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Abstract: Optimization, particularly constrained optimization problems (COPs), is fundamental in
engineering, influencing various sectors with its critical role in enhancing design efficiency, reducing
experimental costs, and shortening testing cycles. This study explores the challenges inherent in COPs,
with a focus on developing efficient solution methodologies under stringent constraints. Surrogate
models, especially Gaussian Process Regression (GPR), are pivotal in our approach, enabling the
approximation of complex systems with reduced computational demand. We evaluate the efficacy
of the Efficient Global Optimization (EGO) algorithm, which synergizes GPR with the Expected
Improvement (EI) function, and further extend this framework to Constrained Expected Improvement
(CEI) and our novel methodology Constrained Expected Prediction Error (CEPE). We demonstrate
the effectiveness of these methodologies by numerical benchmark simulations and the real-world
application of optimizing a Three-Bar Truss Design. In essence, the innovative CEPE approach
promises a potent balance between solution accuracy and computational prowess, offering significant
potential in the broader engineering field.

Keywords: constrained optimization problems; Gaussian process regression; constrained expected
improvement; constrained expected prediction error; Three-Bar Truss Design

MSC: 62P30

1. Introduction

In the fields of science and engineering, optimization problems, especially those
with constraints, play a crucial role. Constrained optimization problems (COPs) are vital
in a wide range of applications, including process control [1,2], reactor design [3], and
production scheduling [4]. Among these, specific challenges such as tension/compression
coil spring design [5] highlight the intricate nature of these problems. The aim of addressing
COPs is to enhance design efficiency, minimize experimental costs, and reduce testing cycles.
These problems hold intrinsic value across various engineering disciplines, including
chemical, mechanical, and electrical engineering [6–8], as they seek optimal solutions
within the boundaries set by constraints, be they equalities or inequalities [9]. To solve
these complex issues, a range of methodologies have been developed, from gradient-based
methods [10], known for their efficiency in differentiable problems, to population-based
strategies like Genetic Algorithms [11], which are capable of addressing non-differentiable
and multi-modal challenges, albeit often at a higher computational cost [12]. COPs are
typically represented through mathematical formulations, underscoring their quantitative
nature and the systematic approach required for their resolution. We define the formulation
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min y = f (x),

st : l ≤ g(x) = (g1(x), g2(x), . . . , gm(x)) ≤ u,

where l = (l1, l2, . . . , lm), u = (u1, u2, . . . , um),

x = (x1, x2, . . . , xn) ∈ X,

X = {x|xl ≤ x ≤ xu},

xl = (xl1 , xl2 , . . . , xln), xu = (xu1 , xu2 , . . . , xun),

(1)

where x is a solution vector within the solution space X, g(x) represents the constraints, and
l and u are the lower and upper bounds of the constraints, respectively. There are two types
of scenarios for the solution to this formulation: feasible and infeasible. A solution is
considered feasible if the solution vector x ∈ X satisfies all the constraints g(x). Conversely,
a solution is deemed infeasible if x ∈ X but does not satisfy all the constraints g(x). At
times, the feasibility ratio (the percentage of feasible solutions out of the total number
of feasible and infeasible solutions) can be very low, which is equivalent to having very
stringent constraints. In such cases, it is imperative to find a solution that satisfies the
constraints as efficiently as possible.

For solving complex optimization problems, especially those with constraints, the use
of surrogate models has emerged as a highly effective strategy. Surrogate models, pivotal
in the realm of optimization, provide simplified yet powerful approximations of complex
systems, enabling efficient exploration and optimization of design spaces where direct
evaluations are prohibitively expensive. These models, also referred to as metamodels,
span a diverse array of methodologies, each tailored to capture the intricacies of different
problem domains [13]. To encapsulate these varying surrogate model methodologies and
their application in constrained optimization problems, Table 1 provides a comprehensive
summary of the key literature, highlighting techniques, tested datasets, and their respective
advantages and disadvantages.

Table 1. Summary of surrogate model methodologies in constrained optimization problems.

Methodology Reference Approach Advantages Limitations

Polynomial Regression Box and Wilson,
1992 [14]

Utilizes polynomial
equations to model
relationships between
variables

Straightforward
approach for problems
with smooth
relationships

May not capture
complex, nonlinear
behaviour effectively

Radial Basis Function
(RBF) Networks Buhmann, 2000 [15]

Employs radial basis
functions to
approximate unknown
functions

Effective for scattered
multidimensional data

Computationally
intensive for large
datasets

Kriging Oliver and Webster,
1990 [16]

A best-unbiased
predictor based on
geostatistical methods

Provides an estimate of
prediction error;
well-suited for
surrogate modelling

Requires significant
computational
resources for large
problems

Gaussian Process
Regression (GPR) Gramacy, 2020 [17]

Models unknown
functions as samples
from a Gaussian
process

Robust in capturing
trends and uncertainty
quantification

May be challenging to
scale to very
high-dimensional
problems

Despite these advancements, a comprehensive review of the literature underscores
certain limitations in the current surrogate modelling approaches, particularly when ap-
plied to constrained optimization problems [18]. A notable challenge is the difficulty in
accurately capturing and adapting to the complex constraint boundaries that often define
feasible regions in optimization landscapes [19]. Many existing surrogate models excel
in unconstrained scenarios or situations with simple constraints but may fall short when
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faced with complex, nonlinear, or high-dimensional constraints [20]. Additionally, there is
a paucity of methodologies that effectively incorporate constraint handling mechanisms
within the surrogate model itself, often relying on external penalty functions or constraint
relaxation techniques that may not always yield optimal solutions. This gap in the lit-
erature highlights the need for more sophisticated surrogate models that can inherently
deal with complex constraints while maintaining the balance between exploration and
exploitation in the search space. These insights into the limitations of current surrogate
models in handling constrained optimization problems have motivated the development
of our proposed methodologies. By addressing these identified gaps, we aim to contribute
to the advancement of surrogate-assisted optimization strategies, providing more robust
and efficient solutions for complex constrained optimization challenges.

