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Abstract: This paper introduces a novel approach employing the fast cosine transform to tackle the
2-D and 3-D fractional nonlinear Schrödinger equation (fNLSE). The fractional Laplace operator
under homogeneous Neumann boundary conditions is first defined through spectral decomposition.
The difference matrix Laplace operator is developed by the second-order central finite difference
method. Then, we diagonalize the difference matrix based on the properties of Kronecker products.
The time discretization employs the Crank–Nicolson method. The conservation of mass and energy
is proved for the fully discrete scheme. The advantage of this method is the implementation of
the Fast Discrete Cosine Transform (FDCT), which significantly improves computational efficiency.
Finally, the accuracy and effectiveness of the method are verified through two-dimensional and
three-dimensional numerical experiments, solitons in different dimensions are simulated, and the
influence of fractional order on soliton evolution is obtained; that is, the smaller the alpha, the lower
the soliton evolution.

Keywords: nonlinear Schrödinger equation; fractional Laplace operator; optical solitons; conservation
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1. Introduction

The Nonlinear Schrödinger Equation (NLSE) is a nonlinear partial differential equation
that describes the evolution of wave functions in quantum mechanics. It finds extensive
applications across various fields of physics, including optics [1], cold atomic physics [2],
and plasma physics [3]. In nonlinear optics, the NLSE serves as a fundamental mathemat-
ical model to depict the behavior of light waves in nonlinear media. In semiconductor
physics, the NLSE describes the propagation of optical solitons in optical fibers made from
semiconductor materials [4]. The NLSE is crucial in studying the nonlinear dynamics
of semiconductor lasers, particularly in mode-locking and the generation of ultra-short
optical pulses [5]. Moreover, it has wide-ranging applications in all-optical communications
and all-optical information storage [6]. In recent years, many scholars have introduced
fractional-order derivatives into the NLSE, leading to the fractional nonlinear Schrödinger
equation (fNLSE). This modification enriches and complicates the dynamical behavior
of systems. The fNLSE has been extensively used in various fields such as nonlinear op-
tics [7], Bose–Einstein condensation [8], electromagnetics [9], and quantum mechanics [10].
In nonlinear optics, this equation is employed to describe and predict complex optical
phenomena induced by nonlinear effects in optical media, including signal transmission in
optical fibers [11], the evolution of wave packets [12], and the interaction among optical
solitons [13]. Numerical simulation of solitons through difference equations and explo-
ration of soliton applications in different fields have become hot topics in research. Solitons
have been widely applied in various fields such as hydrodynamics [14], dynamics [15,16],
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ocean engineering [17], etc. Extracting new soliton solutions to study the hidden physi-
cal conditions of nonlinear fractional-order partial differential equations has become an
important research direction [18–20].

We study the following 2-D fNLSE:

i
∂u
∂t

(x, t)− (−∆u(x, t))
α
2 +V(x)u(x, t) + β|u(x, t)|2u(x, t) = 0, x ∈ Ω, t ∈ (0, T] (1)

where Ω represents a 2-D or 3-D with homogeneous Neumann boundary conditions, u(x, t)
is a complex function, i2 = −1 is the imaginary unit, V(x) is the potential function, and β

is a constant. The symbol (−∆u)
α
2 denotes the fractional Laplace operator, where α is a

positive real number, and α = 2 stands for the classical Laplace operator. The fractional
Laplace operator can be defined in various ways, commonly through Fourier transform
methods, integral representations, fractional Sobolev space approaches, and spectral defini-
tions. Since we discuss the homogeneous Neumann boundaries in this paper, the spectral
definition method is adopted as follows [21]:

(−∆)
α
2 u(x) =

∞

∑
k=1

ckµ
α
2
k ϕk(x), (2)

where µk is the eigenvalues of (−∆u) , and ϕk corresponds to the eigenfunction,

ck =
∫

Ω
uϕkdx (3)

