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Abstract: Investigating public attitudes on social media is crucial for opinion mining systems. Stance
detection aims to predict the attitude towards a specific target expressed in a text. However, effective
neural stance detectors require substantial training data, which are challenging to curate due to
the dynamic nature of social media. Moreover, deep neural networks (DNNs) lack explainability,
rendering them unsuitable for scenarios requiring explanations. We propose a distantly supervised
explainable stance detection framework (DS-ESD), comprising an instruction-based chain-of-thought
(CoT) method, a generative network, and a transformer-based stance predictor. The CoT method
employs prompt templates to extract stance detection explanations from a very large language model
(VLLM). The generative network learns the input-explanation mapping, and a transformer-based
stance classifier is trained with VLLM-annotated stance labels, implementing distant supervision. We
propose a label rectification strategy to mitigate the impact of erroneous labels. Experiments on three
benchmark datasets showed that our model outperformed the compared methods, validating its
efficacy in stance detection tasks. This research contributes to the advancement of explainable stance
detection frameworks, leveraging distant supervision and label rectification strategies to enhance
performance and interpretability.

Keywords: stance detection; prompt-tuning; chain-of-thought

MSC: 68T50

1. Introduction

Stance detection is a fundamental task in the field of natural language processing
(NLP), where the aim is to categorize the attitudes expressed towards a particular target
based on opinionated input texts [1]. This task has garnered significant interest in recent
years due to its relevance in various domains, including political analysis, social media
monitoring, and customer feedback analysis. In the initial phases of stance detection
research, the focus was predominantly on online debates characterized by a uniform
sentence structure, wherein the user’s attitude is generally expressed in a direct fashion [2,3].
With the rapid expansion of the Internet, platforms like Twitter have witnessed remarkable
growth in popularity. This surge has prompted researchers to explore the potential of social
media as a rich resource for stance detection [4,5].

Stance detection methods are usually formulated as sentence-level classification tasks
based on a specific target and can be broadly categorized as non-pretrained or pretrained
language models (PLMs). Non-pretrained models predominantly utilize deep neural net-
works (DNNs), such as long short-term memory (LSTM), graph convolutional networks
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(GCN), and attention-based models for the purpose of stance classification. For example,
Du et al. [6] used an attention model leveraging target information, while Du et al. [6] devel-
oped separate LSTMs to filter non-neutral text and classify attitudes. Sun et al. [7] proposed
hierarchical attention to learn text representations via linguistic features, and Liang et al. [8]
introduced a GCN approach to distinguish target-specific and invariant features. Further-
more, Devi and Kannimuthu [9] incorporated focal-loss and context-embedding-based data
augmentation to handle the data imbalance. Inspired by promising PLM results, fine-tuning
strategies have been developed to enhance the accuracy of stance detection [10]. These
methods entail the adaptation of pretrained models, such as BERT [11] and RoBERTa [12],
using datasets specific to stance detection, thereby tailoring the models to this particular
task. In summary, these approaches predominantly conceptualize stance detection as a
target-oriented, sentence-level text classification task. Nonetheless, the challenge of data
sparsity, exacerbated by the informal and abbreviated nature of social media content, re-
mains a significant obstacle to the efficacy of these methods. Recently, some research has
addressed the issue of data sparsity by integrating external knowledge, thus enhancing
both the performance and the interpretability of stance detection processes. For example,
He et al. [13] augmented text classifiers by supplementing them with relevant Wikipedia
documents about the target. Diaz et al. [14] constructed a stance tree using external
knowledge extracted from a knowledge base and utilized it as evidence to enhance stance
prediction and detection precision.

While these works demonstrated enhancements in performance and interpretability,
the practical application of these methods encounters several challenges: (i) Deep neural
networks (DNNs) are often perceived as “black box” mechanisms, due to their inability
to furnish explicit rationales for their decision-making processes. As a result, DNNs may
not be suitable for applications where interpretability is a crucial requirement. (ii) Existing
methods in stance detection largely rely on extensive datasets that require manual annota-
tion, a process that is time-consuming and labor-intensive. Although zero-shot learning
settings have been introduced, they still necessitate significant data annotation within the
source domain, complicating the direct application to unseen targets. (iii) The impractical-
ity of deploying very large language models (VLLMs) with interpretative capabilities in
stance detection arises from their substantial resource consumption and local deployment
complexities, alongside potential data privacy concerns associated with techniques like
chain-of-thought (COT) processing, especially in areas like business decision-making and
political analysis. The issue in question has been reported and has raised concerns. Con-
sequently, it is imperative to propose a novel technique for transferring stance detection
capabilities from VLLM to smaller, locally deployable models that can effectively address
these concerns.

