Article

On Fall-Colorable Graphs

Shaojun Wang ${ }^{1}$, Fei Wen ${ }^{2}{ }^{(D}$, Guoxing Wang ${ }^{1}$ and Zepeng Li ${ }^{3, *}$
1 School of Information Engineering and Artificial Intelligence, Lanzhou University of Finance and Economics, Lanzhou 730020, China; wangshaojun@lzufe.edu.cn (S.W.); wanggx@lzufe.edu.cn (G.W.)
2 Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China; wenfeimath@163.com
3 School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
* Correspondence: lizp@lzu.edu.cn

Citation: Wang, S.; Wen, F.; Wang, G.; Li, Z. On Fall-Colorable Graphs.
Mathematics 2024, 12, 1105. https:// doi.org/10.3390/math12071105

Academic Editor: Michele Bellingeri
Received: 4 March 2024
Revised: 3 April 2024
Accepted: 4 April 2024
Published: 7 April 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ $4.0 /$).

Abstract

A fall k-coloring of a graph G is a proper k-coloring of G such that each vertex has at least one neighbor in each of the other color classes. A graph G which has a fall k-coloring is equivalent to having a partition of the vertex set $V(G)$ in k independent dominating sets. In this paper, we first prove that for any fall k-colorable graph G with order n, the number of edges of G is at least $(n(k-1)+r(k-r)) / 2$, where $r \equiv n(\bmod k)$ and $0 \leq r \leq k-1$, and the bound is tight. Then, we obtain that if G is k-colorable $(k \geq 2)$ and the minimum degree of G is at least $\frac{k-2}{k-1} n$, then G is fall k-colorable and this condition of minimum degree is the best possible. Moreover, we give a simple proof for an NP-hard result of determining whether a graph is fall k-colorable, where $k \geq 3$. Finally, we show that there exist an infinite family of fall k-colorable planar graphs for $k \in\{5,6\}$.

Keywords: fall k-coloring; fall k-colorable graph; computational complexity; domination problem
MSC: 05C15; 05C69

1. Introduction

In this paper, we only consider simple and undirected graphs. For a graph $G=(V(G), E(G))$, we use $V(G)$ and $E(G)$ to represent the sets of vertices and edges of G, respectively. We use $d_{G}(v)$ to represent the degree of a vertex $v \in V(G)$, that is, the number of neighbors of v in G. If $d_{G}(v)=r$ for any $v \in V(G)$, then the graph G is called an r-regular graph. For a vertex $v \in V(G)$, let $N_{G}(v)=\{u: u v \in E(G)\}$ and $N_{G}[v]=N_{G}(v) \cup\{v\}$ denote the open neighborhood and the closed neighborhood of v, respectively. The maximum degree and minimum degree of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. When no confusion can arise, $N_{G}(v), N_{G}[v], \Delta(G)$, and $\delta(G)$ are simplified by $N(v), N[v], \Delta$, and δ, respectively. A plane graph is a graph drawn in the plane such that its edges intersect only at their ends; a planar graph is a graph that can be drawn as a plane graph.

Let G be a graph. A (proper) k-coloring f of G is a mapping from $V(G)$ to $\{1,2, \ldots, k\}$ such that $f(u) \neq f(v)$ for any $u v \in E(G)$. Hence, a k-coloring can be regarded as a partition $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$, where V_{i} denotes the set of vertices assigned color i, and is called a color class of f, where $i=1,2, \ldots, k$. If a graph G admits a k-coloring, the G is called k-colorable. The minimum number k such that G is k-colorable is called the chromatic number of G and is denoted by $\chi(G)$.

Let f be a k-coloring of a graph G. If a vertex $v \in V(G)$ has all colors in its closed neighborhood under f, namely $|f(N[v])|=k$, then the vertex v is called colorful with respect to f. Furthermore, the coloring f is called colorful whenever each of its color classes contains at least one colorful vertex. The maximum order of a colorful coloring of a graph G is called the b-chromatic number of G, and is denoted by $\varphi(G)$. A fall k-coloring of a graph G is a k-coloring of G such that every vertex is colorful.

