature, there are several equivalent definitions of Frobenius rings. How-
ever, in our discussion, we will focus on a specific definition that is most relevant to our
subsequent analysis.
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Definition 1 ([4]). We call R a Frobenius ring if soc(R) ∼= R/J, considered as F-vector spaces.

Finite Frobenius rings have a very simple charaterization due to the work in [1]. A
character χ of (R,+) is an element of HomZ(R,C∗), the character group of (R,+). We call
χ a generating character if kerχ contains no left ideals of R which are not trivial.

Theorem 1 (Wood [1]). A finite ring R is a Frobenius ring if and only if it has a generating
character χ ∈ HomZ(R,C∗).

Corollary 1 ([1]). A finite ring R is a Frobenius ring if and only if it has a unique minimal ideal.

Theorem 2 (Honold [4]). A finite ring R is a Frobenius ring if and only if its soc(R) is cyclic.

A subset of RN is called a code C of length N over R, and if C is a submodule, then it
is called a linear code. Furthermore, we can incorporate the inner-product in RN , and thus
we can define the dual code C⊥ of C as

C⊥ = {u : c · u = 0, c ∈ C}, (4)

where · denotes an inner product in RN .
All symbols and notations mentioned above will be maintained throughout the manuscript.

3. Singleton Local Frobenius Rings

From now on, R will denote a finite commutative local ring with a singleton basis and
invariants p, n, r, t. Moreover, let g(x) always be defined as

g(x) = x2 − pdβh − peβ1h1x, (5)

where β, β1 ∈ Γ∗(r) and h, h1 ∈ 1 + pS. By the results of [2], R is structured as

R ∼= S[x]/(g(x), ptx). (6)

For the purpose of simplicity, we need to agree on the following notations




π2 = pdβh + peβ1h1π;
β, β1 ∈ Γ∗(r) and h, h1 ∈ 1 + pS;
m ≤ 2n;
t = m − n, n − t ≤ d ≤ n and 1 ≤ e ≤ t;
2 ≤ l ≤ m; Jl = 0 and Jl−1 ̸= 0.

(∗)

The following theorem establishes a powerful tool in characterizing singelton local Frobe-
nius rings based just on their invariants p, n, r, t, d, e. When t = 1, the case is trivial, so we
assume, in the theorem, that t > 1.

Theorem 3. If R is a singleton local ring, then R is Frobenius if and only if t = n or (t, d) =
(n − 1, 1).

Proof. Suppose that R is Frobenius, then soc(R) is the minimal ideal which is unique.
Furthermore, soc(R) is cyclic by Theorem 2, and thus we can write soc(R) = (θ). In this
case, we have θp = θπ = 0. As θ = s0 + s1π, it is clear that s0 ∈ pn−1S and s1 ∈ pt−1S,
and hence

θ = pn−1u + pt−1vπ, (7)

where u, v ∈ Γ(r) but they are not both equal to 0. This means that θ ∈ (pn−1, pt−1π). But
since t − 1 ⩽ n − 1, then soc(R) ⊆ (pt−1). Therefore, soc(R) = pn−1R. To finish the proof,
we consider two cases. If u = 0, then soc(R) = (pt−1π) and since pn−1π annihilates J,
then pn−1π ∈ soc(R), which means that n = t. On the other hand, suppose that u ̸= 0.
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Since θπ = 0, by Equation (7), pn−1π = 0 and pt−1π2 = 0, implying that pd+t−1βh = 0.
Therefore, t = n − 1 and d = 1. For the converse, assume that t = n. As pn−1π ̸= 0
and pn−1π J = 0, then clearly soc(R) = (pn−1π). This means R is Frobenius according to
Theorem 2. The case when t = n − 1 and d = 1 will lead to soc(R) = (pn−1) and again, by
the same reasoning, R is Frobenius.

Corollary 2. Suppose that R is a chain ring, then R is Frobenius. In particular, if n = 1, R
is Frobenius.

Proof. The result follows from Theorem 3 since t = n or t = n − 1 and d = 1.

Remark 1. For any singleton local Frobenius ring R with invariants p, n, r and t, then

soc(R) =

{
(pn−1π), if n = t,
(pn−1), if t = n − 1, d = 1.

The following proposition is useful for the next section.

Proposition 1. Let I be any non-zero ideal of a singleton local Frobenius ring R. Then, soc(R) is
contained in I.