Among the diverse array of surrogate modelling techniques, Gaussian Process Re-
gression (GPR) stands out for its efficiency and effectiveness [17]. GPR is renowned for its
robustness in capturing the underlying trends of the data with a quantifiable measure of
uncertainty, making it particularly suitable for optimization problems where uncertainty
plays a critical role [21]. The historical development of surrogate models in optimization
was notably advanced in 1998 when Jones et al. [22] introduced the Efficient Global Opti-
mization (EGO) algorithm. This algorithm integrates GPR with the Expected Improvement
(EI) function, a pivotal concept in Bayesian optimization. The EI function is designed to sys-
tematically identify the global optimum of computationally expensive black-box functions,
which are often subject to inherent uncertainties [23]. This approach prioritizes sampling in
regions where the anticipated improvement in the function’s value is maximized, thereby
enhancing the model’s accuracy in critical areas. This methodology exemplifies an active
learning strategy, dynamically refining the model with each new data point to efficiently
navigate the complex landscape of the optimization problem. However, when dealing with
optimization problems that include stringent constraints, the standard EI approach may re-
quire modifications to accommodate these limitations. In response to this challenge, recent
developments have introduced variants such as the Constrained Expected Improvement
(CEI), which adapt the EI principle to handle constraints effectively [24,25].

In addressing the challenges inherent in constrained optimization, this study intro-
duces significant innovations that extend the current state-of-the-art methodologies. Firstly,
we propose a novel approach to compute the Expected Prediction Error (EPE) [26] at an
untested point by leveraging the cross-validation error from a nearby tested point. This
method enhances the prediction accuracy of our surrogate model, particularly in the sparse
regions of the design space where traditional interpolation methods might falter. Secondly,
we introduce the Constrained Expected Prediction Error (CEPE) criterion, a pioneering
metric designed to navigate the intricate landscape of constrained optimization problems
efficiently. By integrating CEPE within a Differential Evolution (DE) [27] framework aug-
mented with Gaussian Process (GP) surrogates, our approach not only capitalizes on
the strengths of evolutionary algorithms in exploring complex solution spaces but also
harnesses the predictive prowess of GP models to make informed decisions during the
optimization process. The synergy between these innovations presents a robust framework
that promises improved optimization performance, especially in scenarios characterized by
stringent constraints and expensive function evaluations.

The remainder of this paper is structured as follows. In Section 2, we introduce
the theoretical knowledge about Gaussian Process, Expected Improvement and Expected
Prediction Error. In Section 3, we discuss methodologies for Constrained Expected Improve-
ment, introduce our novel method Constrained Expected Prediction Error, and provide the
GP surrogate-assisted Differential Evolution (DE) algorithm. In Section 4, we evaluate the
efficacy of CEI and CEPE using benchmark problems, and in Section 5, we illustrate their
application in a real-world problem. Finally, we conclude this paper with discussions and
remarks in Section 6.
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2. Background and Concepts

In this section, we provide a brief theoretical overview of Gaussian Process Regression
(GPR), Expected Improvement (EI), and Expected Prediction Error (EPE).

2.1. Gaussian Process Regression

We aim to use the Gaussian Process Regression (GPR) framework to model an un-
known function f (x), by assuming that f (x) is a sample from a Gaussian process denoted
as y(x). Within this context, for any input point x, the function value f (x) is viewed as a
sample from a Gaussian random variable y(x) and y(x) is distributed as N (µ, σ2), where
µ and σ2 are constants independent of x. The covariance of y(x) with another random
variable y(x′), where x′ represents another point in the input space, is given by

cov[y(x), y(x′)] = σ2Corr(y(x), y(x′)). (2)

The correlation function Corr(y(x), y(x′)) is defined as

Corr(y(x), y(x′)) = exp

(
−

p

∑
k=1

θk|xk − x′k|
2

)
, (3)

where p is the dimension of the input space and θk are the hyperparameters.
Considering a set of N input points x1, x2, . . . , xN , let fN = ( f (x1), f (x2), . . . , f (xN))

T

and yN = (y(x1), y(x2), . . . , y(xN))
T . The parameters µ, σ2, θ1, . . . , θp can be estimated by

maximizing the joint Gaussian probability density function of yN at fN

p(fN |µ, σ2, R) =
1

(2πσ2)N/2
√

det(R)
exp

[
− (fN − µ1)TR−1(fN − µ1)

2σ2

]
, (4)

where R is an N × N matrix with elements Ri,j = Corr(y(xi), y(xj)), and 1 is an N-
dimensional column vector of ones.

The log-likelihood function is then

L(µ, σ2, θ1, . . . , θp|fN) = −N
2

log(2πσ2)− 1
2

log(det(R))− (fN − µ1)TR−1(fN − µ1)
2σ2 . (5)

Now, let us differentiate the log-likelihood with respect to µ:

∂L
∂µ

=
1
σ2 (1

TR−1(fN − µ1)). (6)

Setting this derivative to zero and solving for µ gives the maximum likelihood estimate

µ̂ =
1TR−1fN

1TR−11
. (7)

Next, let us differentiate the log-likelihood with respect to σ2

∂L
∂σ2 = − N

2σ2 +
(fN − 1µ̂)TR−1(fN − 1µ̂)

2σ4 . (8)

Setting this derivative to zero and solving for σ2 gives the maximum likelihood
estimate

σ̂2 =
(fN − 1µ̂)TR−1(fN − 1µ̂)

N
. (9)

There is no analytical form for the estimates of θ1, . . . , θp, so the maximization of the
log-likelihood function with respect to θ1, . . . , θp is usually completed by conjugate descent.

With the maximum likelihood estimates of the parameters, we can now derive expres-
sions for predicting f (x) at a new point x. Let r be the vector of correlations between the
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new point and the N data points, where the i-th element of r is Corr(y(x), y(xi)). The best
linear unbiased predictor (BLUP) of f (x) can be written as:

f̂ (x) = µ̂ + rTR−1(fN − 1µ̂), (10)

where µ̂ is the estimate of the mean in (7) and R is the correlation matrix calculated using
the estimates of θi.