The problem of b-chromatic numbers was introduced by Irving and Manlove in 1999 [1] and studied extensively in the literature (see the survey in [2]), whereas fall
coloring was introduced in [3] and studied in [4-6]. It follows from [6] that fall coloring strongly chordal graphs is doable in polynomial time, even with an unbounded number of colors.

A dominating set in a graph G is a subset $S \subseteq V(G)$ such that each vertex in $V(G)$ is either in S or has at least one neighbor in S. If S is a dominating set and independent, then S is an independent dominating set (IDS) of G. The independent domination number $\gamma_{i}(G)$ is the minimum cardinality of an IDS of G. A graph G has a fall k-coloring if and only if $V(G)$ can be partitioned into k independent dominating sets [7].

Note that a graph may have no fall coloring. For instance, the cycle C_{n} has a fall coloring only when n is a multiple of three or is even [3]. Hence, determining which graphs are fall-colorable is an interesting problem. In fact, in 1976 Cockayne and Hedetniemi [7] first studied fall-colorable graphs but used another term, indominable graphs. They found several families of graphs which have fall colorings.

In this paper, we further discuss fall-colorable graphs. First, the size of a k-colorable graph is determined, including the boundaries. Then, a sufficient condition of a graph to be k-colorable ($k \geq 2$) is proposed and the tightness of this condition is discussed. Moreover, we give a simple proof for an NP-hard result of determining whether a graph is fall k colorable, where $k \geq 3$. Finally, we show that there exist an infinite family of fall k-colorable planar graphs for $k \in\{5,6\}$ and find some sufficient conditions for a maximal planar graph to be fall-colorable.

For other notations and terminologies in graph theory, we refer to [8].

2. Some Properties of Fall-Colorable Graphs

In this section, we discuss some properties of fall k-colorable graphs. The following, Lemmas 1 and 2, can be obtained straight from previous studies, such as [3,7].

Lemma 1 ([3]). Let G be a fall k-colorable graph and f a fall k-coloring. We have the following:
(i) $\delta(G) \geq k-1$;
(ii) The subgraph induced by the union of any r color classes under f is fall r-colorable, where $r \leq k$.

Lemma 2 ([7]). A graph G is fall k-colorable if and only if G has a k-coloring such that the subgraph induced by the union of any two color classes has no isolated vertices.

Theorem 1. Let G be a fall k-colorable graph of order n. Then,

$$
|E(G)| \geq \frac{n(k-1)+r(k-r)}{2}
$$

where $r \equiv n(\bmod k)$ and $0 \leq r \leq k-1$.

Proof. Let $f=\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ be a fall k-coloring of G and $\left|V_{i}\right|=n_{i}$, where $i=1,2, \ldots, k$. Then, $n=n_{1}+n_{2}+\cdots+n_{k}$. Without a loss of generality, we assume that $n_{1} \leq n_{2} \leq \cdots \leq n_{k}$. For any two color classes V_{i} and V_{j} with $i<j$, by Theorem 2, we know that the subgraph $G_{i, j}$ induced by $V_{i} \cup V_{j}$ has no isolated vertices. Since $G_{i, j}$ is a bipartite graph, we have $\left|E\left(G_{i, j}\right)\right| \geq\left|V_{j}\right|=n_{j}$. Hence,

$$
\begin{align*}
|E(G)| & =\sum_{1 \leq i<j \leq k}\left|E\left(G_{i, j}\right)\right| \geq \sum_{1 \leq i<j \leq k} n_{j} \\
& =n_{2}+2 n_{3}+\cdots+(k-1) n_{k} \tag{1}\\
& =\left(\sum_{i=1}^{k} i \cdot n_{i}\right)-n .
\end{align*}
$$

Now, we prove that if $\sum_{i=1}^{k} i \cdot n_{i}$ is the minimum then $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ is an equitable partition of $V(G)$, namely $\left|n_{p}-n_{q}\right| \leq 1$, for any $p, q \in\{1,2, \ldots, k\}$.