Proof. Assume that I is an ideal of R. If I is minimal, then I = soc(R) because soc(R) is
the unique minimal ideal of R by Corollary 1. Now, suppose I is not minimal ideal, then I
contains an ideal which is minimal, and thus contains soc(R).

Remark 2. The number of singleton local rings (up to isomorphism) with π2 = pdβ and invariants
p, n, r, t, d is

N(p, n, r, t, d) =

{
1, if p = 2;
2, if p ̸= 2.

Full Characterization of Singleton Local Frobenius and Non-Frobenius Rings of Order 32

The following theorem plays a crucial role in our subsequent discussion as it provides
a comprehensive classification of all local rings with a singleton basis of order 32.

Theorem 4. Suppose R is a singleton local ring of order 32. Then, R is isomorphic to a unique ring
among those listed in Table 1.

Table 1. Classification of all singleton local Frobenius and non-Fobenius rings of order 32.

Frobenius Rings

Chain Rings Non-Chain Rings Non-Frobenius Rings

Z23 [x]/(x2 − 2, 4x) Z23 [x]/(x2 − 4 − 2x, 4x)
Z23 [x]/(x2 + 2, 4x) Z24 [x]/(x2 − 8, 2x) Z23 [x]/(x2 − 4, 4x)
Z23 [x]/(x2 − 2 − 2x, 4x) Z23 [x]/(x2, 4x)

Z24 [x]/(x2, 2x)
Z23 [x]/(x2 − 2x, 4x)

Proof. Since | R |= 32, we have two possible cases: either r = 5 and m = 1, or r = 1 and
m = 5. However, the first case does not result in a singleton ring. Therefore, we consider
the case where m = 5 and n can be either 3 or 4.
Case a: Let us assume n = 3, which implies t = 2. In this case, e can take values of 1 or 2,
and d can take values of 1, 2, or 3.
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Case a1. Considering the sub-case where d = 1, then g(x) = x2 − 2βh − 2eβ1x. Hence,
{

R1
∼= Z23 [x]/(x2 − 2h, 4x),

R2 ∼= Z23 [x]/(x2 − 2h − 2x, 4x).

As h ∈ 1 + pS = {1, 3, 5, 7}, then 1 = 5, 3 = 7 mod 4. Then, the correspondence ϕ between
Z23 [x]/(x2 − 2, 4x) and Z23 [x]/(x2 − 2(5), 4x) defined by ϕ(s1 + s2π) = s1 + s2θ is an
isomorphism. In addition, the same can be imposed on the rings Z23 [x]/(x2 − 2(3), 4x)
and Z23 [x]/(x2 − 2(7), 4x). This concludes that there are two rings (up to isomorphism) of
type R1 which are of the form Z23 [x]/(x2 − 2, 4x) and Z23 [x]/(x2 + 2, 4x). Now, we classify
rings of type R2. Because d = e, then the last term of g(x) = x2 − 2h − 2x determines
the classes of such rings; i.e., there is only one class that represents these rings, which is
Z23 [x]/(x2 − 2 − 2x, 4x).
Case a2. Now consider the option where d takes the values of 2 or 3. In this case, the
construction and properties of such rings can be further explored and analyzed.

R1
∼= Z23 [x]/(x2, 4x) if d = 3, e = 2,





R2 ∼= Z23 [x]/(x2 − 4 − 2x, 4x),
R3 ∼= Z23 [x]/(x2 − 4, 4x),
R4

∼= Z23 [x]/(x2 − 2x, 4x).

Based on Remark 2, there is exactly one ring of the form R3. With respect to rings of type
R1, there exists a unique class up to isomorphism. Furthermore, there is only one class of
each singleton local ring R2 and R4 by the same discussion as the previous case.
Case b. Let us consider the case where n = 4, which imposes t = 1. In this case, we have
e = 1 and d can take values of 3 or 4. Therefore, we list all such rings as

{
R1

∼= Z24 [x]/(x2, 2x), if d = 4
R2 ∼= Z24 [x]/(x2 − 8, 2x), if d = 3.

The class of R1 rings consists of one element, and additionally, there is only one ring of
type R2 in light of Remark 2.

We finally employ Theorem 3 to classify all singleton local rings of order 32. They are
divided into two categories: chain and non-chain rings.

Example 1. The ring Z23 [x]/(x2 − 2x, 4x) is not Frobenius because d = 3, t = 2 which does not
satisfy the condition of Theorem 3. Note that soc(R) = (4, 2x) which is not cyclic; | soc(R) |̸=| F | .
This ring is not a chain ring and is not the only non-Frobenius singleton local ring, as shown in
Table 1.