Similarly, the prediction variance can be derived as:

s2(x) = σ̂2
(

1 − rTR−1r +
(1 − 1TR−1r)2

1TR−11

)
. (11)

This forms the basis for Gaussian Process Regression, where we model the unknown
function f (x) as a Gaussian process and make predictions at new points by combining
information from the observed data.

2.2. Expected Improvement

In this section, we introduce a widely-adopted infill sampling method known as
Expected Improvement (EI), developed by Jones et al. [22] for the optimization of expensive
black-box functions. Expected Improvement is particularly useful once a surrogate model,
typically Gaussian Process Regression, is constructed.

As previously defined in Equation (1), let f (x) denote the objective func-
tion with a surrogate model y(x) that follows a Gaussian process. Consider
a set of test inputs {x1, x2, . . . , xN} with corresponding observed function values
fN = ( f (x1), f (x2), . . . , f (xN))

T . We define fmin as the best observed value of the function
among the test inputs, i.e., fmin = min(fN). The improvement of f (x) at a new input point
x is defined as

I(x) = max{ fmin − f (x), 0}. (12)

Expected Improvement is then defined as the expected value of this improvement,
given the observed data fN

E[I(x)|fN ] = E[max{ fmin − f (x), 0}|fN ]. (13)

Through some non-trivial mathematical manipulations, we can express the Expected
Improvement in terms of the predictive mean and standard deviation of the surrogate
model as follows:

E[I(x)|fN ] = ( fmin − f̂ (x))Φ

(
fmin − f̂ (x)

s(x)

)
+ s(x)ϕ

(
fmin − f̂ (x)

s(x)

)
, (14)

where f̂ (x) and s(x) are the predictive mean and standard deviation of the surrogate
model at x, computed according to Equations (10) and (11), and ϕ(·) and Φ(·) denote
the probability density function (PDF) and cumulative distribution function (CDF) of the
standard normal distribution, respectively.

2.3. Expected Prediction Error

In this section, we introduce the Expected Prediction Error (EPE), an active learning
strategy employed to evaluate the accuracy of a predictive model. EPE quantifies the
discrepancy between the predicted and actual values. Specifically, it is the expected value
of the squared prediction error over a sample of data. EPE is sometimes referred to as the
mean squared error (MSE).

Within the context of the GPR methodology, the posterior distribution of the response
at a given location x is denoted as ŷ(x), which follows a Gaussian distribution expressed as
ŷ(x) ∼ N (µx, σ2

x ). In this setting, the mean µx symbolizes the predictive estimate given by
f̂ (x), while the variance σ2

x reflects the uncertainty associated with the prediction, denoted
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as s2
x. Given this framework, we can define the prediction error, often referred to as the loss

function, L, for a point x as
L(x) = (y(x)− ŷ(x))2. (15)

Here, y(x) embodies the true underlying response, perturbed by inherent observa-
tional noise.

Then, the overall generalization error of the GPR-based surrogate model is given by

e =
∫
D

E[L(x)]dx, (16)

where E[L(x)] denotes the expected value of the prediction error, and D is a subset of Rp.
This expectation can be decomposed into

E[L(x)] =(E[y(x)]− E[ŷ(x)])2 + E[(ŷ(x)− E[ŷ(x)])]2 + E[(y(x)− E[y(x)])2], (17)

where the first term represents the squared bias, capturing the average difference be-
tween the predicted and observed responses; the second term is the prediction variance
of the surrogate model; and the third term is the variance of the noise Var(ϵ), which is
often negligible.

The EPE quantifies the discrepancy between the GPR model’s predictions and the true
function values. In this context, f (x) denotes the true function we aim to approximate, and
f̂ (x) represents the GPR model’s prediction at x. Thus, EPE at a point x is given by

EPE(x) = ( f (x)− f̂ (x))2︸ ︷︷ ︸
bias2

+ s2(x)︸ ︷︷ ︸
variance

. (18)

However, the true response f (x) is unknown in the bias term. Following the approach
by Liu et al. [26], we employ leave-one-out cross-validation for estimation. Initially, we
estimate the cross-validation errors at all training sample locations:

e2
CV(xi) = ( f (xi)− f̂−i(xi))

2, i = 1, 2, . . . , N, (19)

where xi represents the i-th training sample, and f̂−i denotes the GP model trained using
all training samples except (xi, f (xi)). Next, for any point x, we locate the nearest training
sample to x, denoted as xi, and assign its associated cross-validation error to e2

CV(x):

e2
CV(x) = e2

CV(xi), where i = arg min
i

|x − xi|, i = 1, 2, . . . , N. (20)

Finally, incorporating the cross-validation error, we obtain a refined expression for
the EPE:

EPE(x) = e2
CV(x) + s2(x). (21)

The Expected Prediction Error (EPE) plays a crucial role in assessing the accuracy
and reliability of our surrogate model, particularly in constrained optimization problems.
By calculating the EPE, we can identify regions in the design space where the model’s
predictions are less reliable, informing us where additional sampling might be beneficial.
Moreover, as EPE comprises both bias and variance, it aids in striking a balance between
the two, ensuring that the model is neither too simplistic nor too complex. This information
is vital for efficient exploration of the search space and making informed decisions in the
optimization process.

3. Methodology

In this section, we first present the CEI method proposed by Jiao et al. [25], then we
introduce a novel method CEPE for solving constrained optimization problems (COP). To
solve a COP, the objective is to minimize the objective function subject to several constraints.
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Before delving into the details of our proposed method, we will define some notations in
the following subsection.

In this work, we treat x as an untested point, while x1, x2, . . . , xN are considered tested
points. Let y(x) denote the objective function, and Gi(x) represent the constraint functions
for i = 1, 2, . . . , m. For a given point x, we define a Gaussian random vector G(x) as

G(x) = (G1(x), G2(x), . . . , Gm(x)). (22)

We introduce G(x) as a Gaussian random vector to represent the constraints’ evalua-
tions at the point x. This probabilistic modelling approach allows us to account for and
manage the uncertainties associated with constraint evaluations, especially when exact
determinations of these constraints are not feasible or when they are subject to variability
due to measurement errors, model inaccuracies, or other sources of uncertainty.