It is well-known that the Nonlinear Schrödinger Equation (NLSE) satisfies the con-
servation of mass and energy. The development of conservation numerical methods has
been a research focus. Numerous scholars have developed various conservation methods.
Hendy et al. proposed a method combining finite difference/spectrum and Galerkin–
Legendre techniques to solve the coupled nonlinear space–time fractional Schrödinger
equation, which exhibits non-smooth solutions in the time domain [22]. Li et al. introduced
scalar auxiliary variables to reformulate the Schrödinger equation into a new family of
systems. These systems were approximated using the implicit midpoint method, repeated
ladder method, and fractional center difference method [23]. Liaqat et al. proposed a novel
combinatorial calculation method using the conformable natural transform (CNT) and
homotopy perturbation method (HPM) to derive analytical and numerical solutions for the
time-fractional suitable Schrödinger equation (TFCSE) [24]. Kaabar et al. defined a new
generalized double Laplace transform, coupled with the Adomian decomposition method,
to solve the newly formulated nonlinear Schrödinger equation with spatiotemporal disper-
sion [25]. Zhang [26] investigated the optical soliton solutions of the nonlinear Schrödinger
equation with a quintic non-Kerr nonlinear term describing the nonlinear wave state of
optical solitons, which is a noteworthy and important model in optical fiber communication.
Wang and Huang [27,28] investigated energy-conserving difference schemes combined
with Alternating Direction Implicit (ADI) methods. Yang derived a linearized energy-
conserving finite difference scheme for a class of nonlinear fractional NLSE equations,
studying their energy conservation and convergence properties [29]. Klein et al. proposed
a Fourier spectral method for the one-dimensional fractional NLSE [30]. Previous studies
mainly focus on Dirichlet boundary conditions and periodic boundary conditions. For the
problems with Neumann boundary conditions, to the best of the authors’ knowledge,
the relevant papers are limited.

This paper presents a novel, rapid, and conservative method for solving the fractional
NLSE under Neumann boundaries in 2-D and 3-D cases. We first develop the difference
matrix of the 2-D and 3-D Laplace operators using the finite difference method and then
diagonalize the matrix based on the properties of Kronecker products. The difference
matrix of the fractional Laplace operator can be obtained by the spectral decomposition.
Time discretization employs the Crank–Nicolson method, and the conservation of mass
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and energy in the fully discrete scheme is proved. The advantage of this method is the
implementation of the Fast Discrete Cosine Transform (FDCT). The significant improvement
in computational efficiency can be observed in the numerical tests.

This paper is arranged as follows. In Section 2, we discretized 2-D and 3-D Equation (1)
by using central difference and the Crank–Nicolson method subsequently. In Section 3,
we first introduce the Kronecker operator to simplify the calculation. The conservation of
energy and mass of the fully discrete scheme is presented. The implementation of FDCT is
discussed in detail in Section 4. In Section 5, we provide numerical examples to verify the
efficiency, conservation and accuracy of the method.

2. Numerical Schemes

In this section, the numerical scheme for the 2-D fractional nonlinear Schrödinger
equation is first introduced, and then the schemes are generalized to the 3-D domain.

2.1. 2-D Case

In this subsection, the rectangular computing domain Ω = [a, b]× [c, d] is considered,
where the boundaries are the zero Neumann boundaries. The domain is divided into
Nx × Ny grids. The coordinates of the grid points as follows: specifically, the domain is
divided into Nx × Ny grids by some lines paralleling the axes, where the step size in the
x direction is hx = (b−a)/Nx and in the y direction is hy = (d−c)/Ny . Let uj,k be the numerical
solution of u(x, y), which are assigned at the center points of the meshes:

Th =
{(

xj, yk
)∣∣xj = a + (j− 1

2 )hx, yk = c + (k− 1
2 )hy, j = 1, · · ·Nx, k = 1, · · ·Ny

}
. (4)

Suppose the matrix U for the discrete solution on gird center points, i.e., that U =(
uj,k

)
Nx×Ny

. Applying the central difference method in the x-direction, we obtain the

second-order scheme

(uxx)j,k ≈
uj−1,k − 2uj−1,k + uj−1,k

h2
x

, j = 1, 2, 3, · · ·Nx − 1.