In response, this study aimed to develop a stance detection method that can simultane-
ously achieve interpretability, local deployment, and high accuracy with limited annotation.
(1) To satisfy the interpretability requirement, we aimed to develop an understandable
stance detection method that can generate the reasoning process of the stance predic-
tor. (2) To meet the limited annotation requirement, we aimed to develop a method that
can rely on only a small number of manual labels, while achieving comparable accuracy
to state-of-the-art baselines. (3) To satisfy the local deployment requirement, our objective
was to develop a method that can be trained on seen data and enable direct prediction on
unseen data. In particular, the method should approximate the predictive performance of
large-scale models.

To achieve this goal, in this paper, we proposed a distantly supervised explainable
stance detection framework (DS-ESD). The DS-ESD model consists of three modules: an
instruction-based chain-of-thought (CoT) method, generative network, and transformer-
based stance predictor. The CoT method involves using manually designed prompt tem-
plates to extract the stance detection analysis process from VLLM in a CoT manner. This
method was inspired by Wei et al. [15], who demonstrated the ability of large-scale models
to comply with prompt instructions without requiring parameter training updates. Further-
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more, a generative network is utilized to learn the mapping between input and inference
process, with the expectation that it can generate the inference process independently of
the VLLM during the prediction process. Finally, we constructed a stance classifier that
takes as input the tweet and the generated inference process, and that is trained with
VLLM-annotated stance labels, thus making it a form of distant supervision. Notably,
for the stance classifier, we proposed a label rectification strategy to mitigate the impact of
erroneous labels by controlling the probability distribution of the labels.

We summarize our contributions as follows:

• To the best of our knowledge, we present the first study on a distantly supervised
stance detection framework, which also facilitates the generation of explanations for
the stance analysis process. Our approach has advanced the field of stance detection.

• We propose a DS-ESD framework, which uses an instruct-based chain-of-thought
approach to construct the supervised signal, upon which a generative model is subse-
quently built to generate explanations.

• We propose a novel label-rectification strategy for correcting label errors that arise
from the distantly supervised approach.

• In order to evaluate the effectiveness of our proposed model, we conducted extensive
experiments on three benchmark datasets. Our experimental results demonstrated
that our model consistently outperformed the state-of-the-art methods in terms of
predictive accuracy. Moreover, we conducted a manual evaluation of the generated
explanations, which revealed that they were highly effective in providing clear and
intuitive justifications for the model’s predictions.

The remainder of this paper is structured as follows: Section 2 provides a comprehen-
sive review and discussion of the related literature, including some traditional and recent
methods of stance detection. Section 3 presents a detailed description of the proposed
model. In Section 4, we describe the experimental setup, comprising the datasets employed
for evaluation, the methods used for comparison, and report the quantitative evaluation
results. Section 5 presents the conclusions and discusses future work.

2. Related Work
2.1. Stance Detection

The objective of stance detection is to ascertain and scrutinize the viewpoint expressed
in a given text concerning a specific subject [16,17].

(1) Within the context of an in-target setting, existing methodologies can generally
be classified into two types: non-pretrained and pretrained approaches. Non-pretrained
methods frequently employ deep neural networks, such as attention (Att) and graph
convolutional networks (GCN), for training stance classifiers. The Att techniques prioritize
target-specific information as the attention query and implement an attention mechanism
to deduce the stance polarity [6,7,18,19]. The GCN methods employ a graph convolutional
network to delineate the interrelation between the target and the text, thus facilitating a
nuanced analysis of their connection [20–22].

(2) In the realm of cross-target stance detection, researchers have introduced a variety of
methodologies, which can be fundamentally segmented into two distinct classes. The initial
class encompasses word-level transfer approaches, which exploit the commonality of
words across different targets to mitigate knowledge disparities [23]. On the other hand,
the second class addresses cross-target challenges through the adoption of concept-level
knowledge transfer, wherein concepts shared between two targets are utilized to facilitate
understanding and analysis [24–26].

(3) Zero-shot stance detection represents a particularly formidable challenge, neces-
sitating a stance detection model to deduce the stance towards a target that has not been
previously encountered. Addressing this complexity, Allaway and McKeown [27] con-
structed a comprehensive dataset for stance detection annotated by human experts and
tailored for the zero-shot framework. Furthermore, Allaway et al. [28] applied adversarial
learning techniques to derive target-invariant features and utilized a target-specific stance
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detection dataset to facilitate zero-shot stance detection. Liu et al. [10] introduced a graph-
based model that integrates intra- and extra-semantic information, as well as common
sense knowledge, leveraging BERT to enhance the semantic insights garnered. In addition,
Liang et al. [8] developed a sophisticated methodology for identifying target-specific or
target-invariant characteristics, aiming to secure transferable features for stance detection.