For a set of N tested points x1, x2, . . . , xN , we define the following Gaussian random
vectors:

yN = (y(x1), y(x2), . . . , y(xN))
T ,

GN
1 = (G1(x1), G1(x2), . . . , G1(xN))

T ,

GN
2 = (G2(x1), G2(x2), . . . , G2(xN))

T ,
...

GN
m = (Gm(x1), Gm(x2), . . . , Gm(xN))

T ,

GmN = (G1(x1), G2(x1), . . . , Gm(x1), . . . , G1(xN), G2(xN), . . . , Gm(xN))
T ,

where yN , GN
1 , GN

2 , . . . , GN
m , and GmN represent the function values at the tested points.

In contrast, y(x) and G(x) are the quantities to be predicted. The evaluated function
values are

fN = ( f (x1), f (x2), . . . , f (xN))
T ,

gN
1 = (g1(x1), g1(x2), . . . , g1(xN))

T ,

gN
2 = (g2(x1), g2(x2), . . . , g2(xN))

T ,
...

gN
m = (gm(x1), gm(x2), . . . , gm(xN))

T ,

gmN = (g1(x1), g2(x1), . . . , gm(x1), . . . , g1(xN), g2(xN), . . . , gm(xN))
T ,

which are considered as samples of yN , GN
1 , GN

2 , . . . , GN
m , and GmN . Essentially, by using

the known function values, we can predict y(x) and Gi(x) for i = 1, 2, . . . , m at the tested
points x1, x2, . . . , xN without additional function evaluations.

3.1. Constrained Expected Improvement

In the exploration of constrained optimization problems, we often encounter a com-
bination of both feasible and infeasible solutions, as categorized by Jiao et al. [25]. The
feasibility of a solution x ∈ X is determined by whether it satisfies all constraints g(x).
An essential aspect of optimization lies in efficiently transitioning from an infeasible to a
feasible situation to reduce computational costs. In our methodology, we initially identify
infeasible solutions by evaluating them against all defined constraints Gi(x).

In the following, we introduce the concept of Constrained Expected Improvement to
aid this process. For a solution x, we measure the extent of constraint violation by defining

G+
i (x) = max{0, li − Gi(x), Gi(x)− ui}, (23)
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where li and ui denote the lower and upper constraint boundaries, respectively. We repre-
sent the constraint violation of a solution as the maximum violation across all constraints,

G+(x) = max
i=1,2,...,m

{G+
i (x)}. (24)

This value is zero for feasible solutions and positive for infeasible ones. A solution
x is deemed infeasible if it violates any of these constraints, i.e., if G+

i (x) > 0 for at least
one constraint. This preliminary step is crucial for distinguishing between solutions that
require improvement to meet feasibility criteria and those that are already feasible.

Let g+N
min denote the smallest observed constraint violation among all evaluated points

up to the current iteration, effectively representing the ‘best’ constraint violation scenario.
This value is crucial for assessing the relative improvement of constraint satisfaction for
new candidate solutions compared to the existing ones. To quantify the improvement in
constraint violation at an untested point x relative to the current best solution, we define
the constrained improvement for infeasible solutions as

Ic,N(x) =

{
g+N

min − G+(x), if G+(x) ≤ g+N
min,

0, otherwise.
(25)

Here, Ic,N(x) quantifies how much the constraint violation at an untested point x
improves relative to the current best solution.

We can now derive the solution x as follows:

E[Ic,N(x)|gmN ] =
∫ g+N

min

0
(g+N

min − z)× pG+(x)|gmN (z)dz

=
∫ g+N

min

0
(g+N

min − z)× dPG+(x)|gmN (z)

=
∫ g+N

min

0
PG+(x)|gmN (z)dz − g+N

min × PG+(x)|gmN (0),

(26)

where pG+(x)|gmN (·) represents the probability density function of the random variable
conditional on GmN = gmN , and PG+(x)|gmN (·) denotes the cumulative distribution function
under the same condition.

For z ≤ 0,

P(G+(x) ≤ z|gmN) = 0; (27)

and for z > 0, the computation is as follows:

PG+(x)|gmN (z)

=P{G+(x) ≤ z|gmN}
=P{[l1 − G1(x) ≤ z|gmN ] ∩ [G1(x)− u1 ≤ z|gmN ] ∩ · · ·
∩ [lm − Gm(x) ≤ z|gmN ] ∩ [Gm(x)− um ≤ z|gmN ]}

=P{[l1 − z ≤ G1(x) ≤ u1 + z|gmN ] ∩ · · · ∩ [lm − z ≤ Gm(x) ≤ um + z|gmN ]

=
∫ u1+z

l1−z
dg1 · · ·

∫ um+z

lm−z
dgm × pG(x)|gmN (g1, . . . , gm),

(28)

where pG(x)|gmN (g1, . . . , gm) is the joint Gaussian probability function of G(x) con-
ditioned on gmN . Since the objective and all constraints are mutually independent,
pG(x)|gmN (g1, . . . , gm) can be computed by
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pG(x)|gmN (g1, . . . , gm)

=
m

∏
i=1

pGi(x)|gN
i
(gi)

=
m

∏
i=1

1
sgi (x)

ϕ(
gi − ĝi(x)

sgi (x)
),

(29)

where ĝi(x) and sgi (x) (i = 1, . . . , m) are the expectations and variances of the constraints
respectively.

By substituting the result pG(x)|gmN (g1, . . . , gm) obtained from Equation (29) into
Equation (28), we obtain the cumulative distribution function for PG+(x)|gmN (·) under the
condition GmN = gmN as follows

PG+(x)|gmN (z)

=
∫ u1+z

l1−z
dg1 · · ·

∫ um+z

lm−z
dgm ×

m

∏
i=1

1
sgi (x)

ϕ(
gi − ĝi(x)

sgi (x)
)

=
m

∏
i=1

∫ ui+z

li−z

1
sgi (x)

ϕ(
gi − ĝi(x)

sgi (x)
)dgi

=
m

∏
i=1

[Φ(
ui + z − ĝi(x)

sgi (x)
)− Φ(

li − z − ĝi(x)
sgi (x)

)].