To obtain a second-order accurate method, we might introduce another unknown u0,k
on the ghost point. For the homogeneous Neumann boundary condition, we can use the
centered approximation on the left boundary point to obtain

u2,k − u0,k

2hx
= 0.

The proceeding two equations result in a difference matrix in the x direction,

Kx =



−1 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
. . . . . . . . .

...
0 0 0 1 −2 1
0 0 0 0 1 −1


Nx×Nx

,

and the difference matrix Ky in the y direction can be obtained similarly. We can now obtain
the discrete scheme of the Laplacian operator as:

(∆u)j,k ≈
(

1
h2

x
KxU +

1
h2

y
UKy

)
j,k

. (5)
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The tridiagonal matrices Kx and Ky can be diagonalized as [31]

Kx = SxΛxS−1
x , Ky = SyΛyS−1

y (6)

Here, the eigenvector matrices Sx and Sy are discrete cosine transform matrices,
(Sx)j,k = cos jπ

Nx
(k − 1

2 ),
(
Sy
)

j,k = cos jπ
Ny

(k − 1
2 ), and both are orthogonal matrices. The

matrixes Λx and Λy are diagonal matrices consisting of eigenvalues, represented in the
following form:

Λx = diag{λ1, λ2, · · · , λNx}, λj = −2 + 2cos(jπ/Nx)

Λy = diag
{

λ1, λ2, · · · , λNy

}
, λj = −2 + 2cos(jπ/Ny)

Next, we will rewrite the discrete scheme (5) in matrix-vector multiplication form
by the Kronecker product. The Kronecker product A⊗ B is defined by multiplying each
element of matrix A by the entire matrix B:

A⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
· · · · · · · · · · · ·

am1B am2B · · · amnB

,

where A =
(
aij
)

m×n and B =
(
bij
)

p×q. Set arrays U =
(

uj,k

)
Nx×Ny

and vectorize the

solution matrix U as

U = Vec(U) =
(

u1,1 u2,1 · · · uNx ,1, · · · , u1,Ny u2,Ny · · · uNx ,Ny

)T
. (7)

The elements of the diagonal matrix V are obtained by vectorizing two-dimensional
array V.

Set the matrix K = 1
h2

x
Kx ⊗ Iy+Ix ⊗ 1

h2
y
Ky by the Kronecker product. Then, the discrete

scheme (5) can be rewritten into the matrix-vector multiplication form:

KU =

(
1
h2

x
Kx ⊗ Iy+Ix ⊗

1
h2

y
Ky

)
U (8)

Here, the matrixes Ix, Iy are Nx-th and Ny-th order identity matrix, respectively. Set
the time step τ = T

N , tn = nτ, (n = 0, 1, · · · , N − 1). The fully discrete scheme of (1) is
obtained by using the Crank–Nicolson method as:

i
Un+1 −Un

τ
−
(
(−K)

α
2 − V

)Un+1 + Un

2
+

β

2

(∣∣∣Un+1
∣∣∣2 + |Un|2

)
Un+1 + Un

2
= 0 (9)

where Un and Un+1 represent the column vector of U in Equation (7) at different times t,
and the computation of the matrix power (−K)

α
2 will be presented in Section 3.

2.2. 3-D Case

Next, we consider the 3-D case. The computation domain Ω = [a, b]× [c, d]× [e, f ] is
divided into Nx×Ny×Nz grids along the x, y, and z directions, respectively. Use

(
xj, yk, zl

)
to represent the center of the meshes, which is defined similarly as in (4). The time step
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remains consistent with the 2-D case. Let the 3-D array Ũ =
(

uj,k,l

)
Nx×Ny×Nz

represent the

numerical solution at
(
xj, yk, zl

)
, then vectorize the solution array as:

Ũ = Vec
(
Ũ
)
=
(

u1,1,1 , · · · , u1,1,Nz , u1,2,1, · · · , u1,2,Nz , · · · , u1,Ny ,Nz , u2,1,1, · · · , uNx ,Ny ,Nz