Suppose, to the contrary, that $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ is not an equitable partition of $V(G)$. Then, there exists $a \in\{1,2, \ldots, k\}$ such that $n_{a+1}-n_{a} \geq 2$ or $b, c \in\{1,2, \ldots, k\}$ with $b<c$ such that $n_{b+1}-n_{b}=n_{c+1}-n_{c}=1$. If the former occurs, let $n_{a}^{\prime}=n_{a}+1, n_{a+1}^{\prime}=n_{a+1}-1$, and $n_{i}^{\prime}=n_{i}$ for any $i \in\{1,2, \ldots, k\} \backslash\{a, a+1\}$. Then,

$$
\begin{aligned}
\sum_{i=1}^{k} i \cdot n_{i}-\sum_{i=1}^{k} i \cdot n_{i}^{\prime} & =\sum_{i=1}^{k} i \cdot\left(n_{i}-n_{i}^{\prime}\right) \\
& =a\left(n_{a}-n_{a}^{\prime}\right)+(a+1)\left(n_{a+1}-n_{a+1}^{\prime}\right) \\
& =a\left(n_{a}-n_{a}-1\right)+(a+1)\left(n_{a+1}-n_{a+1}+1\right) \\
& =1>0 .
\end{aligned}
$$

However, this contradicts the minimality of $\sum_{i=1}^{k} i \cdot n_{i}$.
If the latter occurs, let $n_{b}^{\prime}=n_{b}+1, n_{c+1}^{\prime}=n_{c+1}-1$, and $n_{i}^{\prime}=n_{i}$ for any $i \in\{1,2, \ldots, k\} \backslash\{b, c+1\}$. Similar to the former case, we can obtain $\sum_{i=1}^{k} i \cdot n_{i}-\sum_{i=1}^{k} i$. $n_{i}^{\prime}=c-b+1>0$, which is a contradiction. Therefore, if $\sum_{i=1}^{k} i \cdot n_{i}$ is a minimum then $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ is an equitable partition of $V(G)$.

Let $n=k t+r$, where $r \equiv n(\bmod k)$ and $0 \leq r \leq k-1$. Now, we consider the case of $\sum_{i=1}^{k} i \cdot n_{i}$ as the minimum. Note that $n_{1} \leq n_{2} \leq \cdots \leq n_{k}$. It therefore follows that $n_{1}=\cdots=n_{k-r}=t$ and $n_{k-r+1}=\cdots=n_{k}=t+1$. Hence,

$$
\begin{align*}
\sum_{i=1}^{k} i \cdot n_{i} & =\sum_{i=1}^{k-r} i \cdot t+\sum_{i=k-r+1}^{k} i \cdot(t+1) \\
& =\sum_{i=1}^{k} i \cdot t+\sum_{i=k-r+1}^{k} i \\
& =t \cdot \frac{k(k+1)}{2}+\frac{r(2 k-r+1)}{2} \tag{2}\\
& =\frac{n-r}{k} \cdot \frac{k(k+1)}{2}+\frac{r(2 k-r+1)}{2} \\
& =\frac{n(k+1)+r(k-r)}{2} .
\end{align*}
$$

Together with Formulae (1) and (2), we have

$$
\begin{aligned}
|E(G)| & \geq\left(\sum_{i=1}^{k} i \cdot n_{i}\right)-n \\
& \geq \frac{n(k+1)+r(k-r)}{2}-n \\
& =\frac{n(k-1)+r(k-r)}{2} .
\end{aligned}
$$

Theorem 2. For any fall k-colorable graph G with order n, if G is $(k-1)$-regular, then $n \equiv 0$ $(\bmod k)$. Moveover, for any fall k-coloring f of G, each color class of f has exactly $\frac{n}{k}$ vertices.

Proof. Let V_{i} be any color class of the fall k-coloring f of G. Then, for any two vertices u and v in V_{i}; we can obtain $N_{G}(u) \cap N_{G}(v)=\varnothing$. Otherwise, if there exists a vertex $x \in N_{G}(u) \cap N_{G}(v)$, since G is $(k-1)$-regular, we can deduce that x is adjacent to at most $k-2$ color classes, which implies that x is not a colorful vertex of f; this is a contradiction. Let $V_{i}=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$. Then, $N_{G}\left[v_{1}\right], N_{G}\left[v_{2}\right], \ldots, N_{G}\left[v_{t}\right]$ is a t-partition of $V(G)$. Since
$\left|N_{G}\left[v_{j}\right]\right|=k$ for each $j=1,2, \ldots, t$, we have $n=k t$ and so $n \equiv 0(\bmod k)$. Note that $\left|V_{i}\right|=t=\frac{n}{k}$, we can discover that each color class of f has exactly $\frac{n}{k}$ vertices.