(30)

Finally, the constrained expected improvement for a solution x is given by

E[Ic,N(x)|gmN ] =
∫ g+N

min

0
PG+(x)|gmN (z)dz − g+N

min × PG+(x)|gmN (0), (31)

with PG+(x)|gmN (z) = ∏m
i=1[Φ( ui+z−ĝi(x)

sgi (x)
)− Φ( li−z−ĝi(x)

sgi (x)
)] calculated as mentioned above.

In situations where a feasible point has already been identified, it is desired to maxi-
mize the Expected Improvement (EI) of the objective, ensuring that the feasibility conditions
are met. This is essentially a quest for a feasible solution that provides the best possible
objective value. This strategy is denoted as the Constrained Expected Improvement (CEI),
represented by E[Ic,N(x)|fN , gmN ]. We define the improvement in the objective function
subject to the satisfaction of constraints as Ic,N(x). Assuming that y(x) and Gi(x) for
i = 1, 2, . . . , m are mutually independent, the constrained expected improvement based on
yN = fN and GmN = gmN is given by

E[Ic,N(x)|fN , gmN ] = E[I(x)|fN ]×
m

∏
i=1

P{{li ≤ Gi(x) ≤ ui}|gN
i }, (32)

where ∏m
i=1 P

{
li ≤ Gi(x) ≤ ui|gN

i
}

represents the probability of feasibility (PF), and
E[I(x)|fN ] denotes the expected improvement at the point x.

In the CEI method, the constrained improvement can be defined as

Ic,N(x) =

{
fmin − y(x), if y(x) ≤ fmin and li ≤ Gi(x) ≤ ui,
0, otherwise.

(33)

Here, fmin is the best value of y(x) over all the test values fN , and
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m

∏
i=1

P{{li ≤ Gi(x) ≤ ui}|gN
i }

=P{{l1 ≤ G1(x) ≤ u1}|gN
1 } × P{{l2 ≤ G2(x) ≤ u2}|gN

2 } × · · · × P{{lm ≤ Gm(x) ≤ um}|gN
m}

=
∫ u1

l1
pG1(x)|gN

1
(g1)dg1

∫ u2

l2
pG2(x)|gN

2
(g2)dg2 · · ·

∫ um

lm
pGm(x)|gN

m
(gm)dgm

=
m

∏
i=1

[Φ(
ui − ĝi(x)

sgi (x)
)− Φ(

li − ĝi(x)
sgi (x)

)].

(34)

Using this, we can now define the Constrained Expected Improvement as

E[Ic,N(x)|fN , gmN ] =E[I(x)|fN ]×
m

∏
i=1

[Φ(
ui − ĝi(x)

sgi (x)
)− Φ(

li − ĝi(x)
sgi (x)

)]. (35)

Here, E[I(x)|fN ] is the same with Equation (14), and the CEI of a solution x is given by

E[Ic,N(x)|fN , gmN ] =

[
( fmin − f̂ (x))Φ

(
fmin − f̂ (x)

s(x)

)
+ s(x)ϕ

(
fmin − f̂ (x)

s(x)

)]

×
m

∏
i=1

[
Φ
(

ui − ĝi(x)
sgi (x)

)
− Φ

(
li − ĝi(x)

sgi (x)

)]
.

(36)

As previously defined in Equation (1), the special case for COP formula has a lower con-
straint bound of l = −∞ and an upper constraint bound of u = 0. Equations (31) and (36)
for CEI can be summarized as follows:

For an infeasible situation:

E[Ic,N(x)|gmN ] =
∫ g+N

min

0

m

∏
i=1

Φ
(

z − ĝi(x)
sgi (x)

)
dz − g+N

min ×
m

∏
i=1

Φ
(
−ĝi(x)
sgi (x)

)
. (37)

For a feasible situation:

E[Ic,N(x)|fN , gmN ] =

[
( fmin − f̂ (x))Φ

(
fmin − f̂ (x)

s(x)

)
+ s(x)ϕ

(
fmin − f̂ (x)

s(x)

)]

×
m

∏
i=1

Φ
(
−ĝi(x)
sgi (x)

)
.

(38)

3.2. Constrained Expected Prediction Error

Building upon the preceding subsection, which discussed the workings of Constrained
Expected Improvement (CEI) under both infeasible and feasible situations, we now move
our focus towards the Constrained Expected Prediction Error (CEPE). It is our novel method
for constrained optimization problems.

In terms of infeasible situations, our approach with CEPE aligns with the methods used
in the preceding CEI subsection. In terms of feasible situations of the CEPE method, we
introduce the concept of prediction error, denoted as PEc,N(x), which is defined as follows:

PEc,N(x) =

{
( f (x)− f (x∗))2, if li ≤ Gi(x) ≤ ui,
0, otherwise.

(39)

Here, f (x∗) is the observed output sample at the sample point x∗, which is the near-
est evaluated point to the candidate point x. This approach assumes that f (x) exhibits
moderate continuity in the vicinity of x∗, an assumption that is generally valid for smooth
functions commonly encountered in engineering and optimization applications.
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E[PEc,N(x)|fN ] = ( f̂ (x∗)− f̂ (x))2 + s2(x). (40)

In this formulation, f̂ (x∗) is the surrogate model’s prediction at the point x∗, and f̂ (x)
is the model’s prediction at the candidate point x. The term s2(x) represents the prediction
variance at x, reflecting the model’s uncertainty.

Then we can obtain the formulation of the CEPE of a solution x below,

E[PEc,N(x)|fN , gmN ] =E[PEc,N(x)|fN ]×
m

∏
i=1

[Φ(
ui − ĝi(x)

sgi (x)
)− Φ(

li − ĝi(x)
sgi (x)

)]

=[( f̂ (x∗)− f̂ (x))2 + s2(x)]×
m

∏
i=1

[
Φ
(

ui − ĝi(x)
sgi (x)

)
− Φ

(
li − ĝi(x)

sgi (x)

)]
.