)T

We apply the second-order central difference scheme in space and the Crank–Nicolson
in time for Equation (1) in 3-D. The numerical scheme in the matrix-vector multiplication
form can be obtained as:

i
Ũn+1 − Ũn

τ
−
((
−K̃

) α
2 − Ṽ

) Ũn+1 + Ũn

2
+

β

2

(∣∣∣Ũn+1
∣∣∣2 + ∣∣Ũn∣∣2) Ũn+1 + Ũn

2
= 0 (10)

The difference matrix is defined as:

K̃ = Iz ⊗ Iy ⊗ Kx + Iz ⊗ Ky ⊗ Ix + Kz ⊗ Iy ⊗ Ix (11)

where Iz is the identity matrix of order Nz.

3. Conservation

Before proving the conservative properties of the difference scheme, some notations
are first introduced. Let u, v ∈ CNx×Ny be a complex grid function on grids Th in (4).

The inner product is defined as: (u, v) = hxhy
Nx
∑

j=1

Ny

∑
k=1

uj,kvj,k, where vj,k is the conjugate

of vj,k. The definition of the l2-norm of grid function v is ‖v‖ =
√
(v, v). We also define

the lp-norm as‖v‖p =

(
hxhy

Nx
∑

j=1

Ny

∑
k=1

∣∣∣vj,k

∣∣∣p) 1
p

, 0 < p < ∞. When p = ∞, we obtain the

l∞-norm ‖v‖∞ = max
1≤j≤N−1

|uj,k|. The inner product and lp-norm in the 3-D case can be

similarly defined and we omit it here.
The conservation of mass and energy will be proved under the fully discrete scheme (8)

and (10). Before proceeding, it is necessary to decompose K in (8). To make the paper
self-contained, we first present some important properties of the Kronecker product:

i. (A⊗ B)(C⊗ D) = AC⊗ BD
ii. (A⊗ B)−1 = A−1 ⊗ B−1

iii. (A⊗ B)T = AT ⊗ BT

iv.
(

BT ⊗ A
)
vec(X) = vec(AXB)

Based on the properties of the Kronecker product, we give the following Lemmas.

Lemma 1. The 2-D difference matrix −K in (8) is symmetric positive definite matrices, and it
follows that(−K)

α
2 = LT L. And the 3-D difference matrix in (11) can also be decomposed as(

−K̃
) α

2 = L̃T L̃.

Proof. Firstly, we prove the decomposition of the 2-D difference matrix −K. Since the
discrete cosine transform matrices Sx, Sy are orthogonal, the matrices Kx, Ky in (5) can be
written as Kx = SxΛxST

x , Ky = SyΛyST
y . Furthermore, by the properties (ii) and (iii) of the

Kronecker product, we have:
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1
h2

x
Kx ⊗ Iy = Sx

1
h2

x
ΛxST

x ⊗ Iy = Sx
1
h2

x
ΛxST

x ⊗ Sy IyST
y

=
(
Sx ⊗ Sy

)( 1
h2

x
ΛxST

x ⊗ IyST
y

)
=
(
Sx ⊗ Sy

)( 1
h2

x
Λx ⊗ Iy

)(
ST

x ⊗ ST
y

)
=
(
Sx ⊗ Sy

)( 1
h2

x
Λx ⊗ Iy

)(
Sx ⊗ Sy

)T

(12)

similarly, we obtain:

Ix ⊗
1
h2

y
Ky =

(
Sx ⊗ Sy

)(
Ix ⊗

1
h2

y
Λy

)(
Sx ⊗ Sy

)T . (13)

From the above two equations, we have:

(−K)
α
2 =

(
Sx ⊗ Sy

)(
− 1

h2
x

Λx ⊗ Iy − Ix ⊗
1
h2

y
Λy

) α
2 (

Sx ⊗ Sy
)T (14)

It is obvious that Λ = − 1
h2

x
Λx ⊗ Iy − Ix ⊗ 1

h2
y
Λy is a diagonal matrix with positive

diagonal elements. Therefore, we can compute the fractional power of the matrix as
(−K)

