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Abstract: A fall k-coloring of a graph G is a proper k-coloring of G such that each vertex has at least
one neighbor in each of the other color classes. A graph G which has a fall k-coloring is equivalent
to having a partition of the vertex set V(G) in k independent dominating sets. In this paper, we
first prove that for any fall k-colorable graph G with order n, the number of edges of G is at least
(n(k − 1) + r(k − r))/2, where r ≡ n (mod k) and 0 ≤ r ≤ k − 1, and the bound is tight. Then, we
obtain that if G is k-colorable (k ≥ 2) and the minimum degree of G is at least k−2

k−1 n, then G is fall
k-colorable and this condition of minimum degree is the best possible. Moreover, we give a simple
proof for an NP-hard result of determining whether a graph is fall k-colorable, where k ≥ 3. Finally,
we show that there exist an infinite family of fall k-colorable planar graphs for k ∈ {5, 6}.
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1. Introduction

In this paper, we only consider simple and undirected graphs. For a graph G = (V(G), E(G)),
we use V(G) and E(G) to represent the sets of vertices and edges of G, respectively. We
use dG(v) to represent the degree of a vertex v ∈ V(G), that is, the number of neighbors
of v in G. If dG(v) = r for any v ∈ V(G), then the graph G is called an r-regular graph.
For a vertex v ∈ V(G), let NG(v) = {u : uv ∈ E(G)} and NG[v] = NG(v) ∪ {v} denote the
open neighborhood and the closed neighborhood of v, respectively. The maximum degree and
minimum degree of G are denoted by ∆(G) and δ(G), respectively. When no confusion can
arise, NG(v), NG[v], ∆(G), and δ(G) are simplified by N(v), N[v], ∆, and δ, respectively. A
plane graph is a graph drawn in the plane such that its edges intersect only at their ends; a
planar graph is a graph that can be drawn as a plane graph.

Let G be a graph. A (proper) k-coloring f of G is a mapping from V(G) to {1, 2, . . . , k}
such that f (u) ̸= f (v) for any uv ∈ E(G). Hence, a k-coloring can be regarded as a partition
{V1, V2, . . . , Vk} of V(G), where Vi denotes the set of vertices assigned color i, and is called
a color class of f , where i = 1, 2, . . . , k. If a graph G admits a k-coloring, the G is called
k-colorable. The minimum number k such that G is k-colorable is called the chromatic number
of G and is denoted by χ(G).

Let f be a k-coloring of a graph G. If a vertex v ∈ V(G) has all colors in its closed
neighborhood under f , namely | f (N[v])| = k, then the vertex v is called colorful with
respect to f . Furthermore, the coloring f is called colorful whenever each of its color classes
contains at least one colorful vertex. The maximum order of a colorful coloring of a graph
G is called the b-chromatic number of G, and is denoted by φ(G). A fall k-coloring of a
graph G is a k-coloring of G such that every vertex is colorful.

The problem of b-chromatic numbers was introduced by Irving and Manlove in
1999 [1] and studied extensively in the literature (see the survey in [2]), whereas fall
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coloring was introduced in [3] and studied in [4–6]. It follows from [6] that fall coloring
strongly chordal graphs is doable in polynomial time, even with an unbounded number
of colors.

A dominating set in a graph G is a subset S ⊆ V(G) such that each vertex in V(G) is
either in S or has at least one neighbor in S. If S is a dominating set and independent, then
S is an independent dominating set (IDS) of G. The independent domination number γi(G)
is the minimum cardinality of an IDS of G. A graph G has a fall k-coloring if and only if
V(G) can be partitioned into k independent dominating sets [7].

Note that a graph may have no fall coloring. For instance, the cycle Cn has a fall
coloring only when n is a multiple of three or is even [3]. Hence, determining which graphs
are fall-colorable is an interesting problem. In fact, in 1976 Cockayne and Hedetniemi [7]
first studied fall-colorable graphs but used another term, indominable graphs. They found
several families of graphs which have fall colorings.