Remark 3. For non-chain and Frobenius rings, l = m − 1 = 4. On the other hand, for non-
Frobenius rings, if we denote li = l(J(Ri)), then the index of nilpotency of J is Ri. Thus, simple
calculations will lead to l1 = 3, l2 = 3, l3 = 3, l4 = 4 and l5 = 3, where Ri runs through all rings
in the third column.

Remark 4. By utilizing the results in our prior publication [2], we successfully classified singleton
local rings of order 32. It is worthy to highlight the original contribution of distinguishing between
Frobenius and non-Frobenius singleton local rings, as this distinction carries substantial significance
in the construction of generating characters discussed in the subsequent section. Furthermore, this
new approach has the potential to be extended for the purpose of studying codes over rings with
higher orders.
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4. Generating Characters and MacWilliams Identities

Let R be a singleton local Frobenius ring with invariants p, n, r, t and associated
polynomial g(x). The following theorem describes an approach to construct a generating
character for any singleton local Frobenius ring. In Table 2, we list the resulting generating
characters for singleton local Frobenius rings of order 32.

Table 2. χ for singleton Frobenius local rings of order 32.

Ring Additive Structure Generating Character

Z24 [x]/(x2 − 8, 2x) Z24 ×Z2 χ(a + bx) = ζa(−1)b

Z23 [x]/(x2 − 2, 4x) Z23 ×Z22 χ(a + bx) = γaib

Z23 [x]/(x2 + 2, 4x) Z23 ×Z22 χ(a + bx) = γaib

Z23 [x]/(x2 + 2 − 2x, 4x) Z23 ×Z22 χ(a + bx) = γaib

Theorem 5. Suppose that R is a singleton local Frobenius ring with invariants p, n, r, t. Then,
there exists an integer q ≥ 1 such that

χ(ω) = γa1
1 γa2

2 . . . γ
aq
q , (8)

is a generating character of R, where γi is a pni -root of unity and ai ≤ mr for each 1 ≤ i ≤ q.

Proof. Since R has a characteristic number pn, there are n = n1, n2, . . . , nq that satisfy
n1 ≥ n2 ≥ · · · ≥ nq and so are additive groups,

R ∼= Zpn1 ×Zpn2 × · · · ×Zpnq . (9)

This means that there are u1, u2, . . . uq, generators satisfying the condition o(ui) = pni for
1 ≤ i ≤ q. Thus, every element ω of R is factorized uniquely (in an additive sense) as

ω = a1u1 + a2u2 + · · ·+ aquq,

where ai ∈ Zpni . As R is Frobenius, then by Proposition 1, any nontrivial ideal encompasses
soc(R). Therefore, in order for χ to be a generating character, it is enough to illustrate that
a character χ is nontrivial on soc(R). Let us define the following map χ : R → C∗ by

χ(a1u1 + a2u2 + · · ·+ aquq) = γa1
1 γa2

2 . . . γ
aq
q , (10)

where γi is a pni th root of unity in C for each i. One can see that χ is in Hom(R,C∗); that
is, it is a character. Suppose that the image of soc(R) under χ is not 1,; then, χ will be a
generating character for R. On the contrary, assume that χ(soc(R)) = {1}. Suppose that
ω ∈ soc(R). As soc(R) is a cyclic of order pr, then in the additive structure, we can identify
soc(R) by Zpr . From group theory, there exists a unique i, 1 ≤ i ≤ q such that Zpr is a
subgroup of Zpni . This imposes χ(aiui) = γai ̸= 1 for all ai < pr, and hence χ is a non-trivial
character on soc(R). Therefore, χ is a generating character.

The following table presents generating characters for singleton Frobenius local rings
of order 32. In the table, γ and ζ are 23th root and 24th root of unity, respectively.

MacWilliams Relations

Now, we completely determine MacWilliams identities of various versions for single-
ton local Frobenius rings with p, n, r, t. In fact, these relations can hold for a broader class
of finite rings, namely the class of all Frobenius rings. These identities play a vital role in
coding theory as they establish a crucial link between the weight enumerator of a code and
its dual.