α
2 =

(
Sx ⊗ Sy

)
Λ

α
4 Λ

α
4
(
Sx ⊗ Sy

)T
= LT L, where L = Λ

α
4
(
Sx ⊗ Sy

)T .
Next, we consider the decomposition of −K̃ in (10). Based on the properties (i) and (ii)

of the Kronecker product, we have:

Iz ⊗ Iy ⊗ Gx =
(

Sz IzSz
T
)
⊗
(

Sy IySy
T
)
⊗
(

SxΛxSx
T
)

=
(
Sz ⊗ Sy ⊗ Sx

)(
Iz ⊗ Iy ⊗Λx

)(
Sz

T ⊗ Sy
T ⊗ Sx

T
) (15)

A similar computation can be applied to Iz⊗Gy⊗ Ix, Gz⊗ Iy⊗ Ix. Then, we can rewrite−K̃
as:

−K̃ =
(
Sz ⊗ Sy ⊗ Sx

)
Λ̃
(

Sz
T ⊗ Sy

T ⊗ Sx
T
)

(16)

where Λ̃ = Iz ⊗ Iy ⊗ 1
h2

x
Λx + Iz ⊗ 1

h2
y
Λy ⊗ Ix +

1
h2

z
Λz ⊗ Iy ⊗ Ix is a diagonal matrix with

positive diagonal elements. The fractional power of the matrix −K̃ can be decomposed as(
−K̃

) α
2 =

(
Sz ⊗ Sy ⊗ Sx

)
Λ̃

α
4 Λ̃

α
4

(
Sz

T ⊗ Sy
T ⊗ Sx

T
)T

= L̃T L̃.

Now, we complete Lemma 1. The following proofs in 3-D have analogs for the 2-D
case, but the formulas are different, i.e., the formulas in the 3-D case are accompanied by a
tilde above them. The proof below does not need to be written for both cases, so we will
only present the proofs in the 2-D case. By Lemma 1, Lemma 2 can be readily obtained.

Lemma 2.
(

LT LU ,U
)
= (LU , LU ) = ‖LU‖2.

With the l2- and lp-norm, the definitions of mass and energy conservation are given as
Qn = ‖Un‖2 and En = ‖LUn‖2 − ‖VUn‖2 − β

2 ‖Un‖4, respectively.

Lemma 3. For a complex vector U , the following equation holds:

(1) Im((−K)
α
2 Un+ 1

2 ,Un+ 1
2 ) = 0

(2) Im
((∣∣Un+1

∣∣2 + |Un|2
)
Un+ 1

2 ,Un+ 1
2

)
= 0

(3) Re
(
(−K)

α
2 Un+ 1

2 ,Un+1 −Un
)
= 1

2

(∥∥LUn+1
∥∥2 − ‖LUn‖2

)
(4) Re

(
β
2

(∣∣Un+1
∣∣2 + |Un|2

)
Un+ 1

2 ,Un+1 −Un
)
= β

4

(∥∥Un+1
∥∥4 − ‖Un‖4

)
,

where Re denotes the real part and Im denotes the imaginary part. The proof is straightforward by
using Lemma 1 and Lemma 2. For more details, the reader is referred to the existing works in [27].
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Theorem 1. The fully discrete format (5) satisfies discrete mass conservation:

Qn+1 = Qn = · · · = Q0

Proof. Taking the inner product of both sides of Equation (10) with Un+1 + Un and taking
the imaginary part, using Lemma 3 (1) and (2), we have:∥∥∥Un+1

∥∥∥2
− ‖Un‖2 = 0

∥∥∥Un+1
∥∥∥2

= ‖Un‖2

Thus, Qn+1 = Qn, and the proof is complete by iteration.

Theorem 2. The fully discrete format (9) satisfies discrete energy conservation.

En+1 = En = · · · = E0

Proof. Taking the inner product of both sides of Equation (9) with Un+1 −Un and taking
the real part, using Lemma 3 (3) and (4), we have:∥∥∥LUn+1

∥∥∥2
−
∥∥∥Un+1

∥∥∥2
− β

2

∥∥∥Un+1
∥∥∥4

= ‖LUn‖2 − ‖VUn‖2 − β

2
‖Un‖4

Therefore, we obtain En+1 = En. This immediately implies discrete energy conservation.

