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Abstract: An effective strategy to enhance the convergence order of nodal approximations in interpo-
lation or PDE problems is to increase the size of the stencil, albeit at the cost of increased computational
burden. In this study, our goal is to improve the convergence orders for approximating the first and
second derivatives of sufficiently differentiable functions using the radial basis function-generated
Hermite finite-difference (RBF-HFD) scheme. By utilizing only three equally spaced points in 1D, we
are able to boost the convergence rate to four. Extensive tests have been conducted to demonstrate
the effectiveness of the proposed theoretical weighting coefficients in solving interpolation and
PDE problems.
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1. Introduction
1.1. Goals

The use of radial basis functions (RBFs) offers several advantages in various appli-
cations [1] (Chapters 1–2). RBFs are commonly used for interpolation problems, where
they approximate a function based on a set of input–output data pairs. Compared to other
interpolation methods, RBFs provide more accurate approximations in high-dimensional
spaces [2]. RBFs [3] (Chapter 3) have received interest from researchers in both engineer-
ing [4,5] and scientific domains [6,7]. They can also be employed for function approximation
problems, where the target is to find a function that models the input–output relationship
of a given system. In fact, they can consider both global and local features of the function
being approximated, allowing for more accurate predictions. Furthermore, RBFs can model
non-linear relationships between input and output variables, making them appropriate for
applications where linear models are not sufficient. This flexibility arises from the choice of
non-linear basis functions used in RBFs [8,9].

This paper investigates how to improve the computational efficiency and, especially,
the convergence order of approximations without increasing the stencil size. In fact, in
most already published works in the literature [10,11], to increase the convergence order in
1D based on equally spaced nodes, the convergence order cannot be bigger than two when
the stencil size is three, which means the only remaining way to boost the convergence
order is to increase the stencil size and consider four or more discretization points in a
stencil. Hence, the objective is to achieve improved convergence rates and, thus, to propose
compact formulas under the Hermite finite-difference (HFD) approach. Thus, we pursue
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obtaining the RBF-HFD weights. The objective is to compute analytical coefficients and
local truncation errors (LTEs) for these compact formulas, focusing on the 1st derivative
and the 2nd derivative.

1.2. Background and Challenges

In the dimension d, a kernel as a RBF can be expressed as ϕ : Rd → R, where
r = ‖z − zk‖2 is the radius and ‖ · ‖2 stands for the two-norm. The RBF-FD extends
classical FD methods to accommodate scattered node configurations [12]. The method
employs RBFs to perform a local approximation of a linear differential operator within a
selected neighborhood. This neighborhood, known as the stencil for a specific point, is
often determined by the n− 1 closest neighbors. The RBF-FD has undergone extensive
investigation and demonstrated successful performance across various contexts; see [13] for
more. Like the FD methodology, the RBF-FD methodology provides an approximation to a
differential linear operator Lv at a specific point xc ∈ Rd by forming a linear summation of
vi at the n nearest knots as follows [14] (Page 70):

Lv
∣∣
xc
'

n

∑
i=1

aivi. (1)

In the RBF-FD procedure, the function v can be either a scalar or a vector-valued function,
and the weights ai associated with the RBF-FD need to be calculated. In the initial stages of
RBF-FD research, smooth RBFs (infinitely) such as the multiquadric (MQ) as

ϕ(r) =
√

c2 + r2,

or the Gaussian as
ϕ(r) = exp(−(r/c)2),

had been commonly employed (c represents the shape parameter) [15,16].
To enhance the applicability and usefulness of the RBF-FD methodology, one approach

is to increase the number of stencil knots. Increasing the number of stencil knots in RBF-FD
methods can improve the stability, the convergence, and the method’s accuracy, but it can
also increase the computational cost and sensitivity to noise.

1.3. Motivation

Recently, Fornberg proposed an efficient algorithm in [17] to compute the compact
weights for different node layouts. The authors in the work [18] introduced a unified frame-
work for the systematic derivation of optimized compact formulas tailored for uniform
grids. These schemes are computed analytically through the solution of an optimization
problem, with the objective of minimizing the error while satisfying prescribed accuracy
constraints. Furthermore, it demonstrates the versatility of this framework by showing its
ability to generate various types of formulas, including spatially explicit and FD formulas,
as special cases.