(41)

This formulation takes into account the constraints by incorporating the product of the
cumulative distribution functions for the constraints. It effectively combines the expected
prediction error with the feasibility of the solution, guiding the optimization process
towards regions of the design space where the model uncertainty is high and potential
improvements in the objective function are likely, while still adhering to the constraints.

In summary, the CEPE method is underpinned by the assumption of moderate function
continuity near x∗, allowing the use of surrogate model predictions at nearby points
to estimate the prediction error at untested points. This approach enables the efficient
exploration of the design space, especially in the context of expensive function evaluations
and stringent constraints.

Similarly, as previously defined in Equation (1), the special case for COP formula
has a lower constraint bound of l = −∞ and an upper constraint bound of u = 0.
Equations (31) and (41) for CEPE can be summarized as follows:

For an infeasible situation:

E[PEc,N(x)|gmN ] =
∫ g+N

min

0

m

∏
i=1

Φ
(

z − ĝi(x)
sgi (x)

)
dz − g+N

min ×
m

∏
i=1

Φ
(
−ĝi(x)
sgi (x)

)
. (42)

For a feasible situation:

E[PEc,N(x)|fN , gmN ] =
[
( f̂ (x∗)− f̂ (x))2 + s2(x)]

] m

∏
i=1

Φ
(
−ĝi(x)
sgi (x)

)
. (43)

3.3. The GP Surrogate-Assisted DE Algorithm

In this section, we outline and describe the steps of the GP surrogate-assisted Differ-
ential Evolution (DE) algorithm. The algorithm applies to problems with any number of
dimensions n and any number of constraints m. The steps are as follows:

• Step 1: Design of Experiments (DOE)
Initialize the algorithm by assigning samples using the Latin Hypercube Design (LHD).
The steps are as follows:

1. Divide each dimension into popsize intervals of equal probability.
2. Randomly assign one value to each interval within each dimension.
3. For each dimension, permute the vector of assigned values randomly.
4. Combine the permuted vectors of assigned values across dimensions into a

popsize × n matrix.

• Step 2: Identify the Best Point and Assess Feasibility
Extract the objective function values and constraint violation values from the initial
samples. Identify the feasible solutions (those with no constraint violations) and select
the one with the optimal objective function value as the best feasible solution. If no
feasible solutions exist, select the solution with the least constraint violation as the
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best infeasible solution. Update the data structure with information about the best
solution discovered thus far, and return this information along with a feasibility flag.

• Step 3: Clustering—Organize Tested Points into Clusters
Given N tested points x1, x2, . . . , xN , if N ≤ L1 (where L1 is the maximum number of
points a local model can contain), use all the points to build a single local model. If
N > L1, apply fuzzy clustering to divide the points into csize clusters, where

csize = 1 +
⌈

N − L1

L2

⌉
,

and L1 > L2 (where L2 is the number of points for adding one more local model). The
clustering minimizes the following function J:

J =
N

∑
i=1

csize

∑
j=1

uα
ij∥xi − vj∥2,

where α is a constant greater than 1, vj is the centre of the cluster j, uij represents the
membership degree of xi in cluster j, and ∥ · ∥ denotes the Euclidean norm. vj can be
calculated as

vj =
∑N

i=1(u
t
ij)

αxi

∑N
i=1(u

t
ij)

α
.

Initialize u0
ij for i = 1, 2, . . . , N and j = 1, 2, . . . , csize, and set t = 0. Compute ut+1

ij
using

ut+1
ij =

1

∑csize
k=1

( ∥xi−vj∥
∥xi−vk∥

) 2
α−1

.

If max1≤i≤N,1≤j≤csize |u
t+1
ij − ut

ij| < ϵ, terminate and output vj and uij = ut+1
ij ; other-

wise, increment t and recalculate vj and ut+1
ij until the stopping criterion ϵ is satisfied.

• Step 4: Modelling—Build Local GP Surrogate Models
For each cluster, construct local Gaussian Process (GP) surrogate models for the
objective function and the constraint functions separately.

• Step 5: Differential Evolution–Generate and Evaluate Candidate Points
Use Differential Evolution (DE) [27] to generate NP candidate points and evaluate
them using the surrogate models. DE is a population-based optimization algorithm
that aims to find the global minimum of a given objective function within a high-
dimensional search space. The algorithm employs mutation, crossover, and selection
strategies to evolve the population towards the optimal solution. During the mutation
step, new candidate solutions are generated by combining existing solutions with a
weighted difference vector, where the scaling factor is denoted by F. In the crossover
step, these candidates are combined with the original population to form a trial
population, with a defined crossover probability CR.
Incorporate the Constrained Expected Improvement (CEI) and Constrained Expected
Prediction Error (CEPE) criteria, derived from the Gaussian Process (GP) surrogate
models, into the evaluation process of candidate points. By computing the CEI and
CEPE values for each candidate point, the algorithm leverages these metrics to guide
the selection process within DE. Candidate points are prioritized based on higher CEI
values, indicating a greater expected improvement, or lower CEPE values, signifying a
lower prediction error. This strategic prioritization ensures the exploration of regions
in the search space with the highest potential for improvement while adhering to the
constraints. This iterative process continues until a termination criterion is met, such
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as reaching the maximum number of generations Maxt or achieving a predetermined
level of convergence. The flowchart of the DE algorithm, highlighting the integration
of CEI and CEPE, is depicted in Figure 1.

• Step 6: Evaluation—Use Original Objective and Constraint Functions
Evaluate the NP candidate points using the original objective and constraint functions.
This step can also be considered as the final selection step of Differential Evolution.

• Step 7: Iteration—Update Data and Repeat Steps 3 to 6
Incorporate new data from the observations into the model, and repeat Steps 3 to
6 until the termination condition is reached. The termination condition is typically
based on the number of function evaluations, denoted as FEs.

Figure 1. Flowchart of the Differential Evolution Algorithm.