2.2. Background Knowledge Enhanced Stance Detection Methods

The incorporation of background knowledge to enhance stance detection capabil-
ities has garnered significant interest, representing a promising strategy to amplify its
efficacy [29]. He et al. [13] introduced an approach that integrates target-related back-
ground knowledge, such as encyclopedic information from Wikipedia, and devised a
fine-tuning methodology to augment the model’s learning proficiency. In a similar vein,
Liu et al. [10] constructed a knowledge graph representing background knowledge and
employed graph neural network techniques to develop an advanced stance prediction
model. Moreover, Huang et al. [30] explored the utility of #hashtag background knowl-
edge to refine content learning processes. Additionally, Luo et al. [31] merged sentiment
knowledge into their framework to enhance the learning of attitudinal nuances.

2.3. Explainable Stance Detection

Traditional methods for explainable stance detection have focused on revealing areas
that have a significant impact on the final prediction. For example, Draws et al. [32]
introduced user search terms and built an interpretable stance detection model. Gómez-
Suta et al. [33] proposed an approach for explaining stance labels by identifying the most
relevant terms within topics derived from corresponding tweets. Huang et al. [30] further
learned the topic words and integrated them into a prompt-based model to enhance the
performance of stance detection.

These techniques identify information that significantly contributes to the final predic-
tions, but the underlying reasoning process (i.e., the rationale for the prediction) remains
obscured. Jayaram and Allaway [34] manually annotated the stance reasoning process and
verified that it could effectively improve the performance of stance prediction. Inspired by
this work, we present, for the first time, a study on automatically generating explanations,
which advances the stance detection community.

3. Our Methodology

As illustrated in Figure 1, our method mainly consists of three modules: instruct-based
CoT, generative model, and the transformer-based stance network.

Figure 1. The overall structure of propose DS-ESD, including instruct-based CoT (1), generative
model (2), and the transformer-based stance network (3).
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3.1. Problem Formulation

We use Dtrain = {xi, pi} to denote the collection of labeled data, where x and p denote
the input text and the corresponding target, respectively. Each (x, p) pair in Dtrain is assigned
a stance label y. Given an input sentence xt and a corresponding target pt as a test set (unseen
target), this study aimed to predict the rationale of prediction r with a stance label ŷ for the
input sentence xt towards a given target pt by using the proposed DS-ESD method.

3.2. Model Process

Our method is divided into two stages: training and prediction. During training, we
incorporate the VLLM to aid in model training. In the prediction stage, we aim to achieve high
accuracy using a generative model to produce explanations independently of large models.

For the training stage, given Dtrain, we first perform instruct-based CoT to collect
retrieved explanations Rtrain. Then, we pack Dtrain and R̂train as the training sample for
training the generation model. After training the generation model, we can feed the
predicted R̃, which is predicted by the generation model, into the transformer-based model
to train the stance classification model.

During the inference process, we simply feed the test data xt, pt into the generative
model to generate the corresponding inference process rt. Subsequently, we feed both rt

and xt into the stance classifier to automatically predict the stance.

3.3. Instruct-Based CoT

Traditional distantly supervised methods are mostly based on knowledge graphs to
construct weak supervision signals. Due to the remarkable knowledge and understanding
ability emerging from VLLM in recent years, this paper proposes a method based on CoT
to construct weak supervision signals.

The CoT methodology has revealed the potential of VLLM multi-hop reasoning,
wherein an VLLM is capable of impressive chain-style reasoning when given some input
prompts or instructions. We devised a methodology that leverages a large model to extract
pseudo-labels via instruction. Moreover, we aimed to utilize the analytical capabilities
of the VLLM to extract the reasoning process of the model. To this end, we engineered a
1-shot instructional framework, as depicted in Figure 2. This framework is designed to
facilitate the large-scale model in generating a logical sequence of the new samples along
with their associated stance labels, provided that an instruction and a reference sample are
supplied as inputs.

Figure 2. 1-shot instruction.

Specifically, we send the API call (instruction) to the VLLM to acquire the explanation.
Figure 3 provides a concrete example, where an instruction and a single sample are given,
and the large model is fed with the input sentence “She’s smarter and works harder”.
The large model then extracts the specific reasoning process, which is “IF ( Hillary is smarter
and works harder) THEN (the attitude towards Hillary is favor)”.

Subsequently, we leverage the extracted inference process, “Hillary is smarter and
works harder” as the reasoning process, which is denoted as r, and “favor” in the expla-
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nation as the pseudo-labels. Finally, the instruct-based CoT approach can be employed to
obtain the inference process R̂train and the pseudo-labels Ỹ of the training data Dtrain.

Figure 3. Example of instruct-based CoT.

3.4. Fine-Tuning the Generative Model with a New Dataset

Although it is possible to directly extract r from VLLM, in applications such as business
decision-making, we prefer to use smaller models that can be deployed locally, to prevent
data leakage when predicting stances. Therefore, we designed a generative model to learn
the mapping between x and r. During practical deployment, the generation model can
directly generate r for unseen targets without the need for VLLM involvement.

The generator component can be modeled using any encoder–decoder architecture.
In this study, we adopted BART-large, a pretrained sequence-to-sequence transformer
comprising 400 million parameters, as our choice. We concatenate the target p with the
input x. This context matrix is then given as memory to the decoder. We trained the model
to minimize the negative log-likelihood of the target utterance r.