3. A Sufficient Condition

In 2010, Balakrishnan and Kavaskar [9] showed that any graph G with $\delta(G) \geq$ $|V(G)|-2$ admits a fall coloring. In this section, we improve this result by relaxing the condition $\delta(G) \geq|V(G)|-2$ to $\delta(G)>\frac{k-2}{k-1}|V(G)|$ for any $k \geq 2$ and prove that the condition of $\delta(G)$ is the best possible. First, we give a useful lemma obtained by Zarankiewicz [10]:

Lemma 3 ([10]). Let G be a k-colorable graph with n vertices and $\delta(G)>\frac{k-2}{k-1} n$, where $k \geq 2$. We have $\chi(G)=k$.

Theorem 3. Let G be a k-colorable graph with n vertices and $\delta(G)>\frac{k-2}{k-1} n$, where $k \geq 2$. Then, G is fall k-colorable.

Proof. If $k=2$, then $\delta(G)>\frac{k-2}{k-1} n=0$ and G has no isolated vertices. Hence, G is fall 2-colorable.

Now, assume that $k \geq 3$. Let v be an arbitrary vertex of G and G_{v} be the subgraph of G induced by $N_{G}(v)$. Then, $\left|V\left(G_{v}\right)\right|=\left|N_{G}(v)\right|=d_{G}(v)>\frac{k-2}{k-1} n$. Hence, for any vertex x in G_{v}, we have

$$
\begin{aligned}
d_{G_{v}}(x) & >\frac{k-2}{k-1} n-\left(n-\left|V\left(G_{v}\right)\right|\right) \\
& =\left|V\left(G_{v}\right)\right|-\frac{1}{k-1} n \\
& >\left|V\left(G_{v}\right)\right|-\frac{1}{k-1} \cdot \frac{k-1}{k-2}\left|V\left(G_{v}\right)\right| \\
& =\frac{(k-1)-2}{(k-1)-1}\left|V\left(G_{v}\right)\right| .
\end{aligned}
$$

Note that G is k-colorable, so G_{v} is $(k-1)$-colorable. Hence, by Lemma 3, we can see that $\chi\left(G_{v}\right)=k-1$, which yields that $\left|f\left(N_{G}(v)\right)\right|=k-1$ for any k-coloring f of G. That is to say, v is a colorful vertex with respect to f. Since v is an arbitrary vertex of G, we can deduce that f is a fall k-coloring of G. Hence, the graph G is fall k-colorable.

Now, we show that the condition $\delta(G)>\frac{k-2}{k-1} n$ in Theorem 3 is the best possible. We will construct a family of graphs that are not fall k-colorable, G_{ℓ}, with $\delta\left(G_{\ell}\right)=\frac{k-2}{k-1}\left|V\left(G_{\ell}\right)\right|$.

We use K_{n} to denote the complete graph of order n and use $T_{r, s}$ to denote the complete r-partite graph with s vertices in each class, where $r \geq 2$. The join of two graphs G and H, denoted as $G \vee H$, is the graph obtained from the disjointed union of G and H, and we add edges joining every vertex of G to every vertex of H.

For any $k \geq 3$ and $\ell \geq 1$, let $G_{\ell}^{1}=\bar{K}_{\ell}, G_{\ell}^{2}=T_{2, \ell}, G_{\ell}^{3}=T_{k-2,3 \ell}$, and $G_{\ell}=\left(G_{\ell}^{1} \cup G_{\ell}^{2}\right) \vee G_{\ell}^{3}$. For example, when $k=4$ and $\ell=1$, the graph G_{ℓ} is shown in Figure 1.

Figure 1. The graph G_{ℓ} when $k=4$ and $\ell=1$.