In this paper, we further discuss fall-colorable graphs. First, the size of a k-colorable
graph is determined, including the boundaries. Then, a sufficient condition of a graph to be
k-colorable (k ≥ 2) is proposed and the tightness of this condition is discussed. Moreover,
we give a simple proof for an NP-hard result of determining whether a graph is fall k-
colorable, where k ≥ 3. Finally, we show that there exist an infinite family of fall k-colorable
planar graphs for k ∈ {5, 6} and find some sufficient conditions for a maximal planar graph
to be fall-colorable.

For other notations and terminologies in graph theory, we refer to [8].

2. Some Properties of Fall-Colorable Graphs

In this section, we discuss some properties of fall k-colorable graphs. The following,
Lemmas 1 and 2, can be obtained straight from previous studies, such as [3,7].

Lemma 1 ([3]). Let G be a fall k-colorable graph and f a fall k-coloring. We have the following:
(i) δ(G) ≥ k − 1;
(ii) The subgraph induced by the union of any r color classes under f is fall r-colorable, where

r ≤ k.

Lemma 2 ([7]). A graph G is fall k-colorable if and only if G has a k-coloring such that the subgraph
induced by the union of any two color classes has no isolated vertices.

Theorem 1. Let G be a fall k-colorable graph of order n. Then,

|E(G)| ≥ n(k − 1) + r(k − r)
2

,

where r ≡ n (mod k) and 0 ≤ r ≤ k − 1.

Proof. Let f = (V1, V2, . . . , Vk) be a fall k-coloring of G and |Vi| = ni, where i = 1, 2, . . . , k.
Then, n = n1 + n2 + · · · + nk. Without a loss of generality, we assume that
n1 ≤ n2 ≤ · · · ≤ nk. For any two color classes Vi and Vj with i < j, by Theorem 2,
we know that the subgraph Gi,j induced by Vi ∪ Vj has no isolated vertices. Since Gi,j is a
bipartite graph, we have |E(Gi,j)| ≥ |Vj| = nj. Hence,

|E(G)| = ∑
1≤i<j≤k

|E(Gi,j)| ≥ ∑
1≤i<j≤k

nj

= n2 + 2n3 + · · ·+ (k − 1)nk

= (
k

∑
i=1

i · ni)− n.

(1)
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Now, we prove that if ∑k
i=1 i · ni is the minimum then (V1, V2, . . . , Vk) is an equitable

partition of V(G), namely |np − nq| ≤ 1, for any p, q ∈ {1, 2, . . . , k}.
Suppose, to the contrary, that (V1, V2, . . . , Vk) is not an equitable partition of V(G).

Then, there exists a ∈ {1, 2, . . . , k} such that na+1 − na ≥ 2 or b, c ∈ {1, 2, . . . , k} with b < c
such that nb+1 − nb = nc+1 − nc = 1. If the former occurs, let n′

a = na + 1, n′
a+1 = na+1 − 1,

and n′
i = ni for any i ∈ {1, 2, . . . , k} \ {a, a + 1}. Then,

k

∑
i=1

i · ni −
k

∑
i=1

i · n′
i =

k

∑
i=1

i · (ni − n′
i)

= a(na − n′
a) + (a + 1)(na+1 − n′

a+1)

= a(na − na − 1) + (a + 1)(na+1 − na+1 + 1)

= 1 > 0.

However, this contradicts the minimality of ∑k
i=1 i · ni.

If the latter occurs, let n′
b = nb + 1, n′

c+1 = nc+1 − 1, and n′
i = ni for any

i ∈ {1, 2, . . . , k} \ {b, c + 1}. Similar to the former case, we can obtain ∑k
i=1 i · ni − ∑k

i=1 i ·
n′

i = c − b + 1 > 0, which is a contradiction. Therefore, if ∑k
i=1 i · ni is a minimum then

(V1, V2, . . . , Vk) is an equitable partition of V(G).
Let n = kt + r, where r ≡ n (mod k) and 0 ≤ r ≤ k − 1. Now, we consider the case

of ∑k
i=1 i · ni as the minimum. Note that n1 ≤ n2 ≤ · · · ≤ nk. It therefore follows that

n1 = · · · = nk−r = t and nk−r+1 = · · · = nk = t + 1. Hence,

k

∑
i=1

i · ni =
k−r

∑
i=1

i · t +
k

∑
i=k−r+1

i · (t + 1)

=
k

∑
i=1

i · t +
k

∑
i=k−r+1

i

= t · k(k + 1)
2

+
r(2k − r + 1)

2

=
n − r

k
· k(k + 1)

2
+

r(2k − r + 1)
2

=
n(k + 1) + r(k − r)

2
.