Let C be a code over R. The complete weight enumerator is known as
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CWE(c) = ∏
i

ani(c)
i , (11)

CWE(C) = ∑
c∈C

CWE(c). (12)

where ni(c) means the number of occurrences of ai in c.
Suppose that A is a pmr × pmr matrix with aij = χ(aiaj). Then,

CWEC(xa1 , . . . , xapmr ) =
1

| C⊥ |CWEC⊥(A · xa1 , . . . , xapmr ). (13)

The Hamming weight enumerator is defined as

HWC(a, b) = ∑
c∈C

aN−wt(c)bwt(c), (14)

where wt(c) =| {i : ci ̸= 0} | . First, note that WH(a, b) = WC(a, b, b, . . . , b). Now, we
introduce the MacWilliam identity for the Hamming weight enumerator as

HWC(a, b) =
1

| C⊥ |HWC⊥(a + (pmr − 1)b, a − b). (15)

We define ∼ on R as a ∼ b if and only if a = ωb, where ω ∈ U(R). It can be easily justified
that ∼ is an equivalence relation. Suppose that b̂1, . . . , b̂q are its equivalence classes, and
the symmetrized weight enumerator is hence defined by

SWEC(xb̂1
, . . . , xb̂q

) = ∑
c∈C

∏
i

xb̂i

n′
i(c), (16)

where n′
i(c) is the number of occurrences of elements of b̂i in the codeword c. Now,

assume that
bij = ∑

a∈b̂j

χ(aia).

Denote the matrix (bij)q×q by B. Then, we define the MacWiliams identity for the SWE
(symmetrized weight enumerator) of a linear code C as

SWEC(xb̂1
, . . . , xb̂q

) =
1

| C⊥ |SWEC⊥(B · (xb̂1
, . . . , xb̂q

)). (17)

It is easy to obtain the matrix A in (13) once we have χ. However, computing B in
Equation (17) requires more computational steps, as we need to determine b̂i. This process
involves more effort but is vital for constructing B. The following theorem gives us a
detailed scheme of building B for a more general case.

Theorem 6. If R is a singleton local Frobenius ring with n = 1, then R ∼= Fpr [x]/(x2) and B is a
matrix of 3 × 3 of the form

B =




1 (pr − 1)pr pr − 1

1 0 δ

1 −pr pr − 1




Proof. The additive structure of Fpr is Zp × · · · ×Zp︸ ︷︷ ︸
r times

. Then, the generating character χ is

defined on Fpr as
χ(a1u1 + a2u2 + · · ·+ arur) = (γ)a1+a2+···+ar ,

where γ is the p−root of unity in C. The equivalence classes are b̂1 = {0}, b̂2 = U(R)
and b̂3 = J(R) \ {0}. Therefore, it is clear that b1j = 1 and bj1 =| b̂j | . Also, b33 = pr − 1
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and b23 = δ, which is 0 or −1 according to whether p is odd or even, respectively. Finally,
b32 = −pr.

Remark 5. Theorem 6 can be generalized to a broader class of rings, namely R = Fpr [x]/(xk),
k ≥ 3. In this case, the associated matrix B will have dimensions of (k + 1)× (k + 1).

Example 2. If R is with invariants (p, n, r, t) = (2, 1, 2, 1), then the order of R is 24, and

B =




1 12 3

1 0 −1

1 −4 3




Next, we proceed to illustrate these computations through practical demonstration of
the steps involved for examples of singleton local Frobenius rings of order 32. Our attention
will be focused on understanding the equivalence classes under ∼ and then constructing B.
Table 3 presents the associated B of each ring, and also provides all equivalent classes.

From now onwards, the order of R is 32. First, we investigate B of chain rings.

Table 3. MacWilliams SWE matrices for singleton local Frobenius rings of order 32.

Ring Associated Matrix Equivalence Classes

Z24 [x]/(x2 − 8, 2x) B2 {0}, U(R), (2) \ soc(R), (x) \ soc(R),(x + 2) \ soc(R),(x + 4) \ soc(R), soc(R) \ {0}
Z23 [x]/(x2 − 2, 4x) B1 {0}, U(R), J \ J2, J2 \ J3,J3 \ J4, soc(R) \ {0}
Z23 [x]/(x2 + 2, 4x) B1 {0}, U(R), J \ J2, J2 \ J3,J3 \ J4, soc(R) \ {0}
Z23 [x]/(x2 + 2 − 2x, 4x) B1 {0}, U(R), J \ J2, J2 \ J3,J3 \ J4, soc(R) \ {0}

Example 3. Suppose that R = Z23 [x]/(x2 − 2, 4x). Let us assume the elements of R have the
following order:

R = {0, 1, 2, 3, 4, 5, 6, 7, x, 2x, 3x, 1 + x, 1 + 2x,

1 + 3x, 2 + x, 2 + 2x, 2 + 3x, 3 + x, 3 + 2x, 3 + 3x, 4 + x, 4 + 2x,

4 + 3x, 5 + x, 5 + 2x, 5 + 3x, 6 + x, 6 + 2x, 6 + 3x, 7 + x, 7 + 2x, 7 + 3x}.