In summary, our proposed model employs a pretrained BART architecture to extract
pertinent knowledge of the given input and generate an explanation. When provided with
a training corpus consisting of input/output pairs, denoted as (xj, pi) and rj, respectively,
for the purpose of fine-tuning, we employ stochastic gradient descent with the Adam
optimizer to minimize the negative marginal log-likelihood of each target Pjlogp(rj|xj, pi).
This approach allows us to effectively optimize the network’s parameters and improve its
ability to predict the correct outputs for a given set of inputs and parameters.
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3.5. Text Representation Method

After obtaining the explanations of the reasoning process r, we proposed the transformer-
based network as the stance predictor. The input of the transformer is the reasoning process
r and text x, and the output is the stance label.

Formally, we combine r and tweet x as the input. Given the hidden states of the
representation , which correspond to the BERT model’s output, as H. The hidden states are
subsequently fed into the multi-head self-attention mechanism (MHsA) to compute the
output of the transformer layer, expressed as:

Q = HWq, K = HWk, V = HWv, (1)

Â =
QKT
√

dK
, (2)

Attn(H) = ÃVWv (3)

where the matrices Q, K, and V represent the query, key, and value, respectively, as per
the standard MHSA mechanism. Next, we implement a conventional residual structure
that fuses the higher-level representation H and the current Attn(H) and applies layer
normalization (LN) to normalize the resultant output.

Attn(H
′
) = LN(Attn(H) + H) (4)

The transformer block’s ultimate output is obtained by passing Attn(H
′
) through a

feed-forward layer based on attention mechanisms.

αt = so f tmax(Attn(H
′
)t) (5)

Subsequently, the attentive sentence representation e is learned by aggregating the
embeddings of Attn(H

′
) using the attention vector α:

e =
n

∑
t=1

αt Attn(H)t (6)

3.6. Label Rectification Strategy

In order to prevent the model from becoming overconfident and assigning excessively
high probabilities to a single-label class, we leverage a label smoothing strategy, which
entails assigning a fixed small probability to alternative classes. However, in our specific
scenario, the pseudo-labels themselves are not reliable and cannot be used directly. To solve
the problem, we introduced a novel label rectification strategy that can dynamically adjust
noisy labels. Essentially, we modify the distribution of the original labels to steer them in
the correct direction in the presence of potential errors, thus improving the overall accuracy
of the model predictions.

More specifically, in the rectification module, a linear transformation is applied to the
representation of the sentence e by the transformer layer, which results in a distributional
representation ẽ that is unique to the rectifier (ẽ has the same dimensions as e). Subsequently,
the rectifier takes ẽ as input and outputs a rectification matrix M, as follows:

Mi,j = WT
i,j ẽ + b, 1 ≤ i, j ≤ K (7)

Here, K denotes the total number of stance labels, and Wi,j possesses the same dimen-
sions as ẽ. The rectified label distribution is subsequently computed as:

q = so f tmax(T × l) (8)
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where so f tmax(qi) = eqi / ∑eqj

j denotes the normalized function. Mi,j denotes the extent to
which the i-th class is misclassified as the j-th class.

Let Mi denote the i-th row of M. Assuming that the label corresponding to noise is
k, such that lk = 1 and lj = 0 for j ̸= k, we obtain qi = Mik, which is equivalent to q = T.k
(where T.k denotes the k-th column of matrix T). As such, Mik quantifies the extent to
which the true label is i but the labeled noise is k. Through this approach, matrix M enables
modification of the original label distribution l to a new distribution q.

3.7. Adaptive Training Mechanism

As illustrated in Figure 4, our approach consists of two distinct losses. Notably,
training the rectification module (loss2) without any direct human guidance or involvement
poses a significant challenge. To overcome this challenge, we introduced a novel adaptive
mechanism based on curriculum learning. Curriculum learning simulates the human
learning process by starting with simpler tasks and gradually increasing the difficulty level.
In our approach, we first concentrate on the prediction module (loss1) to minimize the
discrepancy between the predicted distribution and the ground truth distribution. We then
gradually increase the level of complexity to enable the model to learn to cope with the
noise present in the data. In the second step, we balance the two losses and obtain the final
loss function loss = α × loss1 + (1 − α)× loss2, where α is the balancing coefficient. We
dynamically compute the coefficient using the available information. Specifically, we use
pk as the coefficient, where k denotes the annotated label. We validate this strategy in two
scenarios: (1) A value of pk approaching 1 signifies a high level of confidence that k is the
appropriate label, resulting in reduced emphasis on the rectification module. Given the
initially small value of loss1, the overall loss remains relatively low, and the (1 − α) term
restricts the magnitude of the second component. (2) Conversely, a value of pk approaching
0 implies that the annotated label may be incorrect, necessitating greater attention towards
the rectification module to rectify it.