(2)

Together with Formulae (1) and (2), we have

|E(G)| ≥ (
k

∑
i=1

i · ni)− n

≥ n(k + 1) + r(k − r)
2

− n

=
n(k − 1) + r(k − r)

2
.

Theorem 2. For any fall k-colorable graph G with order n, if G is (k − 1)-regular, then n ≡ 0
(mod k). Moveover, for any fall k-coloring f of G, each color class of f has exactly n

k vertices.

Proof. Let Vi be any color class of the fall k-coloring f of G. Then, for any two vertices
u and v in Vi; we can obtain NG(u) ∩ NG(v) = ∅. Otherwise, if there exists a vertex
x ∈ NG(u) ∩ NG(v), since G is (k − 1)-regular, we can deduce that x is adjacent to at most
k − 2 color classes, which implies that x is not a colorful vertex of f ; this is a contradiction.
Let Vi = {v1, v2, . . . , vt}. Then, NG[v1], NG[v2], . . . , NG[vt] is a t-partition of V(G). Since
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|NG[vj]| = k for each j = 1, 2, . . . , t, we have n = kt and so n ≡ 0 (mod k). Note that
|Vi| = t = n

k , we can discover that each color class of f has exactly n
k vertices.

3. A Sufficient Condition

In 2010, Balakrishnan and Kavaskar [9] showed that any graph G with δ(G) ≥
|V(G)| − 2 admits a fall coloring. In this section, we improve this result by relaxing the con-
dition δ(G) ≥ |V(G)| − 2 to δ(G) > k−2

k−1 |V(G)| for any k ≥ 2 and prove that the condition
of δ(G) is the best possible. First, we give a useful lemma obtained by Zarankiewicz [10]:

Lemma 3 ([10]). Let G be a k-colorable graph with n vertices and δ(G) > k−2
k−1 n, where k ≥ 2. We

have χ(G) = k.

Theorem 3. Let G be a k-colorable graph with n vertices and δ(G) > k−2
k−1 n, where k ≥ 2. Then,

G is fall k-colorable.

Proof. If k = 2, then δ(G) > k−2
k−1 n = 0 and G has no isolated vertices. Hence, G is fall

2-colorable.
Now, assume that k ≥ 3. Let v be an arbitrary vertex of G and Gv be the subgraph of

G induced by NG(v). Then, |V(Gv)| = |NG(v)| = dG(v) > k−2
k−1 n. Hence, for any vertex x

in Gv, we have

dGv(x) >
k − 2
k − 1

n − (n − |V(Gv)|)

= |V(Gv)| −
1

k − 1
n

> |V(Gv)| −
1

k − 1
· k − 1

k − 2
|V(Gv)|

=
(k − 1)− 2
(k − 1)− 1

|V(Gv)|.

Note that G is k-colorable, so Gv is (k − 1)-colorable. Hence, by Lemma 3, we can see
that χ(Gv) = k − 1, which yields that | f (NG(v))| = k − 1 for any k-coloring f of G. That is
to say, v is a colorful vertex with respect to f . Since v is an arbitrary vertex of G, we can
deduce that f is a fall k-coloring of G. Hence, the graph G is fall k-colorable.

Now, we show that the condition δ(G) > k−2
k−1 n in Theorem 3 is the best possible. We

will construct a family of graphs that are not fall k-colorable, Gℓ, with δ(Gℓ) =
k−2
k−1 |V(Gℓ)|.