In this work, we study how to improve the convergence order without increasing
the stencil size. So, the motivation is to obtain a higher order of convergence using only
three-node stencils. Thus, we propose a new set of weights under a variant of the MQ RBF.

1.4. Structure

We provide the rest of the manuscript as follows. In Section 2, the RBF-HFD scheme
is furnished. Section 3 is devoted to approximate the 1st and 2nd function derivatives in
1D. The theoretical error equations corresponding to the RBF-HFD formulations under
a variant of the MQ RBF are provided therein as well. In Section 4, we substantiate the
validity, convergence, and precision of the constructed formulas via several experiments
based on LTEs. Section 5 gives one application when the obtained set of weights can be
used in solving a fractional time-dependent partial differential equation (PDE). Finally,



Mathematics 2024, 12, 1121 3 of 13

Section 6 is devoted to drawing a short conclusion of the paper, offering a summary of the
obtained results.

2. RBF-HFD Formulations

To improve the convergence results while avoiding the increase of the stencil size,
Wright and Fornberg [19] discussed a compact method via Hermite RBF interpolation
called the RBF-HFD scheme. The RBF-HFD scheme includes not only the nodal functional
values, but also their derivatives. This allows the compact FD to achieve higher accuracy in
solving PDEs, particularly in problems with steep gradients or singularities. See [20,21]
for more.

We now describe the RBF-HFD as follows. The computation of the operator L[·]
at z = zj involves examining a stencil comprising m1 < m nodes in dimension one, as
expressed in the following relation [22]:

L[v(zj)] '
m1

∑
i=1

aiv(zi) +
m2

∑
p=1

vpL[v(zp)]. (2)

In this work, m1 = 3 and m2 = m1 − 1 = 2. The determination of the weights in this
approach, represented by ai and vp, is accomplished through the use of Hermite RBF
interpolants, as outlined below:

v(z) =
m1

∑
i=1

λi ϕ(‖z− zi‖) +
m2

∑
p=1

λ̄pL[ϕ(‖z− zp‖)]. (3)

Moreover, the weighting coefficients can be acquired by solving the ensuing linear system
of equations, which emerges upon substituting (3) into (2) and expressing

L[ϕ(‖zk − zj‖)] =
m1

∑
i=1

ai ϕ(‖zk − zi‖) +
m2

∑
p=1

vpL[ϕ(‖zk − zp‖)], (4)

LL[ϕ(‖zs − zj‖)] =
m1

∑
i=1

aiL(ϕ(‖zs − zi‖)) +
m2

∑
p=1

vpLL[ϕ(‖zs − zp‖)]. (5)

In (3), the coefficients are functions of c and h. Here, we explore the coefficients of the
RBF-HFD scheme via a variant of the MQ RBF furnished as:

ϕ(‖z− zi‖2) =
(

c2 + ‖z− zi‖2
2

)3/2
, i = 1, 2, . . . , m. (6)

3. Finding the Coefficients and the Solution Scheme

The importance of the weighting coefficients in RBF-HFD approximations resides
in their capacity to enhance the speed when estimating the 1st and 2nd derivatives with
just three neighboring equidistant nodes. By incorporating the Hermite concept, this
approach considers not only the functional values at each adjacent point, but also considers
the differentiations.

Initially, we examine a collection of evenly spaced points {z1, z2, . . . , zm}, subsequently
applying a three-point stencil organized as follows:

{zi − h, zi, zi + h} = {zi−1, zi, zi+1}, h > 0. (7)

Now, let us examine the RBF-HFD approximation (shown by v̂) as follows:

v′(zi) 'v̂′(zi) = ai−1v(zi−1) + aiv(zi) + ai+1v(zi+1)

+ bi−1v′(zi−1) + bi+1v′(zi+1), 2 ≤ i ≤ m− 1.
(8)
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To start, we substitute v using (6) at the stencil points, resulting in the subsequent system
of equations:

c3ai+1 + ai

(
c2 + h2

)3/2
+ ai−1

(
c2 + 4h2

)3/2
+ 3h

√
h2 + c2 = 6hbi−1

√
c2 + 4h2, (9)√

h2 + c2
(

ai+1

(
h2 + c2

)
+ 3h(bi+1 − bi−1)