4. Fast Implementation

Next, we will give the implementation of the solution of Equation (10). The implemen-
tation in 3-D is similar to the 2-D case, so we provide the computation with the 2-D case as
an example. (

i
τ

I − (−K)
α
2 − V

2

)
Un+1 =

(
i
τ

I +
(−K)

α
2 − V

2

)
Un +Fn+ 1

2
(17)

where Fn+ 1
2
= − β

4

(∣∣Un+1
∣∣2 + |Un|2

)(
Un+1 + Un) and I is the Nx Ny-th order identity

matrix. Equation (17) becomes:

Un+1 = A−1BUn + A−1Fn+ 1
2
, (18)

where the matrices A and B are defined as:

A =
(
Sx ⊗ Sy

) i
τ

I − 1
2

(
− 1

h2
x

Λx ⊗ Iy − Ix ⊗
1
h2

y
Λy

) α
2

+
V
2

(Sx ⊗ Sy
)−1

B =
(
Sx ⊗ Sy

) i
τ

I +
1
2

(
− 1

h2
x

Λx ⊗ Iy − Ix ⊗
1
h2

y
Λy

) α
2

− V
2

(Sx ⊗ Sy
)−1

according to Equation (17). We solve the above nonlinear system (18) by Picard iteration.
The specific iteration algorithm is as following Algorithm 1 [32]:
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Algorithm 1 The Picard iteration for the nonlinear system (18)

U0 = U0
(

xj, yk
)

f or n = 0, 1, . . . N

U 0
n+1 = Un

f or p = 1, 2 · · ·

Un+1
p+1 = A−1BUn + A−1F (Un) +F (Un+1

p)

2
while ||Un+1

p+1 −Un+1
p||∞ < ε = 10−13

continue
end

Un = Un+1
p+1

end

Next, we will use a fast discrete cosine transform to solve Equation (18). Let

Λ1 =
i
τ

I −
(
− 1

h2
x

Λx ⊗ Iy − Ix ⊗
1
h2

y
Λy

) α
2

+
V
2

, Λ2 =
i
τ

I +

(
− 1

h2
x

Λx ⊗ Iy − Ix ⊗
1
h2

y
Λy

) α
2

− V
2

we rewrite Equation (18) as the following equations:

Un+1 =
(
Sx ⊗ Sy

)(
Λ−1

1 Λ2

)(
Sx ⊗ Sy

)−1Un +
(
Sx ⊗ Sy

)
Λ−1

1
(
Sx ⊗ Sy

)−1Fn+ 1
2

(19)

Due to the similarity in computation steps between the two terms on the right-hand
side of Equation (19), we take the second term as an example. The computational procedure
is divided into three steps:

Step 1: According to the properties of the Kronecker product (ii) and (iv), the matrix-vector

multiplication of
(
Sx ⊗ Sy

)−1F in Equation (17) can be achieved as follows:(
Sx ⊗ Sy

)−1vec(F) =
(

S−1
x ⊗ S−1

y

)
vec(F) = vec

(
S−1

y FSx

)
It can be achieved using the fast discrete cosine transform.

Step 2: Since it is a diagonal matrix, Λ−1
1 vec

(
S−1

y FSx

)
= vec

(
S−1

y FSx./Λ
)

, where Λ−1 is
represented by ./Λ.

Step 3: Since Sx = ST
x , then

(
Sx ⊗ Sy

)
vec
(

S−1
y FSx./Λ

)
= vec(Sy

(
S−1

y FSx./Λ
)

Sx). This
part can be achieved using the fast inverse discrete cosine transform.

5. Numerical Experiments and Discussion
5.1. Numerical Experiments

In this section, we report some numerical results of the 2-D and 3-D fNLS Equation (1)
to support our theoretical analysis.