4. Simulation

In this section, we illustrate the efficacy of the proposed CEI (Constrained Expected
Improvement) and CEPE (Constrained Expected Prediction Error) methods for addressing
constrained optimization problems. We begin by introducing traditional benchmark prob-
lems, and then undertake a comparison and evaluation of the two methods by analyzing
statistics for each problem.

4.1. Benchmark Problem Description

We employ the classic set of problems presented in CEC 2006 by Liang et al. [28],
which was proposed as part of the IEEE Congress on Evolutionary Computation in 2006,
and all problems we solve including the modified parts can be found by Chaiyotha and
Krityakierne [24]. This suite encompasses 25 real-parameter optimization problems, rep-
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resenting a diverse array of characteristics. GP (Gaussian Process) is advantageous in
low-dimensional settings (i.e., when the number of dimensions n ≤ 10) [29]. Consequently,
we select problems with suitable dimensions n and numbers of constraints m, as higher
dimensions would entail significantly extended computation times with our GP surrogate-
assisted DE algorithm. Nine problems are chosen, including two that we modify. The
characteristics of these problems can be found in Table 2, where Prob denotes the name
of the problems, Dim represents the number of decision variables or dimensions, f (x∗)
signifies the best-known results, and ρ is the approximate ratio of feasible solutions within
the search space (inclusive of both infeasible and feasible solutions).

Table 2. Summary of benchmark characteristics.

Prob Dim Type of f f (x∗) ρ

G02mod 2 Nonlinear - -
G03mod 2 Polynomial - -
G04 5 Quadratic −30665.539 52.123%
G06 2 Cubic −6961.8139 0.0066%
G08 2 Nonlinear −0.095825 0.8560%
G09 7 Polynomial 680.630 0.5121%
G11 2 Quadratic 0.7499 0.0000%
G12 3 Quadratic −1.0 4.7713%
G24 2 Linear −5.508 79.6556%

4.2. Experimental Settings

As discussed in Section 3.3 regarding the GP surrogate-assisted DE algorithm, we
will specify certain parameters for solving these numerical simulations, follows closely
the methodologies and values reported in existing literature, particularly the work by
Jiao et al. [25]. This reference provided a foundational basis for our initial parameter
settings, ensuring consistency and comparability with established practices in the field.
The problems have n dimensions and m constraints. In the Latin Hypercube Design (LHD),
we generate (11n − 1) initial samples, which serve as our population size (popsize). The
parameters utilized in the fuzzy clustering are L1 = 80, L2 = 20, α = 2, and ϵ = 0.5. In the
Differential Evolution (DE) process, we set the population size (NP) to 30, the number of
generations to 500, the crossover probability (CR) to 0.9, and the scaling factor (F) to 0.5.
In the CEPE method, the number of candidates is set to 50 × n. The number of function
evaluations (FEs) is also set to 50 × n. Each benchmark problem is repeated 100 times
using both methodologies (CEI and CEPE) with identical parameters to ensure fairness in
the comparison.

The experiments were conducted on a personal computer with an Intel(R) Core(TM)
i5-8265U CPU @ 1.60 GHz (turbo up to 1.80 GHz). The Intel Corporation is based in Santa
Clara, California, USA. The computational analysis and simulations were performed using
MATLAB version 2020b. This setup provided a consistent and controlled environment for
all computational experiments, ensuring the reliability and reproducibility of our results.

4.3. Results

Figure 2 showcases box plots for nine different benchmark problems. Each box plot dis-
plays the distribution of values obtained from 100 independent experiments using two meth-
ods: CEI and CEPE. Additionally, Table 3 lists the mean, standard deviation (sd), best,
and worst values of the objective function obtained by these methods after 100 iterations.
The mean and standard deviation values indicate the quality of the best feasible solutions
across the 100 independent experiments. The best and worst entries signify the lowest and
highest values of the best feasible solution obtained from the 100 independent experiments
for each method, respectively.
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Figure 2. Cont.
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Figure 2. Box plots of the best feasible solution after 100 repetitions by CEI and CEPE in nine
benchmark problems.

Table 3. Function values (mean, standard deviation, best, and worst) achieved by CEI and CEPE meth-
ods after 100 independent repetitions. Values in bold indicate the superior results across comparisons.

CEI CEPE

mean −0.3360827 −0.3510043
sd 0.0398702 0.02986116
best −0.364923 −0.364946G02

worst −0.261689 −0.262792

mean −0.999943 −0.9999153
sd 0.000125786 0.000146517
best −1.000086 −1.000097G03

worst −0.999447 −0.999467

mean −30663.44 −30663.82
sd 2.397651 2.18125
best −30665.54 −30665.54G04

worst −30656.25 −30656.61

mean −6673.657 −6761.299
sd 280.4894 172.4326
best −6942.869 −6949.9G06

worst −5990.58 −6282.121

mean −0.0958143 −0.09581347
sd 1.36 × 10−5 1.51 × 10−5

best −0.095825 −0.095825G08

worst −0.095764 −0.095762

mean 988.2063 995.5317
sd 128.8924 110.2954
best 744.6612 740.9385G09

worst 1282.99 1204.271

mean 0.7501684 0.7501476
sd 0.000233982 0.000241632
best 0.749901 0.749902G11

worst 0.750818 0.751034

mean −0.9999771 −0.9999772
sd 1.89 × 10−5 1.85 × 10−5

best −1 −1G12

worst −0.999935 −0.999937

mean −5.505601 −5.505723
sd 0.002281037 0.00178044
best −5.50792 −5.507943G24

worst −5.498976 −5.499741
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Examining Table 3, we observe that in six of the benchmark problems (G02mod, G04,
G06, G11, G12, and G24), the CEPE method yields lower mean values compared to the CEI
method, indicating better performance. Conversely, the CEI method performs better in the
other three problems. Moreover, the standard deviation values mostly align with the mean
values, with seven benchmark problems (G02mod, G03mod, G04, G06, G08, G12, and G24)
exhibiting lower standard deviations for the method that has the lower mean. Regarding
the best values, CEPE outperforms or matches CEI in eight out of nine problems, with the
exception being G11, where CEI has a slight edge. For the worst values, CEPE is superior
in seven out of nine problems, with CEI prevailing only in G08 and G11.