Figure 4. Framework of label rectification strategy.

In fact, q is utilized to explore the entire space and identify the true distribution
of the labels. The search process commences with the labeled distribution l and adopts
(1 − pk)× loss2 as the loss function. This approach allows q to assimilate information from
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the labeled distribution l, predicted distribution p, and specific context x. The matrix T is
initially initialized as the identity matrix, signifying that noise is not considered.

Finally, the first loss function can be effectively implemented through the utilization
of the standard cross-entropy method:

loss1 = −log p(yi|(x, p)j
i ; θ) (9)

Every ground-truth label, yi, pertaining to the i-th individual sample, is represented
in one-hot format. To optimize the network, the standard gradient descent algorithm is
employed. The second loss is utilized to automatically adjust the distribution of incorrect
categories. Finally, we combine this as follows:

loss2 = sqrt(
K

∑
k=1

(p(k|(x, p)j
i ; θ)− q(k|(x, p)j

i ; θ))2)

J(θ) = p(yi|(x, p)j
i ; θ)× loss1 + (1 − p(yi|(x, p)j

i ; θ))× loss2

(10)

4. Experiments
4.1. Experimental Data

This paper presents experimental results on robust benchmark datasets, including
SemEval-2016 Task 6 (SEM16) [35], COVID-19 [36], and VAST [27]. Their statistics are
shown in Tables 1 and 2.

Table 1. Statistics of SemEval16 and COVID-19 datasets.

Dataset Target Favor Against Neutral

SEM16
H 163 565 256
F 268 511 170
L 167 544 222

COVID-19

Fauci 492 610 762
Home 615 250 325
Mask 190 400 782

School 693 668 346

Table 2. Statistics of VAST dataset.

Train Valid Test

Examples 13,477 2062 3006
Unique Comments 1845 682 786

Zero-shot Topics 4003 383 600

• SEM16. The SEM16 dataset contains 4870 tweets, each targeting various subjects and
annotated with one of three stance labels: “favor”, “against”, or “neutral”. Following
the framework suggested by [24], four specific targets—Donald Trump (D), Hillary
Clinton (H), Legalization of Abortion (L), and Feminist Movement (F)—were selected
for the analysis of stance detection efficacy in our research. For the cross-target
configuration [8,24,25], we formulated four distinct cross-target stance detection tasks
(D→H, H→D, F→L, L→F), indicating the source target on the left and the destination
target on the right of the arrow.

• COVID-19. The COVID-19 Stance dataset comprises 6133 tweets that pertain to users’
stance towards four targets related to COVID-19 health mandates. The tweets were
manually annotated for stance based on three categories: in-favor, against, and neither.

• VAST. Introduced by Allaway and Mckeown [27], the VAST dataset incorporates a
wide array of targets across different sectors, including politics, education, and public
health, and features three stance labels: ”pro”, ”neutral”, and ”con”. It consists of
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4003 samples for training, with the development and test sets containing 383 and
600 samples, respectively. In alignment with Liang et al. [8], our model’s performance
is assessed on topics in a zero-shot learning context.

4.2. Compared Baseline Methods

To evaluate the performance of our proposed model, a comprehensive analysis and
comparison with existing baseline models was conducted. These baseline models are
delineated as follows:

Statistics-based methods:

• BiLSTM [23] employs a bidirectional long short-term memory (LSTM) network to
independently encode the text and its associated target.

• BiCond [23] utilizes a bidirectional LSTM to encode both the text and the target con-
currently.

• CrossNet [37] extends BiCond by incorporating a self-attention layer to identify salient
words within the text.

• MemNet [38] introduces a multi-hop attention mechanism within a memory network
to effectively encode textual data.

• AoA [39] deploys two LSTM networks to separately model the target and context,
integrating an interactive attention mechanism to examine their interaction.

• ASGCN [40] employs a dependency tree and graph convolutional networks (GCN) to
derive compact and expressive textual representations.

• TAN [6] integrates target-specific attention with a long-short term memory network
for stance detection.

• TPDG [41] introduces a convolutional graph model adaptable to the target, enhancing
stance detection accuracy through the utilization of shared features from similar targets.

• AT-JSS-Lex [42] presents a target-adaptive graph convolutional network for stance
detection, focusing on the extraction of shared latent features from similar targets.

• TOAD [28] employs adversarial learning to achieve generalization across different topics.
• GCAE introduces a gated convolutional network based on a CNN framework, which

integrates target-specific information and employs a gating mechanism to exclude
irrelevant information.

Fine-tuning based methods:

• BERT [11] employs a pretrained BERT model for stance detection, adapting the input
format to “[CLS] + text + [SEP] + target + [SEP]” to facilitate the model training and
fine-tuning processes.

• BERT-NS [43] represents a semi-supervised approach that applies self-training and
knowledge distillation to improve the efficacy of a teacher model through the use of
unlabeled data.