)
+ c3ai + ai−1

(
h2 + c2

)3/2
= 0, (10)

3h
√

h2 + c2 =
√

c2 + 4h2
(

ai+1

(
c2 + 4h2

)
+ 6hbi+1

)
+ c3ai−1 + ai

(
c2 + h2

)3/2
, (11)

6hai−1

√
c2 + 4h2 +

3
(
hai
(
c2 + h2)+ c2 + 2h2)
√

c2 + h2
=

3bi−1
(
c2 + 8h2)

√
c2 + 4h2

+ 3cbi+1, (12)

3
(
c2 + 2h2)
√

c2 + h2
= 3

(
hai

√
h2 + c2 + 2hai+1

√
c2 + 4h2 +

bi+1
(
c2 + 8h2)

√
c2 + 4h2

+ cbi−1

)
. (13)

By resolving (9)–(13) through incorporating certain simplifications, we arrive at:

ai = 0, (14)

ai−1 = −ai+1 = − 3h
16c2 −

3
4h

, (15)

bi−1 = bi+1 = − 3h2

16c2 −
1
4

. (16)

Here, we note that the weights (14)–(16) have been derived through simplifications and
Taylor expansions up to the second order of the solution of the linear system (9)–(13). While
it is conceivable to consider higher order terms, they result in a more intricate version of the
final analytical weights without affecting the ultimate error equation of the approximations,
as will be demonstrated in Theorem 1. To elaborate further, expanding the Taylor series
up to third- and fourth-degree terms would yield the following equivalent weighting
coefficients (respectively):

ai = 0, (17)

ai−1 = −ai+1 =
3
(

2h4

c4 − h2

c2 − 4
)

16h
, (18)

bi−1 = bi+1 = − 3h2

16c2 −
1
4

, (19)

and

ai = 0, (20)

ai−1 = −ai+1 =
3
(

2h4

c4 − h2

c2 − 4
)

16h
, (21)

bi−1 = bi+1 =
1

16

(
8h4

c4 −
3h2

c2 − 4
)

. (22)

Theorem 1. Let ϕ(r) be given by (6). Then, the compact formula (8) for the first derivative of a
function v(z) (sufficiently smooth) on (7) converges quartically.

Proof. As explained in Section 2, we obtain the analytical weights for the first derivative
using symbolic calculations. The set of weights (14)–(16) would yield in the following LTE:

e1(zi) =

(
−v(3)(zi)

8c2 − 1
120

v(5)(zi)

)
h4 +O

(
h5
)

, (23)
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where
e1(zi) = v̂′(zi)− v′(zi). (24)

The equation of error (23) shows a quartical convergence rate for the presented approx-
imation on uniformly spaced grids. The details of the proof can be extracted from the
Mathematica program given in Appendix A. This concludes the proof.

In tackling the situation related to the second derivative as outlined in Section 2 within
the RBF-HFD approach, we utilize (7) and express:

v′′(zi) 'v̂′′(zi) = pi−1v(zi−1) + piv(zi) + pi+1v(zi+1)

+ qi−1v′′(zi−1) + qi+1v′′(zi+1), 2 ≤ i ≤ m− 1.
(25)

We used different symbols pi and qi for the coefficients to differ in contrast to the first
derivative approximation. Likewise, by formulating the subsequent set of five interrelated
equations at the nodes of the stencil:

3
(
c2 + 2h2)
√

h2 + c2
= c3 pi+1 +

(
h2 + c2

)3/2
pi +

(
c2 + 4h2

)3/2
pi−1 +

3
(
c2 + 8h2)qi−1√

c2 + 4h2
+ 3cqi+1, (26)

3c =
(
h2 + c2)2 pi−1 +

(
h2 + c2)2 pi+1 + 3

(
c2 + 2h2)qi−1 + 3

(
c2 + 2h2)qi+1 + c3

√
h2 + c2 pi√

h2 + c2
, (27)

3
(
c2 + 2h2)
√

h2 + c2
= c3 pi−1 +

(
h2 + c2

)3/2
pi +

(
c2 + 4h2

)3/2
pi+1 +

3
(
c2 + 8h2)qi+1√

c2 + 4h2
+ 3cqi−1, (28)