We use Kn to denote the complete graph of order n and use Tr,s to denote the complete
r-partite graph with s vertices in each class, where r ≥ 2. The join of two graphs G and H,
denoted as G ∨ H, is the graph obtained from the disjointed union of G and H, and we add
edges joining every vertex of G to every vertex of H.

For any k ≥ 3 and ℓ ≥ 1, let G1
ℓ = Kℓ, G2

ℓ = T2,ℓ, G3
ℓ = Tk−2,3ℓ, and Gℓ = (G1

ℓ ∪ G2
ℓ)∨ G3

ℓ .
For example, when k = 4 and ℓ = 1, the graph Gℓ is shown in Figure 1.

1

1G 2

1G

3

1G

Figure 1. The graph Gℓ when k = 4 and ℓ = 1.
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Then, |V(Gℓ)| = |V(G1
ℓ )|+ |V(G2

ℓ )|+ |V(G3
ℓ )| = ℓ+ 2ℓ+ 3ℓ(k − 2) = 3ℓ(k − 1).

For any v ∈ V(G1
ℓ )∩V(Gℓ), dGℓ

(v) = 3ℓ(k − 2); for any v ∈ V(G2
ℓ )∩V(Gℓ), dGℓ

(v) =
3ℓ(k − 2) + ℓ = (3k − 5)ℓ; for any v ∈ V(G3

ℓ ) ∩ V(Gℓ), dGℓ
(v) = 3ℓ(k − 3) + ℓ + 2ℓ =

3ℓ(k − 2). Hence, δ(Gℓ) = 3ℓ(k − 2) = k−2
k−1 |V(Gℓ)|.

Note that for any k-coloring of Gℓ, | f (V(G3
ℓ ))| = k − 2. Hence, each vertex in V(G1

ℓ ) is
not a colorful vertex with respect to f . So, Gℓ is not fall k-colorable.

4. Complexity

The problem of determining whether a graph is fall k-colorable (k ≥ 3) has been shown
to be NP-complete [3,11–13]. In this section, we give a simple proof for the NP-complete
result of the FALL k-COLORABLE problem, which is defined as follows:

FALL k-COLORABLE:
Instance: Given a graph G = (V, E) and a positive integer k.
Question: Is G fall k-colorable?

k-COLORABLE:
Instance: Given a graph G = (V, E) and a positive integer k.
Question: Is G k-colorable?

It is well known that the k-COLORABLE problem is NP-hard for any k ≥ 3 [14].
We will prove that the fall k-colorable problem is NP-hard by using a reduction from the
k-COLORABLE problem.

Theorem 4. FALL k-COLORABLE is NP-complete for any k ≥ 3.

Proof. We show that the FALL k-COLORABLE problem is NP-complete by a reduction
from k-COLORABLE. For any graph G of order n with the vertex set {v1, v2, · · · , vn}, we
construct a graph G′ as follows:

First, take n copies K1
k , K2

k , · · · , Kn
k of the complete graph Kk. Then, add these n copies

of Kk to G and identify vi and a vertex of Ki
k into a single vertex, where i = 1, 2, · · · , n.

We claim that G is k-colorable if and only if G′ is fall k-colorable.
Let G′ be fall k-colorable. Let f ′ be a fall k-coloring of G′. By this definition, f ′ is a proper

k-coloring of G′. Then, the restriction of f ′ to V(G) is a k-coloring of G. So, G is k-colorable.
Conversely, assume that G has a k-coloring f . By the construction of G′, f can be extended to a
k-coloring f ′ of G′. Since every vertex of G′ belongs to a subgraph of G′ which is isomorphic to
Kk, we can see that f ′ is a fall k-coloring of G′. So, G′ is fall k-colorable.

Furthermore, the k-COLORABLE problem remains NP-hard under several restrictions.
Garey and Johnson [15] proved the following:

Lemma 4 ([15]). Three-COLORABLE is NP-complete even when restricted to planar graphs with
a maximum degree of four.

By Lemma 4 and using a similar approach to that in the proof of Theorem 4, we can
obtain the following result.

Corollary 1. FALL 3-COLORABLE is NP-complete even when restricted to planar graphs with a
maximum degree of six.