• BERT-DAN [44] is designed to explicitly capture both subjective and objective ele-
ments within tweets and allows the use of labeled data from related tasks to inform
the training of a model for the target task.

• PT-HCL [8] introduces an innovative method for cross-target and zero-shot stance
detection employing contrastive learning. This model uses a BERT-based framework
to create a unified representation space for various targets.

Prompt-tuning based methods:

• MPT [45] provides a prompt-tuning based method for stance detection, which employs
a verbalizer defined by human experts.

• KPT [46] incorporates external lexical resources to define the verbalizer component
within the prompt engineering framework.

• PIN-POM [47] puts forth a soft prompt approach tailored for short text categorization,
an adaptation readily amenable to stance detection tasks.

• TAPD [48] uses a prompt setting method for position detection, using PLM to learn
effective representations for stance detection tasks.
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Knowledge-enhanced methods:

• SEKT [25] provides a graph convolutional network enhanced with semantic knowl-
edge to detect attitudes.

• WS-BERT-Dual [28] introduces target-related wiki knowledge to enhance stance
detection ability.

• TarBK [29] incorporates the targeted background knowledge for stance detection.

Variants of DS-ESD:

• S-ESD refers to supervised learning using backpropagation with a small set of labeled
training samples. In contrast, DS-ESD does not require manual annotation and is
applicable to more open real-world scenarios, while S-ESD is suited for current in-
target and cross-target task settings.

4.3. Implementation Details

In the experimental configuration, we opted for the BART-large architecture with
400 million parameters for the generator component. Subsequently, for the stance classifi-
cation model, we elected to utilize pretrained language models based on the BERT-base
architecture with 340 parameters. To train the model, we utilized the Adam optimizer with
a mini-batch size of 32 and a learning rate of 0.0002. The hardware environment for these
experiments was provisioned with an A100 40G GPU. To further improve on the current
state of the art, we comprehensively describe the templates used to fine-tune pretrained
language models throughout this paper.

As per the recommendations of previous works [8,25], we employed the micro-average
F1 score as our primary evaluation metric. Our first step in this process involved calculating
the F1 scores for the categories “favor” and “against”:

F1 f avor =
2Pf avorR f avor

Pf avor + R f avor

F1against =
2PagainstRagainst

Pagainst + Ragainst

(11)

The F1-score could be computed based on precision and recall.

F1 =
F1 f avor + F1against

2
(12)

4.4. Overall Performance
4.4.1. In-Target Setup

Tables 3 and 4 present the results of in-target stance detection using diverse robust
benchmarks. Our DS-ESD model consistently outperformed most of the baseline models
across all datasets, thereby validating the efficacy of our proposed approach for stance detec-
tion. Moreover, the significance tests conducted on DS-ESD relative to the top-performing
competitor demonstrated that DS-ESD yielded a statistically significant enhancement in
terms of most evaluation metrics, with p-value < 0.05 (indicated as †). Specifically, com-
pared with the static-based model (GCAE) that performed poorly, our DS-ESD improved
on it by 18.8% on average for the COVID-19 dataset. Compared to KPT and MT, the best
competitors of the BERT-based model, our DS-ESD improved by 1.9% and 1.04% on average
over SEM16 and COVID-19, respectively.
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Table 3. Performance comparison of in-target setups for SEM16. The best scores are in bold.

Methods F L H

Sta.

BiLSTM † 51.6 59.1 55.8
BiCond † 52.9 61.2 56.1
TAN † 55.8 63.7 65.4
AT-JSS-Lex † 61.5 68.4 68.3
MemNet † 51.1 58.9 52.3
AoA † 55.4 58.3 51.6
ASGCN † 56.2 59.5 62.2
TPDG 67.3 74.7 73.4

BERT

FT 62.3 62.4 67.0
S-MDMT 63.8 67.2 67.2
STANCY 61.7 63.4 64.7
TAPD 63.9 63.9 70.1
MPT 63.1 62.9 70.4
PIN-POM 62.1 62.9 69.2
KPT 63.3 63.5 71.3

DS-ESD 72.2 † 65.6 77.5 †

S-ESD 71.7 † 68.0 78.5 †

Table 4. Performance comparison of in-target setups for COVID-19. The best scores are in bold.

Methods Fauci School Home Mask

Sta.

BiLSTM † 63.0 54.8 64.5 56.7
TAN † 54.7 53.4 53.6 54.6
ATGRU 61.2 52.7 52.1 59.9
GCAE † 64.0 49.0 64.5 63.3

BERT

BERT 81.8 75.5 80.0 80.3
BERT-NS 82.1 75.3 78.4 83.3
BERT-DAN 83.2 71.7 78.7 82.5
MT-LRM-BERT 83.7 79.3 82.7 84.7

DS-ESD 78.9 76.5 78.9 81.5
S-ESD 83.8 79.3 85.1 † 86.5 †

It is noteworthy that utilizing the method of distant supervision, which obviates
the need for manual data annotation, achieved significant improvements in effectiveness
across multiple settings compared to strong baselines. This finding indicates the effective-
ness of our proposed approach, which leverages VLLM to annotate labels and conducts
distant supervision.