6h
√

c2 + 4h2 pi−1 + 3h
√

h2 + c2 pi +
6
(
3c2h + 8h3)qi−1

(c2 + 4h2)
3/2 =

9c2h + 6h3

(h2 + c2)
3/2 , (29)

9c2h + 6h3

(h2 + c2)
3/2 =

6h
((

c2 + 4h2)2 pi+1 +
(
3c2 + 8h2)qi+1

)
(c2 + 4h2)

3/2 + 3h
√

h2 + c2 pi. (30)

Solving the system (26)–(30) results in the following solution:

pi−1 = pi+1 =
294h2

125c4 +
9

50c2 +
6

5h2 , (31)

pi =
3

125

(
−196h2

c4 − 15
c2 −

100
h2

)
, (32)

qi−1 = qi+1 = − 9h2

100c2 −
1

10
. (33)

Here, it is mentioned that the weights (31)–(33) have been figured out by making the
formulas simpler and using Taylor expansions up to the second order of the solution of the
linear system (26)–(30). Although we could think about using higher order terms, doing so
would make the final analytical weights more complex without making a difference for the
error equation of the approximation, as we will show in Theorem 2. For example, if we
consider the Taylor expansion up to fourth-order terms, we obtain:

pi−1 = pi+1 =
3
(
− 64599h4

c6 + 7840h2

c4 + 600
c2 + 4000

h2

)
10, 000

, (34)

pi = −
3
(
500c6 + 75c4h2 + 980c2h4 − 6903h6)

625c6h2 , (35)

qi−1 = qi+1 =
− 327h4

c4 − 180h2

c2 − 200
2000

. (36)
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Theorem 2. Let ϕ(r) is given by (6). Then, the compact formula (25) for approximating the second
derivative of a function v(z) (sufficiently smooth) on (7) converges quartically.

Proof. By incorporating the Taylor series having the second truncation order for the coeffi-
cients and putting them back in (25), it is finally obtained:

e2(zi) =
1

1000

(
2352v′′(zi)

c4 − 75v(4)(zi)

c2 − 5v(6)(zi)

)
h4 +O

(
h5
)

. (37)

Here,
e2(zi) = v̂′′(zi)− v′′(zi). (38)

The relation (37) reveals a quartic convergence speed for the second derivative of an
sufficiently differentiable function, using a three-node stencil. This concludes the proof.

4. The Advantage of the Analytical Coefficients

To affirm the precision of our formulas and examine how the LTE relies on h and c, we
employed the subsequent test functions as illustrative instances:

v1(z) = cot(sinh(z)), at z = 1, (39)

v2(z) = tan(z), at z = 1, (40)

v3(z) = exp
(
−z3

)
, at z = 1, (41)

v4(z) = exp
(
−z4

)
+ z6, at z = 1. (42)

To attain this objective using h = 1/100, we employ (7) in conjunction with Formulas (14)–(16)
to approximate the first derivatives. The subsequent findings, depicted in Figure 1, reveal
the enhanced efficacy of theoretical coefficients when dealing with (9)–(13). This superiority
becomes apparent in the absence of undesired oscillations and the considerable reduction
of absolute errors (AEs). In contrast, computational weighting coefficients show divergence
attributed to round-off errors, while theoretical weighting coefficients demonstrate stability.

Analytical weights

Numerical weights

0 1 2 3 4

10-8

10-7

10-6

10-5

10-4

0.001

0.010

c

L
n
|e
1
|

h=1/100

Analytical weights

Numerical weights

0 1 2 3 4

10-8

10-4

1

c

L
n
|e
2
|

h=1/100

Analytical weights

Numerical weights

0 1 2 3 4

10-6

0.001

c

L
n
|e
1
|

h=1/100

Analytical weights

Numerical weights

0 1 2 3 4

10-7

10-5

0.001

0.100

10

1000

c

L
n
|e
2
|

h=1/100

Figure 1. Cont.
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Analytical weights

Numerical weights

0 1 2 3 4

10-8

10-4

c

L
n
|e
1
|

h=1/100

Analytical weights

Numerical weights

0 1 2 3 4

10-8

10-4

1

c

L
n
|e
2
|

h=1/100

Analytical weights

Numerical weights

0 1 2 3 4

10-10

10-8

10-6

10-4

0.01

c

L
n
|e
1
|

h=1/100

Analytical weights

Numerical weights

0 1 2 3 4

10-7

0.001

10

c

L
n
|e
2
|

h=1/100

Figure 1. Evaluating the accuracy of theoretical coefficients against numerical weights is conducted
across test functions v1, . . . , v4, organized in rows 1 through 4. The assessment is performed with the
fixed h = 1/100. The outcomes for approximating the first and second derivatives are given in the
left and right figures, respectively.