To statistically compare the performance differences between CEI and CEPE, a non-
parametric Wilcoxon rank-sum test was employed. This test is particularly suitable when
the data is not normally distributed, and it assumes equal variances between groups.
The null hypothesis posits that the two methods yield the same distribution of values,
whereas the alternative hypothesis contends that the distributions differ. A test statistic
representing the sum of the ranks of the values is computed. A significant test statistic
indicates a notable difference between the two methods, and a p-value below 0.05 is deemed
statistically significant. The notation X < Y indicates that method X is significantly better
than method Y at the 5% significance level, whereas X ≈ Y signifies that there is no
significant difference between the two methods. The results are compiled in Table 4. The
table reveals that for most benchmark problems, CEI and CEPE exhibit similar performance,
with CEPE being significantly better than CEI only for problem G02.

Table 4. Wilcoxon signed-ranks test results at the 5% significance level.

Problem p-Value Results

G02mod 0.001996 CEPE < CEI
G03mod 0.1895 CEPE ≈ CEI
G04 0.2478 CEPE ≈ CEI
G06 0.1301 CEPE ≈ CEI
G08 0.7026 CEPE ≈ CEI
G09 0.5071 CEPE ≈ CEI
G11 0.3431 CEPE ≈ CEI
G12 0.9248 CEPE ≈ CEI
G14 0.4606 CEPE ≈ CEI

5. Application

In this section, we will apply the GP surrogate-assisted DE algorithm to the Three-
Bar Truss Design problem. The Three-Bar Truss Design problem [30,31] is a classical
optimization problem that is widely studied within the engineering and mathematical
communities. The objective is to design a truss structure, composed of three bars, capable
of withstanding a specified load while minimizing weight. This problem is particularly
significant in the design of lightweight and efficient structures in fields such as aerospace
and civil engineering. Moreover, it serves as a quintessential example of how optimization
algorithms can address complex societal and civilizational challenges. The problem can be
formulated as follows:

minimize f (x) = (2
√

2x1 + x2)× l,

subject to :

√
2x1 + x2√

2x2
1 + 2x1x2

P − σ ≤ 0,

x2√
2x2

1 + 2x1x2
P − σ ≤ 0,

1
x1 +

√
2x2

P − σ ≤ 0,

(44)

where 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1; l = 100 cm, P = 2 KN/cm2, and σ = 2 KN/cm2.
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For the experiment, we employ the same parameter settings as in the numerical
simulations. The problem has two dimensions and three constraints. Using Latin hypercube
design (LHD), we generate 21 initial samples for our population size. The parameters in
the fuzzy cluster are set to L1 = 80, L2 = 20, α = 2, and ϵ = 0.5. In Differential Evolution
(DE), the population size is assumed to be NP = 30, the number of generations is set to
500, the crossover probability is CR = 0.9, and the scaling factor is F = 0.5. In the CEPE
method, we set the candidate number to 100. The number of function evaluations (FEs)
is 100. The experiment is repeated 100 times using two different methodologies (CEI and
CEPE), and the parameters are kept the same to ensure a fair comparison.

Figure 3 depicts box plots that display the distribution of the objective function values
obtained using the CEI and CEPE methods across 100 independent experiments. Table 5
lists the mean, standard deviation (sd), best, and worst of the objective function values
obtained by both methods over 100 iterations. The best-known result for this problem is
approximately 263.8958. From the table, it is evident that CEPE performs better in terms
of mean, standard deviation, and worst objective function values, while CEI marginally
outperforms CEPE in the best objective function value.

Additionally, we employ the Wilcoxon rank-sum test to statistically compare the
performance of the CEI and CEPE methods. With a p-value of 0.0538%, the test indicates
that the CEPE method is significantly superior to the CEI method.

Figure 3. Box plots representing the distribution of the best feasible solutions obtained after 100 repe-
titions using the CEI and CEPE methods in the Three-Bar Truss Design problem.

Table 5. Function values (mean, standard deviation, best and worst) achieved by CEI and CEPE meth-
ods after 100 independent repetitions. Values in bold indicate the superior results across comparisons.

CEI CEPE

mean 264.2152 264.0456
sd 0.3605 0.2208
best 263.8962 263.8972Three-Bar Truss Design

worst 265.3764 265.0683

6. Discussion and Remarks

In this paper, we introduced the formulation of constrained optimization problems,
the methodologies of Constrained Expected Improvement (CEI) and Constrained Expected
Prediction Error (CEPE) in conjunction with the Gaussian Process (GP) surrogate-assisted
Differential Evolution (DE) algorithm, and presented numerical benchmark simulations
and applications. Additionally, we would like to emphasize the potential application of
these methodologies in the field of engineering, where optimization plays a crucial role.
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The implementation of CEI and CEPE has showcased their capacity for the efficient
utilization of computational resources, making them highly advantageous in engineering
contexts where simulation models can be computationally demanding. Their adeptness in
managing multiple constraints, robustness against uncertainties, and flexibility to adapt to
various problem domains highlight the methodologies’ applicability in real-world engineer-
ing problems. These attributes facilitate the optimization of processes, enhancement of prod-
uct yields, reduction of waste, and improvement in safety and environmental performance.

Despite these advantages, the methodologies do present limitations, such as potential
inflexibility in highly specialized engineering challenges and sensitivity to parameter config-
uration, which could impact their effectiveness. Moreover, the computational intensity re-
quired by CEI and CEPE, especially for large-scale problems, warrants consideration. These
limitations suggest a cautious approach to their application, emphasizing the need for tai-
loring or integrating them with other techniques to meet specific engineering requirements.

In summary, the findings from this study affirm the promise of CEI and CEPE in
advancing surrogate-assisted optimization strategies for engineering applications. While
addressing the identified gaps in constrained optimization, this research also paves the
way for future investigations into more sophisticated surrogate models and optimization
techniques. Further exploration in this domain could yield even more robust and efficient
solutions for complex optimization challenges, contributing to the continuous advancement
of engineering optimization practices.
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