Then, $\left|V\left(G_{\ell}\right)\right|=\left|V\left(G_{\ell}^{1}\right)\right|+\left|V\left(G_{\ell}^{2}\right)\right|+\left|V\left(G_{\ell}^{3}\right)\right|=\ell+2 \ell+3 \ell(k-2)=3 \ell(k-1)$.
For any $v \in V\left(G_{\ell}^{1}\right) \cap V\left(G_{\ell}\right), d_{G_{\ell}}(v)=3 \ell(k-2)$; for any $v \in V\left(G_{\ell}^{2}\right) \cap V\left(G_{\ell}\right), d_{G_{\ell}}(v)=$ $3 \ell(k-2)+\ell=(3 k-5) \ell$; for any $v \in V\left(G_{\ell}^{3}\right) \cap V\left(G_{\ell}\right), d_{G_{\ell}}(v)=3 \ell(k-3)+\ell+2 \ell=$ $3 \ell(k-2)$. Hence, $\delta\left(G_{\ell}\right)=3 \ell(k-2)=\frac{k-2}{k-1}\left|V\left(G_{\ell}\right)\right|$.

Note that for any k-coloring of $G_{\ell},\left|f\left(V\left(G_{\ell}^{3}\right)\right)\right|=k-2$. Hence, each vertex in $V\left(G_{\ell}^{1}\right)$ is not a colorful vertex with respect to f. So, G_{ℓ} is not fall k-colorable.

4. Complexity

The problem of determining whether a graph is fall k-colorable $(k \geq 3)$ has been shown to be NP-complete [3,11-13]. In this section, we give a simple proof for the NP-complete result of the FALL k-COLORABLE problem, which is defined as follows:

FALL k-COLORABLE:

Instance: Given a graph $G=(V, E)$ and a positive integer k.
Question: Is G fall k-colorable?
k-COLORABLE:
Instance: Given a graph $G=(V, E)$ and a positive integer k.
Question: Is G k-colorable?
It is well known that the k-COLORABLE problem is NP-hard for any $k \geq 3$ [14]. We will prove that the fall k-colorable problem is NP-hard by using a reduction from the k-COLORABLE problem.

Theorem 4. FALL k-COLORABLE is NP-complete for any $k \geq 3$.
Proof. We show that the FALL k-COLORABLE problem is NP-complete by a reduction from k-COLORABLE. For any graph G of order n with the vertex set $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, we construct a graph G^{\prime} as follows:

First, take n copies $K_{k}^{1}, K_{k}^{2}, \cdots, K_{k}^{n}$ of the complete graph K_{k}. Then, add these n copies of K_{k} to G and identify v_{i} and a vertex of K_{k}^{i} into a single vertex, where $i=1,2, \cdots, n$.

We claim that G is k-colorable if and only if G^{\prime} is fall k-colorable.
Let G^{\prime} be fall k-colorable. Let f^{\prime} be a fall k-coloring of G^{\prime}. By this definition, f^{\prime} is a proper k-coloring of G^{\prime}. Then, the restriction of f^{\prime} to $V(G)$ is a k-coloring of G. So, G is k-colorable. Conversely, assume that G has a k-coloring f. By the construction of G^{\prime}, f can be extended to a k-coloring f^{\prime} of G^{\prime}. Since every vertex of G^{\prime} belongs to a subgraph of G^{\prime} which is isomorphic to K_{k}, we can see that f^{\prime} is a fall k-coloring of G^{\prime}. So, G^{\prime} is fall k-colorable.

Furthermore, the k-COLORABLE problem remains NP-hard under several restrictions. Garey and Johnson [15] proved the following:

Lemma 4 ([15]). Three-COLORABLE is NP-complete even when restricted to planar graphs with a maximum degree of four.

By Lemma 4 and using a similar approach to that in the proof of Theorem 4, we can obtain the following result.

Corollary 1. FALL 3-COLORABLE is NP-complete even when restricted to planar graphs with a maximum degree of six.

5. Fall Colorings of Planar Graphs

In this section, we discuss the fall colorings of planar graphs. Since $\delta(G) \leq 5$ for any planar graph G, it follows from Lemma 1 (i) that $\psi_{f}(G) \leq 6$. In [7], Cockayne and Hedetniemi found that each uniquely k-colorable graph is fall k-colorable. Note that for any integer $k \leq 4$, there exist an infinite family of planar graphs that are uniquely k colorable [16-21], but uniquely five-colorable planar graphs do not exist [18]. Hence, there
exist an infinite family of planar fall k-colorable graphs for any $k \leq 4$. Now, we show that there also exist an infinite family of planar fall k-colorable graphs for $k \in\{5,6\}$.