Another exploration was undertaken to show the capabilities of (31)–(33) for estimating
the second derivatives, comparing their performance to their numerical counterparts.
The results presented in Figure 2, when h = 1/1000, offer additional affirmation of the
advantages of theoretical coefficients in this context. Discrepancies in the performance
of the method for first and second derivatives at different grid spacings (h = 1/100 and
h = 1/1000) can be observed in the results. In fact, the lower the grid spacing is, more
accurate results in terms of absolute errors can be observed.

The gap observed between analytical and numerical weights in Figure 2 requires
further explanation. The insights into the factors contributing to this difference is necessary
to ensure a thorough understanding of the results. The main reason lies in solving the
linear systems in machine precision, which introduces round-off and cancellation errors
especially when h tends to zero or c tends to be very large. In such cases, the linear system
is ill-conditioned. However, solving the system in exact arithmetic and using the analytical
weights can diminish such errors in computing.

Analytical weights

Numerical weights

0 1 2 3 4

10-10

10-7

10-4

0.1

c

L
n
|e
1
|

h=1/1000

Analytical weights

Numerical weights

0 1 2 3 4

10-10

10-7

10-4

0.1

c

L
n
|e
2
|

h=1/1000

Figure 2. Cont.
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Analytical weights

Numerical weights
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Analytical weights

Numerical weights
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Analytical weights

Numerical weights
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10-13
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L
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|e
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Analytical weights

Numerical weights
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10-9

10-6
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1

c

L
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|e
2
|

h=1/1000

Analytical weights

Numerical weights

0 1 2 3 4

10-11

10-8

10-5

0.01

c

L
n
|e
1
|

h=1/1000

Analytical weights

Numerical weights

0 1 2 3 4

10-8

10-4

1

c

L
n
|e
2
|

h=1/1000

Figure 2. Evaluations of the accuracy of theoretical coefficients against numerical weights are
conducted across test functions v1, . . . , v4 organized in rows 1 through 4. The assessment is performed
with the fixed h = 1/1000. The results for approximating the first and second derivatives are given in
the left and right figures, respectively.

Checking the Rate of Convergence

The numerical order of convergence (NOC) is investigated using the absolute error eh
(under the discretization step size h) and can be defined as follows:

NOCh ≈ log2

∣∣∣∣ eh/2

eh

∣∣∣∣. (43)

The test for checking the NOC is as follows:

v5(z) = cos(100z)− tan(2πz), z ∈ [0, 1], (44)

The convergence behavior and NOCs for four different approximations are presented
in Figure 3. We approximate the first derivative of the function (44) at z = 1/2. The
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compared methods on equi-spaced grids are the three-point FD, RBF-FD, and five-point
RBF-FD weights given in [23]. The proposed weights (14)–(16) are shown by RBF-HFD.
The slope corresponding to each set of weights obtained is reported next to the caption of
each method in Figure 3. Noting that the comparison of the weights with a small shape
parameter against those with a large shape parameter lacks justification, due to this, we
have chosen different shape parameters, but the same for all methods when comparing.
The results confirm the theoretical orders of Section 3.

FD2, -1.96

RBF-FD2, -1.96

RBF-FD4, -3.90

RBF-HFD, -3.96

6 7 8 9 10

-15

-10

-5

0

Log21/h

L
o
g
2
|e
rr
o
r|

c=1

FD2, -1.96

RBF-FD2, -1.97

RBF-FD4, -4.12

RBF-HFD, -3.96

6 7 8 9 10

-15

-10

-5

0

Log21/h

L
o
g
2
|e
rr
o
r|

c=0.1

Figure 3. NOCs for various sets of weights in approximating the first derivative.