4.4.2. Cross-Target Setup

The procurement of a comprehensively annotated large dataset necessitates substantial
time and resources. Consequently, we proposed to evaluate the efficacy of our method
within a cross-target framework. The objective of this framework was to predict the stance
towards the target destination using labeled data from the source target. The F1 scores are
detailed in Table 5. According to these findings, our proposed methodologies (DS-ESD
and S-ESD) surpassed the competing baselines by a notable margin. Specifically, DS-ESD
exhibited an average enhancement of 12.85% in F1 score over the top-performing statistical
method (TPDG), affirming the efficiency of employing a distantly supervised approach
in a cross-target context. Furthermore, when compared to the leading fine-tuning-based
method (PT-HCL), DS-ESD registered an average improvement of 12.05% in F1 score.
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Table 5. Performance comparison of cross-target stance detection. The best scores are in bold.

Methods F→L L→F H→D D→H

Sta.

BiLSTM † 44.8 41.2 29.8 35.8
BiCond 45.0 41.6 29.7 35.8
CrossNet 45.4 43.3 43.1 36.2
VTN 47.3 47.8 47.9 36.4
SEKT 53.6 51.3 47.7 42.0
TPDG 58.3 54.1 50.4 52.9

BERT

BERT-FT 47.9 33.9 43.6 36.5
MPT 42.1 47.6 47.1 58.7
KPT 49.1 54.2 54.6 60.9
JointCL 58.8 54.5 52.8 54.3
PT-HCL 59.3 54.6 53.7 55.3
TarBK 59.1 54.6 53.1 54.2

DS-ESD 66.0 † 66.3 † 69.3 † 69.5 †

S-ESD 66.4 † 69.3 † 70.8 † 71.7 †

4.4.3. Zero-Shot Stance Detection

In instances where the text’s target was not present in the training dataset, we under-
took a comparative analysis against the foremost competitors in the domain. The outcomes
of these analyses are documented in Table 6. It is crucial to note that, given the intrin-
sic challenges and constraints associated with zero-shot stance detection, all techniques
manifested a diminished performance relative to the in-target configuration. In particular,
methods predicated exclusively on statistical analysis exhibited inferior results. In contrast,
fine-tuning-based strategies, such as PT-HCL, TarBK, and TTS, consistently surpassed those
reliant on statistical analyses. This phenomenon underscored the substantial advantages of
harnessing knowledge derived from extensive corpora. Despite the inherent difficulties
of zero-shot stance detection, our DS-ESD model showcased notable efficacy, rivaling the
performance of the leading benchmark methods. When equipped with labeled data from
the source domain, our approach (S-ESD) recorded the highest F1 score. Consequently, our
findings suggest that DS-ESD constitutes an effective approach for navigating the complex
task of zero-shot stance detection through distantly supervised methods.

Table 6. Performance comparison of zero-shot stance detection. The best scores are in bold.

Methods All Pro Con FLD→H LDH→F FDH→L FLH→D

Sta.

BiCond 42.8 44.6 47.4 32.7 40.6 34.4 30.5
CrossNet 43.4 46.2 43.4 38.3 41.7 38.5 35.6
SEKT 41.8 50.4 44.2 50.1 44.2 44.6 46.8
TPDG 51.9 53.7 49.6 50.9 53.6 46.5 47.3

BERT

BERT-FT 66.1 54.6 58.4 49.6 41.9 44.8 40.1
CKE-Net 70.2 61.2 61.2 - - - -
MPT 66.6 54.9 62.0 52.0 47.6 50.2 48.7
KPT 70.2 61.1 61.4 47.3 50.9 50.6 52.2
JointCL 72.3 64.9 63.2 54.8 53.8 49.5 50.5
PT-HCL - - - 54.5 54.6 50.9 50.1
TarBK - - - 55.1 53.8 48.7 -
TTS - - - 71.6 64.4 62.6 65.8

DS-ESD 71.2 66.4 † 63.8 † 72.2 † 68.4 † 65.1 † 69.5 †

S-ESD 72.9 † 62.0 68.1 73.8 † 69.5 † 68.6 † 70.2 †

4.5. Ablation Study

To investigate the impact of each part on our model, we performed an ablation test by
discarding the label rectification strategy (denoted as w/o LRS) and the adaptive training
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mechanism (denoted as w/o ATM), respectively. Specifically, for the w/o LRS, the model
was trained using standard cross-entropy. Additionally, following [49], we constructed
a method that relied solely on ChatGPT to verify performance without LRS, denoted
as “ChatGPT”.