Now, define for a, b ∈ R, aij = χ(ab), where i and j are the indexes of a and b, respectively. Thus,
set A = (aij) of size 32 × 32 over C. Note that this matrix is easy to calculate but it is too large.
Next, we compute the matrix B which needs extensive computations. We need to obtain b̂i on R
which are listed as





b̂1 = {0},
b̂2 = U(R) = {1, 3, 5, 7, 1 + x, 1 + 2x, 1 + 3x, 3 + x,
3 + 2x, 3 + 3x, 5 + x, 5 + 2x, 5 + 3x, 7 + x,
7 + 2x, 7 + 3x},
b̂3 = J \ J2 = {x, 3x, x + 2, x + 4, x + 6, 3x + 2, 3x + 4, 3x + 6},
b̂4 = J2 \ J3 = {2, 6, 2 + 2x, 6 + 2x},
b̂5 = J3 \ J4 = {2x, 2x + 4},
b̂6 = soc(R) \ {0} = J4 \ {0} = {4}.

To demonstrate the computations, we introduce a few cases, noting that χ(a) = −χ(a + 2x) and
χ(a + x) = −χ(a + 3x),
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b21 = χ(1(0)) = 1, b12 = ∑
bi∈U(R)

χ(0(bi)) = 16,b1j =| b̂j |, j = 3, 4, 5, 6

bi1 = 1, i = 1, 2, . . . , 6 b22 = ∑
bi∈b̂2

χ(1(bi)) = 0,bi2 = 0, i = 3, 4, 6

b23 = ∑
bi∈b̂3

χ(1(bi)) = 0 b2j = 0, j = 4, 5,b26 = −1.

Therefore,

B1 =




1 16 8 4 2 1

1 0 0 0 0 −1

1 0 0 −4 2 1

1 0 0 0 0 1

1 −16 8 4 2 1

1 0 0 4 0 1




Remark 6. If α is a unit, then αb̂i = b̂i, where i = 1, 2, 3, . . . , q. Thus, if the index of α is i, then
bij = b1j for all j.

Remark 7. From Example 3, all chain rings have an equivalent matrix B.

The following example will involve the case when R is a non-chain ring. There are
only unique rings of this type, which are R = Z24 [x]/(x2 − 8, 2x). In this ring, J = (x, 2),
which is of order 16 and its index of nilpotency is l = 4, and finally soc(R) = (pn−1π).

Example 4. Consider the non-chain ring R = Z24 [x]/(x2 − 8, 2x) which has (p, n, r, t) = (2, 4, 1, 1)
as invariants. Assume the order of elements of R as follows: if i, j ∈ Z24 , then i is before j if i < j as
integers, and i + x before j + x if i precedes j. Thus, the equivalence classes are





b̂1 = {0}, b̂2 = U(R) = {i, i + x : where i is odd as integer},
b̂3 = (2) \ soc(R) = {2, 4, 6, 10, 12, 14},
b̂4 = (x) \ soc(R) = {x, x + 8},
b̂5 = (x + 2) \ soc(R) = {x + 2, x + 6, 10 + x, 14 + x}
b̂6 = (x + 4) \ soc(R) = {x + 4, 12 + x}
b̂7 = soc(R) \ {0} = J3 \ {0} = {8}.

Thus, using the associated generating character in Table 2 and after appropriate calculations as in
Example 3,

B2 =




1 16 6 2 4 2 1

1 0 0 0 0 0 −1

1 0 −1 2 4 2 1

1 0 0 0 0 0 −1

1 0 −2 2 4 2 1

1 0 0 0 0 0 −1

1 0 −2 2 4 2 1




Note that ζ2 + ζ6 + ζ10 + ζ14 = 0 and ζ4 + ζ12 = 0.
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5. Generator Matrices

In coding theory, one of the essential techniques is creating a generator matrix in
standard form for a linear code over finite rings. In this section, we determine generator
matrices for linear codes over singleton local Frobenuis rings with invariants 2, n, r, t and
n + t = 5. Compared to codes over chain rings, constructing a generator matrix is more
challenging when studying codes over singleton local Frobenius rings that are non-chains.
Although a basic set of generators can still be found, such a generator matrix may not
provide simple information on the code size or amount of codewords. This is not the case
with codes across chain rings, where a generator matrix may be used to easily compute the
code size.