5. A PDE Problem

The time-dependent fractional Black–Scholes (FBS) PDE presents numerous advan-
tages in options pricing within financial markets when compared to the conventional BS
equation [24]. This formulation, applicable for z ∈ [0, ∞), is expressed as follows [25]:

∂αv(z, t)
∂tα

=
1
2

σ2z2 ∂2v(z, t)
∂z2 + (r−v)z

∂v(z, t)
∂z

− rv(z, t), (45)

where α ∈ (0, 1), t represents the time to maturity, and r denotes the interest rate, while
additional parameters include v for dividend yield and σ for the volatility constant. Fur-
thermore, expressing α as 2H indicates the actual Hurst exponent as 0 < H < 1/2, as
established in [26]. It is observed that Equation (45) simplifies to the classical Black–Scholes
partial differential equation (BS PDE) when H = 1/2. If we designate E as the price of the
strike, the initial condition for (45) can alternatively be characterized for the call and put
variations [27,28]:

v(z, 0) = max{z− E, 0}, (46)

and
v(z, 0) = max{E− z, 0}. (47)

The boundary conditions for call/put options are expressed, respectively, by

lim
z→∞

v(z, t) ' zmax exp (−vt)− E exp (−rt), v(0, t) = 0, (48)

lim
z→∞

v(z, t) = 0, v(0, t) ' E exp {−rt}. (49)

Here, the errors are documented and subjected to comparison. The methods we used for
the comparisons are as follows:

• The method based on the introduced RBF-HFD weights in Section 3 and shown by PM.
• The 2nd-order FD solver on equally spaced meshes and 1st-order Euler’s method

along time [29] shown by FD2.
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• The RBF-FD approach on uniformly spaced grids is employed to tackle (45), as dis-
cussed in [30]. In this section, we denote it as SSM.

Mathematica 13.3 [31,32] is used to perform the computations in standard floating
point arithmetic. Here, zmax = 3E is considered. Note that the proposed sets of weights
are employed on uniform Cartesian meshes. This is done intentionally to gain as much
as possible of the convergence order in practical problems. So, we do not employ non-
Cartesian nodes for solving (45), which are unnecessary for this problem.

The shape parameter for any of the kernels is chosen adaptively as follows:

c = 4h. (50)

The error is given by
∣∣vapprox − vref

∣∣, while vref and vapprox denote the reference and com-
putational solutions, respectively. The computations were conducted on a system with
Windows 11 and an Intel Core i7-9750H processor. The time required for these computa-
tions, measured in seconds, is presented in the tables under the label Time.

We analyzed a call option possessing the spot price of USD 100, by considering that
today is 13 February 2024 and the option expires on 13 February 2025. The annualized
rate of interest is 5%, with an annualized volatility of 40%, and v equals 0. Additionally,
α = 0.8, and v(E, T) ' 18.1883 is established, as mentioned in [30]. This value serves as a
benchmark for comparisons. The following section provides a detailed set of computational
comparisons involving various solvers. Table 1 illustrates a comparison of various solvers
for solving (45).

Table 1. Results among various solvers in Section 5.

m,n v
FD2

Error
FD2

Time
FD2

v
SSM

Error
SSM

Time
SSM

v
PM

Error
PM

Time
PM

10 16.070 2.1 × 100 0.01 17.378 8.1 × 10−1 0.01 17.612 5.7 × 10−1 0.01

20 17.889 2.9 × 10−1 0.02 17.694 4.9 × 10−1 0.02 17.991 1.9 × 10−1 0.03

40 17.913 2.7 × 10−1 0.16 18.003 1.8 × 10−1 0.18 18.152 3.6 × 10−2 0.30

80 18.039 1.4 × 10−1 3.96 18.213 2.4 × 10−2 3.84 18.181 7.3 × 10−3 4.94

120 18.055 1.3 × 10−1 20.02 18.190 1.6 × 10−3 20.96 18.188 3.5 × 10−4 23.41

Three solvers were evaluated: the FD2, SSM, and PM schemes. The proposed scheme
performed much better than the other methods in terms of both accuracy and efficiency. To
evaluate its stability and positivity, we investigated the numerical solution with varying
numbers of discretized points across the interval, as illustrated in Figure 4. The figure
presents computational solutions using three sets of uniform points. The left subplots show-
case the discrete computational resolutions, while the right ones display the continuous
versions extracted through interpolation, produced by the programming package.