We can see that the icosahedron G_{12} in Figure 2, which is a planar graph, has a fall five-coloring (Figure 2a) and a fall six-coloring (Figure 2b).

Theorem 5. There exist an infinite family of planar fall k-colorable graphs for $k \in\{5,6\}$.
Proof. From the icosahedron G_{12}, we can construct a family of graphs $\left\{H_{i}\right\}$ as follows:
(1) $H_{1}=G_{12}$;
(2) For integer $i \geq 2, H_{i}$ can be obtained by embedding a copy of G_{12} in some interior face of H_{i-1} and identifying the boundaries of this face and the exterior face of G_{12}.

It can be checked that H_{i} is a planar graph of order $9 i+3$. Note that every threecoloring of the exterior triangle of G_{12} can be extended to a fall five-coloring by Figure 2 a or a fall six-coloring by Figure 2 b of G_{12}. We can recursively obtain a fall five-coloring and a fall six-coloring of H_{i}. Hence, for any integer i, H_{i} is a planar fall k-colorable graph for $k \in\{5,6\}$.

(a)

(b)

Figure 2. Two fall colorings of the icosahedron G_{12}; (a) a fall 5-coloring and (b) a fall 6-coloring.
Now, we discuss the fall colorings of maximal planar graphs. A planar graph G is maximal if $G+u v$ is not planar for any two nonadjacent vertices u and v of G. For example, the icosahedron G_{12} in Figure 2 is a maximal planar graph.

Theorem 6 ([12]). If a maximal planar graph G is three-colorable, then G is fall three-colorable.
Since a maximal planar graph G is three-colorable if and only if every vertex in G has an even degree [22,23], we can obtain the following result:

Corollary 2. Let G be a maximal planar graph. If each vertex in G has an even degree, then G is fall three-colorable.

Theorem 7. Let G be a maximal planar graph. If each vertex in G has an odd degree, then G is fall four-colorable.

Proof. It follows from the Four Color Theorem [24,25] that G is four-colorable. Let f be a four-coloring of G. Since G is a maximal planar graph, we know that the neighbors of each vertex v form a cycle C_{v} of order $d_{G}(v)$. Note that v has an odd degree in G. Hence, C_{v} contains three colors under the coloring f, that is, v is colorful with respect to f. So, f is a fall four-coloring of G.

6. Conclusions and Open Problems

In this paper, we first show that $|E(G)| \geq(n(k-1)+r(k-r)) / 2$ for any fall k colorable graph G with order n, where $r \equiv n(\bmod k)$ and $0 \leq r \leq k-1$, and this bound is tight. Then, we obtain that if G is k-colorable ($k \geq 2$) and the minimum degree $\delta(G) \geq \frac{k-2}{k-1} n$, then G is fall k-colorable and this condition of the minimum degree is the best possible.

Moreover, we give a simple proof for an NP-hard result of determining whether a graph is fall k-colorable, where $k \geq 3$.

For a maximal planar graph G, if G has a fall k-coloring, then by Theorems $1,5,6$, and 7 we can obtain that $k \in\{3,4,5,6\}$. This prompts us to propose the following problem:

Problem 1. For each $k \in\{3,4,5,6\}$, which maximal planar graphs G have fall k-colorings?
For any outerplane graph G, note that the minimum degree $\delta(G) \leq 2$. If G has a fall k-coloring, then by Lemma 1 we have $k \leq \delta(G)+1 \leq 3$.