Example 1. We consider the problem (1) in Ω = [−π, π]× [−π, π], with the potential function
V(x, y) = 1− 4cos22xsin22y. When α = 2, the problem collapses to the classical cubic nonlinear
Schrödinger equation, and the exact solution is given by u(x, y, t) = e9it cos 2x sin 2y. In this
example, we compute the l∞-norm errors e(τ, h) =

∥∥u(T)−UNt
∥∥

∞ of the numerical solution at
T = 1. The time step is fixed with a small time step, τ = 1× 10−4.

Firstly, we test the discrete mass conservation law. Figure 1 gives the evolution of
mass Qn and energy En for 1.6, 1.7, 1.8, 2, respectively, with τ = h = 0.01.
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Figure 1. The evolution of discrete mass and energy for different values of α.

In Table 1, we compute the maximum norm errors of the energy and mass of the
numerical solution with τ = h = 0.01 at t = 1, which helps to better evaluate the accuracy
and stability of the numerical method. Then, the accuracy of the example is demonstrated
by computing the error between the analytical solution and the numerical solution, with the
results presented in Table 2. Table 2 shows that the scheme has second-order accuracy in
space. It is worth noting that the scheme with DCT performs the computation in CPU time,
which is several orders of magnitude shorter with respect to the no DCT method. Table 3
is obtained by scheme (9) with different time steps. The spatial step is also chosen to be
relatively small (h = 0.05). The results from Table 3 indicate that our scheme is second-order
in time.

Table 1. The maximal errors of the energy and mass with τ = h = 0.01 at t = 1.

α E(n) Q(n)

1.6 2.46 × 10−12 2.27 × 10−12

1.7 2.52 × 10−12 3.40 × 10−12

1.8 2.61 × 10−12 4.82 × 10−12

2 2.98 × 10−12 8.79 × 10−12
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Table 2. The error and CPU with T = 1 and τ = 1× 10−4.

DCT

N 32 64 128 256

Error 2.6 × 10−3 6.42 × 10−4 1.61 × 10−4 4.02 × 10−5

CPU(s) 0.2 0.4 1.63 4.12

NO DCT

N 32 64 128 256

Error 2.6 × 10−3 6.42 × 10−4 6.42 × 10−4 -

CPU(s) 1.97 52.36 1815.55 -

Table 3. Order of convergence in terms of time.

τ
a = 1.8 a = 1.9 a = 2.0

e(τ) e(τ) e(τ)

1/100 1.49 × 10−3 8.19 × 10−4 7.67 × 10−4

1/200 3.73 × 10−4 2.06 × 10−4 1.92 × 10−4

1/400 9.32 × 10−5 5.12 × 10−5 4.82 × 10−5

1/800 2.26 × 10−5 1.28 × 10−5 1.20 × 10−5

Example 2. Now, we investigate the impact of the collision of two solitons brought by fractional
order. In this example, we compute the interaction between two solitons. Take V(x, y) = 0, β = 2
and Ω = [−30, 60]× [−30, 60] in (1). The initial conditions are given as follows: u(x, y, 0) =
e2i(x+y) sech x sech y + e0.05i(x+y−15) sech(x − 15) sech(y− 15). In order to illustrate the fact
clearly, we first specify the elastic collisions with α = 2.0. It can be observed that the waves retain
their shape and velocity after interaction (see Figure 2). Then, we choose different α to test the
collisions of two solitons. Figure 3 shows the evolution of the modulus of the collision at t = 4
for α = 1.6, 1.7, 1.8, respectively. We can find that the order α will greatly affect the collision
time. The smaller α becomes, the longer the collision time. Generally, a reduction in the order may
indicate a stronger memory effect in the system, leading to a slower interaction between isolated
solitons. This feature is consistent with the fact that the fractional order introduces more historical
information.

(a) α = 2, t = 0 (b) α = 2, t = 4 (c) α = 2, t = 8

Figure 2. The interaction between two solitons at different times with α = 2, τ = 0.01.
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(a) α = 1.6, t = 4 (b) α = 1.7, t = 4 (c) α = 1.8, t = 4

Figure 3. The interactions between two solitons at different times with α = 1.6, α = 1.7, α = 1.8.