However, here, we note that the proposed methodology has a drawback of being
employed in arbitrary domains for scattered node layouts. In fact, since it requires the
Hermite condition, i.e., the derivative information for each point of the stencil except the
center, then such information might be unavailable to time-consuming in arbitrary domain
problems, which might restrict its application. So, it mainly is suitable for interpolations, as
well as for PDE problems on regular domains.
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Figure 4. Numerical findings upon solving FBS PDE by PM. Upper left: A plot illustrating the
situation having n = m = 10. Upper right: A plot of the solution having m = n = 10. Middle left: A
point plot via m = n = 20. Middle right: A continuous plot showing the setup having n = m = 20.
Lower left: A point plot showing the scenario having n = m = 40. Lower right: A continuous plot
showing the configuration having n = m = 40.

6. Conclusions

This study proposes coefficients for the RBF-HFD methodology using a variant of
the multiquadric (MQ) RBF to approximate the 1st and 2nd derivatives of a function. The
analytical computation of weights and LTEs highlights the efficiency of this methodology.
Computational results confirm the effectiveness of this approach, indicating its potential for
various applications in numerical analysis and solving PDE problems. Future research will
focus on enhancing the convergence order on a stencil with five nodes using the RBF-HFD
approach, comparing it to the convergence rates of FD or RBF-FD approximations on such
a stencil. Additionally, exploration will be conducted on applying this strategy to the
state-of-the-art polyharmonic spline (PHS) RBF, which is parameter-free.
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Appendix A

The Mathematica 13.0 program used in the process of the proof in Theorem 1.

ClearAll["Global‘*"];
ph[r1_] := (c^2 + r1^2)^(3/2)
F1 = D[ph[r1], r1] // FullSimplify;
F2 = D[ph[r1], {r1, 2}] // FullSimplify;
v1[z_] := a1*v[z - h] + a2*v[z] + a3*v[z + h] + b1*v’[z - h] + b2*v’[z + h]

(*First derivative*)
eq1 = ((F1 /. {r1 -> -h}) == {(ph[r1] /. {r1 -> -2 h}), (ph[

r1] /. {r1 -> -h}), (ph[r1] /. {r1 -> 0})
, (F1 /. {r1 -> -2 h}), (F1 /. {r1 -> 0})} . {a1, a2, a3, b1,
b2}) // Simplify;

eq2 = ((F1 /. {r1 ->
0}) == {(ph[r1] /. {r1 -> -h}), (ph[r1] /. {r1 -> 0}), (ph[
r1] /. {r1 -> h})

, (F1 /. {r1 -> -h}), (F1 /. {r1 -> h})} . {a1, a2, a3, b1,
b2}) // Simplify;

eq3 = ((F1 /. {r1 ->
h}) == {(ph[r1] /. {r1 -> 0}), (ph[r1] /. {r1 -> h}), (ph[
r1] /. {r1 -> 2 h})

, (F1 /. {r1 -> 0}), (F1 /. {r1 -> 2 h})} . {a1, a2, a3, b1,
b2}) // Simplify;

eq4 = ((F2 /. {r1 -> -h}) == {(F1 /. {r1 -> -2 h}), (F1 /. {r1 -> \
-h}), (F1 /. {r1 -> 0})

, (F2 /. {r1 -> -2 h}), (F2 /. {r1 -> 0})} . {a1, a2, a3, b1,
b2}) // Simplify;

eq5 = ((F2 /. {r1 ->
h}) == {(F1 /. {r1 -> 0}), (F1 /. {r1 -> h}), (F1 /. {r1 ->

2 h})
, (F2 /. {r1 -> 0}), (F2 /. {r1 -> 2 h})} . {a1, a2, a3, b1,
b2}) // Simplify;

{b, A} = Simplify@
CoefficientArrays[{eq1, eq2, eq3, eq4, eq5}, {a1, a2, a3, b1, b2}];

sol = Simplify@(Inverse[A] . (-b));

taylororder = 2;
sol2 = (Normal@Series[Simplify@(sol /. Thread[h -> ep*c]), {ep, 0,

taylororder}] /. ep -> h/c) // FullSimplify
(Series[v1[z] /. {a1 -> sol2[[1]], a2 -> sol2[[2]], a3 -> sol2[[3]],

b1 -> sol2[[4]], b2 -> sol2[[5]]}, {h, 0, 4}] // FullSimplify)
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