Author Contributions: Formal analysis, S.W., G.W. and Z.L.; investigation, S.W. and F.W.; methodology, S.W., F.W. and Z.L.; writing-original draft, S.W., F.W., G.W. and Z.L. All authors have read and agreed to the published version of the manuscript.
Funding: This research was supported by the National Natural Science Foundation of China under grant number 61802158 and the Natural Science Foundation of Gansu Province (21JR11RA135).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.
Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Irving, R.W.; Manlove, D.F. The b-chromatic number of a graph. Discret. Appl. Math. 1999, 91, 127-141. [CrossRef] Jakovac, M.; Peterin, I. The b-chromatic number and related topics—A survey. Discret. Appl. Math. 2018, 235, 184-201. [CrossRef]
2. Dunbar, J.E.; Hedetniemi, S.M.; Hedetniemi, S.T.; Jacobs, D.P.; Knisely, J.; Laskar, R.C.; Rall, D.F. Fall colourings of graphs. J. Combin. Math. Combin. Comput. 2000, 33, 257-273.
3. Dong, W.; Xu, B.G. Fall colourings of Cartesian product graphs and regular graphs. J. Nanjing Norm. Univ. Nat. Sci. Ed. 2004, 27, 17-21.
4. Kaul, H.; Mitillos, C. On graph fall-coloring: Existence and constructions. Graphs Comb. 2019, 35, 1633-1646. [CrossRef]
5. Lyle, J.; Drake, N.; Laskar, R. Independent domatic partitioning or fall colouring of strongly chordal graphs. Congr. Numer. 2005, 172, 149-159.
6. Cockayne, E.J.; Hedetniemi, S.T. Disjoint independent dominating sets in graphs. Discrete Math. 1976, 15, 213-222. [CrossRef]
7. Bondy, J.A.; Murty, U.S.R. Graph Theory; Springer: Berlin/Heidelberg, Germany, 2008.
8. Balakrishnan, R.; Kavaskar, T. Fall coloring of graphs I. Discuss. Math. Graph Theory 2010, 30, 385-391. [CrossRef]
9. Zarankiewicz, K. lug les relations symétriques dans l'ensemble fini. Colloq. Math. 1947, 1, 10-14. [CrossRef]
10. Heggernes, P.; Telle, J.A. Partitioning graphs into generalized dominating sets. Nordic J. Comput. 1998, 5, 128-142.
11. Lauri, J.; Mitillos, C. Complexity of Fall Coloring for Restricted Graph Classes.Theory Comput. Syst. 2020, 64, 1183-1196. [CrossRef]
12. Laskar, R.; Lyle, J. Fall colouring of bipartite graphs and cartesian products of graphs. Discrete Appl. Math. 2009, 157, 330-338. [CrossRef]
13. Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Miller, R.E., Thatcher, J.W., Eds.; Plenum Press: New York, NY, USA, 1972; pp. 85-104.
14. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; Freeman: San Francisco, CA, USA, 1979.
15. Harary, F.; Hedetniemi, S.T.; Robinson, R.W. Uniquely colorable graphs. J. Combin. Theory 1969, 6, 264-270. [CrossRef]
16. Aksionov, V.A. On uniquely 3-colorable planar graphs. Discret. Math. 1977, 20, 209-216. [CrossRef]
17. Chartrand, G.; Geller, D.P. On uniquely colorable planar graphs. J. Combin. Theory 1969, 6, 271-278. [CrossRef]
18. Li, Z.; Matsumoto, N.; Zhu, E.; Xu, J.; Jensen, T. On Uniquely 3-Colorable Plane Graphs without Adjacent Faces of Prescribed Degrees. Mathematics 2019, 7, 793. [CrossRef]
19. Li, Z.P.; Zhu, E.Q.; Shao, Z.H.; Xu, J. Size of edge-critical uniquely 3-colorable planar graphs. Discret. Math. 2016, 339, 1242-1250. [CrossRef]
20. Mel'nikov, L.S.; Steinberg, R. One counterexample for two conjectures on three coloring. Discret. Math. 1977, 20, 203-206. [CrossRef]
21. Heawood, P.J. On the four-color theorem. Q. J. Math. 1898, 29, 270-285.
22. Tsai, M.T.; West, D.B. A new proof of 3-colorability of Eulerian triangulations. Ars Math. Contemp. 2011, 4, 73-77. [CrossRef]
23. Appel, K.; Haken, W.; Koch, J. Every planar map is four colorable. I: Discharging. Ill. J. Math. 1977, 21, 429-490. [CrossRef]
24. Appel, K.; Haken, W. Every planar map is four-colorable. II: Reducibility. Ill. J. Math. 1977, 21, 491-561. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