The ablation study results are summarized in Table 7. The findings reveal that both the
LRS and the ATM contributed significantly to enhancing the performance of the proposed
approach. In particular, the performance significantly dropped when LRS was removed.
This is because using ChatGPT’s results as pseudo-labels directly introduced a consider-
able amount of noise, thereby adversely affecting performance. The empirical outcomes
additionally corroborated the efficacy of the proposed LRS. Not unexpectedly, integrating
all components yielded the optimal outcomes across all experimental setups.

Table 7. Experimental results of ablation study.

Methods F L H

DS-ESD 72.2 65.6 77.5

-w/o LRS 71.9 64.0 76.7
-w/o ATM 72.0 65.1 77.1
ChatGPT 68.4 58.2 79.5

Experimental Results on Varying Amounts of Labeled Data. The size of the labeled
samples is crucial for the proposed method, as it significantly impacts both the model’s
performance and running time. In this experiment, we conducted tests on the F and L
task in the SEM16 dataset, with varying amounts of labeled data, ranging from 0% to
100%. Figure 5 shows the results. Notably, when using 0% labeled data, we refer to our
method as DS-ESD, while using 100% labeled samples represents S-ESD. The results are
shown in Figure 5. The empirical findings illustrate that the performance, as expected,
progressively improved with the volume of annotated data, an outcome that aligned with
our expectations. Specifically, the results when using 0% labeled data exceeded the baseline
method in most settings, indicating the effectiveness of our distant supervision method.

(a) (b)

Figure 5. Experimental results on varying amounts of labeled data; (a) F1 score on “L”; (b) F1 score
on “F”.

4.6. Case Study

Table 8 presents three explanation examples generated by DS-ESD. The selected
samples were accurately predicted by DS-ESD, whereas the baseline failed to predict the
correct category.
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Table 8. Examples of the explanation generated by DS-ESD.

Input Target Generated Explanation

@HillaryClinton now can add
#ropegate to her long list of
“accomplishments”.

Hillary Clinton
the sentence suggests that
ropegate has a negative
impact on Hillary

She’s smarter and works
harder. Empty accusations,
inferences, gossip, and rumors
are rubbish.

Hillary Clinton
the sentence suggests that
Hillary is smarter and works
harder

Based on the long lines, I
thought it was free burrito day
at Pancheros but it was
actually Hillary!

Hillary Clinton the sentence implicitly
expresses support for Hillary

A fictional character been
raped and abused oppress me.
Censor pls!!
#thisoppresseswomen

Feminist Movement
the sentence includes
#thisoppresseswomen means
negative for women’s rights

In the first and fourth examples, it is evident that the DS-ESD model possessed a
profound understanding of stance-aware symbols. For instance, the hashtag “#ropegate”
was associated with a negative news event during Hillary Clinton’s presidential campaign,
and “#thisoppresseswomen” signified opposition to women’s rights. The explanations
generated by the DS-ESD model illustrate its capacity to grasp the contextual significance
of these tags. In the second example, when conflicting stance-bearing words appeared
in the text, DS-ESD could effectively identify the correct words that describe the target.
The third example shows that DS-ESD could effectively understand semantic content that
requires a deep understanding. For example, the comparison between the long queues to
vote for Hillary and the Free Burrito Day queue was accurately categorized by DS-ESD as
“implicitly expresses support for Hillary”.

At present, due to constraints on model parameters, the generated explanations are
relatively concise and lack detailed elaboration. Future research endeavors may consider
expanding the model’s parameter space to generate more comprehensive explanations.

4.7. Manual Evaluation

As the evaluation metrics for the generative model score (e.g., BLEU score) only
considered the word-level similarity between ground truth and predicted outputs, we
conducted a manual evaluation of the quality of the explanations produced.

Specifically, we asked three annotators to rank these explanations using three different
criteria: (1) The generated explanation contains important, salient information and does
not omit any essential points that contributed to the stance prediction. (2) The generated
explanation does not contain any redundant, repeated, or irrelevant information to the input
and the stance detection. (3) The generated explanation does not contain any contradictory
pieces of information to the input and the stance detection.

We randomly selected a small set of 100 instances from the test set, and the evaluators
scored them according to the above evaluation criteria with a range of ±1. The average
scores of the three evaluators all exceeded 80, demonstrating that the generated explana-
tions could effectively explain the rationale of the prediction.

5. Conclusions

We proposed a distantly supervised explainable stance detection framework (DS-
ESD) comprising three modules: an instruction-based chain-of-thought (CoT) method,
a generative network, and a transformer-based stance predictor. The CoT method leverages
prompt templates to extract stance explanations from a very large language model (VLLM)
like GPT-3.5. A generative network then learns the mapping between input and explanation.
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The transformer-based classifier takes the tweet and generates an explanation as input,
trained with VLLM-labeled stances as distant supervision. Comprehensive experiments
on three benchmarks demonstrated consistently better performance over the comparisons.
Furthermore, future research endeavors may explore expanding the parameter space of the
model to enhance the generation of more comprehensive explanations.
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