Let C be a linear code over Ri, i = 2, 3, 4. Then, C has a generator matrix with standard
form [11],

G =




Ie0 A12 A13 A14 A15 A16

0 π Ie1 A23 A24 A25 A26

0 0 π2 Ie2 A34 A35 A36

0 0 0 π3 Ie3 A45 A46

0 0 0 0 π4 Ie4 A56




where Ie denotes the e × e identity matrix. A linear code which has a generator matrix of
this form is called a code of type {e0, e1, e2, e3, e4}, and therefore its size is equal to

| C |= p∑4
i=0 (5−i)ei . (18)

Definition 2. We call the vectors v1, . . . , ve modular independent if no nontrivial linear combina-
tion of the vectors exists with coefficients from J that equals the zero vector. A generator matrix G
over the ring R is considered as such if the rows of G are modularly independent and they generate
the code C.

The remainder of this section deals with singleton local Frobenius rings of order 32,

R = Z24 [x]/(x2 − 8, 2x). (19)

Figure 1 below shows the ideal lattice of R. As we know that | J |= 16, | (2) |=|
(π) |=| (π + 2) |= 8, | (π + 4) |=| (4) |= 4 and | (8) = soc(R) |= 2. Therefore, our aim, in
this section, is to create a set of modularly independent elements which serve as the rows of
a generator matrix for a given code. The subsequent theorem provides a full representation
of the structure of a generator matrix.

Theorem 7. Suppose C is a linear code over R = Z24 [x]/(x2 − 8, 2x) with arbitrary length N.
Then, any generator matrix for C is equivalent to

G =




Ie0 M12 M13 M14 M15 M16 M17 M18 M19

0 2Ie1 M23 M24 M25 M26 M27 M28 M29

0 π Ie1

0 0 π Ie2 0 0 0 M37

0 0 0 (π + 4)Ie3 0 0

0 0 0 0 2Ie4 0 0 M48 M49

0 0 0 0 0 (2 + π)Ie5 0

0 0 0 0 0 0 4Ie6

0 0 0 0 0 0 0 8Ie7 M99




where Mij are matrices over R.



Mathematics 2024, 12, 1099 11 of 14

Proof. Suppose that G is a matrix whose rows generate C as an R-module. We move all
columns that have a unit in them to the left of G. By performing row reduction on those
columns, we get a matrix of the form

G =


Ie0 ∗

0 A




Now, all elements of A are not units. We again move all columns that have elements in
J = (2, π) to the left, and impose the main row operations to transfer the matrix to a form
of the following.

G =




Ie0 ∗ ∗
0 2 ∗
0 π ∗
0 0 A1




We proceed with this algorithm, ensuring that the matrix A1 is constructed by arranging
columns with elements that form a pair (2, π), and we repeat this process until the matrix
is in the desired form. 



Ie0 ∗ ∗
0 2Ie1 ∗
0 π Ie1

0 0 A2




where the entries of columns of the matrix A2 are elements of only one ideal of the ideals
(2), (π), (2 + π) and (4 + π). So, now we proceed with the matrix A2. In order to create a
unique representation of the matrix, we select a specific ordering for the four ideals: (π),
(4 + π), (2), and (2 + π). This chosen order will be used consistently when constructing
the matrix. Let u be a unit of R; we first continue with columns whose entries are of the
form πu, then with columns of (π + 4)u, and next with columns that have elements of the
form (2)u. Finally, we deal with columns of the form (π + 2)u. In each step, we perform
row reduction in the usual manner. Note that the ideal (4) is contained in both (2) and
(π + 2), and thus we repeat the same procedure with this ideal, since all remaining entries
of the columns will be from the ideal (4).




π Ie2 0 0 0 ∗
0 (π + 4)Ie3 0 0

0 0 2Ie4 0 0 ∗
0 0 0 (2 + π)Ie5 0

0 0 0 0 4Ie6

0 0 0 0 0 A3




Finally, all elements of A3 are from the ideal generated by 8. By eliminating any rows
containing only zeros and performing a final round of row reduction, we ultimately obtain
a matrix that precisely matches the desired form we were aiming for.