Example 3. The solutions of the nonlinear Schrödinger equation can exhibit a phenomenon known
as ‘blow-up’. In this example, we show the singular solutions for the FNLS equation. We choose
V(x, y) = 0, β = 1 and Ω = [−10, 10]× [−10, 10] in (1). The initial condition is u(x, y, 0) =
6
√

2 exp(−(x2+y2)). Figure 4 shows the modulus of the solution |u(x, y)| with different fractional
order, α = 1.3, α = 1.5, α = 1.8, α = 2.0. The blow-up effect is obtained in finite time with different
α. These plots show that the blow-up time becomes smaller for progressively increasing α. This is
because the fractional-order derivatives introduce a dependence on the system’s past states, causing
the evolution of the system to be influenced by previous states over longer distances.

(a) α = 1.3, t = 0.09 (b) α = 1.5, t = 0.063

(c) α = 1.8, t = 0.046 (d) α = 2, t=0.039

Figure 4. The modulus of solution in Example 3 with different α and blow-up time.

Example 4. Finally, we consider the 3-D problem (1) in Ω = [−10, 10]3, with V(x, y) =
0, β = 2. We set the final computation time as t = 1. The initial conditions are u(x, y, z, 0) =
sech(x) sech(y) sech(z) exp(i(x + y + z)). To better illustrate the results, Figure 5 describes the
time evolutions of solitons. Figure 5a shows the initial solution with the isosurfaces |u| = 0.25.
Figure 5b–d demonstrate the solution of |u| = 0.25, where the fractional orders are chosen as
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α = 1.2, 1.6, and 2. It can be seen from the figure that the order α will greatly affect the soliton.
The soliton propagates at a slower speed when α decreases.

(a) α = 1.2, 1.6, 2 t = 0 (b) α = 1.2 t = 1

(c) α = 1.6 t = 1 (d) α = 2 t = 1

Figure 5. The evolution of the soliton in 3-D with different fractional order.

5.2. Discussion

In Figure 1, the conservation of mass E and energy Q is clearly depicted, alongside the
discernible trend that, under varying α, the mass remains nearly constant while the energy
Q decreases with α. Figure 2 presents simulation diagrams illustrating optical solitons
with integer orders at different time intervals. These diagrams vividly show the loss and
diffraction phenomena occurring during the propagation of optical solitons. By comparing
with Figure 2, Figure 3 elucidates the influence of α on the motion of optical solitons: as α
decreases, the propagation speed of optical solitons decelerates. The occurrence of blasting
phenomena significantly impacts the stability of optical soliton propagation. In Figure 4,
the blasting time for different α when solving the Schrödinger equation is demonstrated.
To accentuate the blasting phenomenon, a three-dimensional image is provided for better
observation, revealing that smaller α results in slower blasting phenomena. Figure 5
presents the isosurface diagram concerning u, offering a theoretical foundation for the
study of optical solitons.
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6. Conclusions

This paper solves the two-dimensional and three-dimensional fractional nonlinear
Schrödinger equation under the Neumann boundaries. Our scheme employs Kronecker
products to represent the differential matrix of the fully discrete equation. This is more
helpful for our proof of the conservation of mass and energy. In addition, it obviously
improves the computing speed. In the implementation process, the application of the Fast
Discrete Cosine Transform effectively reduces computation time. Furthermore, extensive
numerical experiments in the 2-D case and the 3-D case are given to confirm the method’s
accuracy, efficiency, and stability. By varying fractional order, we could observe the impact
of fractional order. Specifically, we noted that the smaller the fractional order, the slower
the movement and formation of optical solitons. Furthermore, the approach delineated
in this article extends its applicability beyond the specific differential equation under
consideration. It not only serves to verify the conservation properties of various other
differential equations but also introduces an innovative methodology for their solutions.
This provides a theoretical basis for the study of optical soliton propagation in optical fibers
and nonlinear optics. This highlights the need for further study in the future.

7. Future Work

In the future, we will focus on the study of nonlinear optical solitons depicted by
different differential equations and extend the methodology to other nonlinear models.
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