5. Fall Colorings of Planar Graphs

In this section, we discuss the fall colorings of planar graphs. Since δ(G) ≤ 5 for
any planar graph G, it follows from Lemma 1 (i) that ψ f (G) ≤ 6. In [7], Cockayne and
Hedetniemi found that each uniquely k-colorable graph is fall k-colorable. Note that for
any integer k ≤ 4, there exist an infinite family of planar graphs that are uniquely k-
colorable [16–21], but uniquely five-colorable planar graphs do not exist [18]. Hence, there
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exist an infinite family of planar fall k-colorable graphs for any k ≤ 4. Now, we show that
there also exist an infinite family of planar fall k-colorable graphs for k ∈ {5, 6}.

We can see that the icosahedron G12 in Figure 2, which is a planar graph, has a fall
five-coloring (Figure 2a) and a fall six-coloring (Figure 2b).

Theorem 5. There exist an infinite family of planar fall k-colorable graphs for k ∈ {5, 6}.

Proof. From the icosahedron G12, we can construct a family of graphs {Hi} as follows:
(1) H1 = G12;
(2) For integer i ≥ 2, Hi can be obtained by embedding a copy of G12 in some interior

face of Hi−1 and identifying the boundaries of this face and the exterior face of G12.
It can be checked that Hi is a planar graph of order 9i + 3. Note that every three-

coloring of the exterior triangle of G12 can be extended to a fall five-coloring by Figure 2a
or a fall six-coloring by Figure 2b of G12. We can recursively obtain a fall five-coloring and
a fall six-coloring of Hi. Hence, for any integer i, Hi is a planar fall k-colorable graph for
k ∈ {5, 6}.

1

23
5

1 1
4

32

4 4

5

1

23
4

5 6
1

32

6 5

4

(a) (b)

Figure 2. Two fall colorings of the icosahedron G12; (a) a fall 5-coloring and (b) a fall 6-coloring.

Now, we discuss the fall colorings of maximal planar graphs. A planar graph G is
maximal if G + uv is not planar for any two nonadjacent vertices u and v of G. For example,
the icosahedron G12 in Figure 2 is a maximal planar graph.

Theorem 6 ([12]). If a maximal planar graph G is three-colorable, then G is fall three-colorable.

Since a maximal planar graph G is three-colorable if and only if every vertex in G has
an even degree [22,23], we can obtain the following result:

Corollary 2. Let G be a maximal planar graph. If each vertex in G has an even degree, then G is
fall three-colorable.

Theorem 7. Let G be a maximal planar graph. If each vertex in G has an odd degree, then G is fall
four-colorable.

Proof. It follows from the Four Color Theorem [24,25] that G is four-colorable. Let f be
a four-coloring of G. Since G is a maximal planar graph, we know that the neighbors of
each vertex v form a cycle Cv of order dG(v). Note that v has an odd degree in G. Hence,
Cv contains three colors under the coloring f , that is, v is colorful with respect to f . So, f is
a fall four-coloring of G.

6. Conclusions and Open Problems

In this paper, we first show that |E(G)| ≥ (n(k − 1) + r(k − r))/2 for any fall k-
colorable graph G with order n, where r ≡ n (mod k) and 0 ≤ r ≤ k − 1, and this bound is
tight. Then, we obtain that if G is k-colorable (k ≥ 2) and the minimum degree δ(G) ≥ k−2

k−1 n,
then G is fall k-colorable and this condition of the minimum degree is the best possible.
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Moreover, we give a simple proof for an NP-hard result of determining whether a graph is
fall k-colorable, where k ≥ 3.

For a maximal planar graph G, if G has a fall k-coloring, then by Theorems 1, 5, 6, and 7
we can obtain that k ∈ {3, 4, 5, 6}. This prompts us to propose the following problem:

Problem 1. For each k ∈ {3, 4, 5, 6}, which maximal planar graphs G have fall k-colorings?

For any outerplane graph G, note that the minimum degree δ(G) ≤ 2. If G has a fall
k-coloring, then by Lemma 1 we have k ≤ δ(G) + 1 ≤ 3.
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