Proposition 2. Suppose that u is a vector in RN . Let M = (u) be a cyclic R-submodule of RN .
Then, | M |∈ {32, 16, 8, 4, 2, 0}.
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Proof. Assume that I is an ideal generated by coordinates of the vector u. Let T be the set
of all annihilators of u in R, which is an ideal of R. Thus,

| M |= | R |
| T | =| I | .

According to Figure 1, we have six possibilities for the order of I ∈ {32, 16, 8, 4, 2, 0}. The
result follows.

Mathematics , , 12 of 16

Let C be a linear code over Ri, i = 2, 3, 4. Then, C has the generator matrix with
standard form [14],

G =




Ie0 A12 A13 A14 A15 A16

0 π Ie1 A23 A24 A25 A26

0 0 π2 Ie2 A34 A35 A36

0 0 0 π3 Ie3 A45 A46

0 0 0 0 π4 Ie4 A56




where Ie denotes the e × e identity matrix. A linear codes which has generator matrix of
this form is called a code of type {e0, e1, e2, e3, e4}, and therefore its size is equal,

| C |= p∑4
i=0 (5−i)ei . (18)

Definition 2. We call the vectors v1, . . . , ve modular independent if there exists no nontrivial 170

linear combination of the vectors with coefficients from J that equals the zero vector. A generator 171

matrix G over the ring R is considered as such if the rows of G are modularly independent and they 172

generate the code C. 173

The reminder of this section deals with singleton local Frobenius rings of order 32,

R = Z24 [x]/(x2 − 8, 2x). (19)

The following figure shows the ideals lattice of R. As we know that | J |= 16, | (2) |=| 174

(π) |=| (π + 2) |= 8, | (π + 4) |=| (4) |= 4 and | (8) = soc(R) |= 2. Therefore, our aim, in 175

this section, is to create a set of modularly independent elements which serve as the rows of 176

a generator matrix for a given code. The subsequent theorem provides a full representation 177

of the structure of a generator matrix.

(1)=R

(2, π) = J

(2) (π)(π + 2)(π + 4)

(4)

(8) = soc(R)

(0)

Figure 1. Ideals lattice of Z24 [x]/(x2 − 8, 2x)Figure 1. Ideals lattice of Z24 [x]/(x2 − 8, 2x).

Theorem 8. Suppose that M = (u, v) are R-submodules such that their coordinates contain no
units. Then,

| M |∈ {256, 128, 64, 32, 16, 8, 4}.

Proof. By Proposition 2, we have | M |≤ 256. Since | (8) |= 2, then 4 ≤| M | .

Example 5. To obtain a linear code over R = Z24 [x]/(x2 − 8, 2x) of order 16, let N = 1 and
C = (2, π). Therefore, | C |= 16. If we want a code of order 32, we put C = (u, v) such that
N = 2 and u = (2, π), v = (π, 2). Thus, | C |= 32. Consider N = 4, u = (2, 0, π, 2) and
v = (π, 2, 0, 0). Hence, | C |= 256. Moreover, C is a decomposable module, i.e.,

C ∼= (u)⊕ (v).

The last example illustrates that it is possible for a code over a singleton local Frobenius
(non-chain) ring to not have a minimal set of generators in standard form, making it difficult
to determine the code size. In other words, it illustrates the distinction between codes over
local non-chain rings and codes over chain rings.

Example 6. Assume C is a linear code over Z24 [x]/(x2 − 8, 2x) with a generator matrix of the form
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G =




2 π

π 0

0 2




If M1 is the R-submodule generated by the first and second row of G, and M2 is the R-submodule
generated by the third row of G, then M1 ∩ M2 is always non-trivial. This means C is an indecom-
posable module.

6. Conclusions

In conclusion, we have successfully classified all singleton local Frobenius rings
(up to isomorphism) with respect to fixed invariants and determined the MacWilliams
relations and generator matrices for linear codes of arbitrary length over these rings. While
MacWilliams relations and generator matrices are well known and significant for codes
over chain rings, such a case may not be reachable for codes over local non-chain rings.
The challenge lies in the fact that local non-chain rings are not principal ideal rings, which
complicates the determination of a minimal set of generators and the enumeration of the
code size. This limitation suggests that alternative approaches or techniques are needed to
handle codes over local non-chain rings effectively.
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