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Abstract: This study investigates personalized pricing with demand learning. We first encode
consumer-personalized feature information into high-dimensional vectors, then establish the relation-
ship between this feature vector and product demand using a logit model, and finally learn demand
parameters through historical transaction data. To address the balance between learning and revenue,
we introduce the Thompson Sampling algorithm. Considering the difficulty of Bayesian inference in
Thompson Sampling owing to high-dimensional feature vectors, we improve the basic Thompson
Sampling by approximating the likelihood function of the logit model with the Pólya-Gamma (PG)
distribution and by proposing a Thompson Sampling algorithm based on the PG distribution. To
validate the proposed algorithm’s effectiveness, we conduct experiments using both simulated data
and real loan data provided by the Columbia University Revenue Management Center. The study
results demonstrate that the Thompson Sampling algorithm based on the PG distribution proposed
outperforms traditional Laplace approximation methods regarding convergence speed and regret
value in both real and simulated data experiments. The real-time personalized pricing algorithm
developed here not only enriches the theoretical research of personalized dynamic pricing, but also
provides a theoretical basis and guidance for enterprises to implement personalized pricing.

Keywords: personalized dynamic pricing; demand learning; Thompson sampling algorithm; Bayesian
inference; Pólya-gamma distribution

MSC: 90B50

1. Introduction

In the past decade, the rapid development of information technology and the Internet
has facilitated online sellers in collecting an abundance of personalized information about
consumers, including addresses, educational backgrounds, consumption preferences, and
social media activity. For sellers, this information encapsulates numerous factors influenc-
ing consumer purchasing intentions. It thereby provides strong support for devising more
rational pricing policies. Nevertheless, the challenge lies in how the seller can capture the
impact of consumer personal features on product demand and, concurrently, leverage this
information in pricing to maximize revenue.

To address the above problem, we constructed a personalized dynamic pricing model
with demand learning. Specifically, the seller engages in a process of learning to com-
prehend the relationship between consumers’ personal features and product demands.
Subsequently, based on the learning results, the seller implements a distinct quoted price
(i.e., personalized pricing) for consumers with different features. Finally, sellers observe con-
sumers’ purchasing decisions and continue the process of demand learning. Although there
have been numerous research achievements in dynamic pricing with demand learning,
our problem exhibits two distinct characteristics. Firstly, we depart from the conventional
approach by associating consumer’s personalized characteristics with product demand,
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whereas previous studies have mainly focused on constructing demand models based on
product value perspectives or external factors influencing consumer purchasing behavior.
Secondly, our dynamic pricing does not entail temporal fluctuations in prices but rather
involves setting different prices for individual consumers, known as personalized pricing.

Personalized pricing, due to its significant unfairness as a form of first-degree price dis-
crimination, has sparked considerable controversy. However, numerous academic studies
suggest that personalized pricing yields favorable outcomes from the perspectives of firms,
consumers, and social welfare [1–3]. Dubé and Misra [4] showed that compared to uniform
pricing, firms that adopt personalized pricing experience a profit increase exceeding 10%.
From a redistributive perspective, personalized pricing proves advantageous for most
consumers. They further emphasized that overly restricting companies from utilizing data
for personalized pricing may harm consumer interests. Elmachtoub et al. [5] argued that
although implementing personalized dynamic pricing is expensive, it is more valuable than
uniform pricing. Kolbeinsson et al. [6] collaborated with European Galactic Air to provide
ancillaries at dynamic and personalized prices based on flight characteristics and customer
demands. The research findings revealed that this policy not only significantly increases
the airline’s revenue but also enhances customer satisfaction, achieving a win-win situation.
Kallus and Zhou [7] pointed out that personalized pricing generates more welfare benefits.
In real business practice, many firms have begun to adopt personalized pricing policies.
Expedia tailors have personalized travel product recommendations and price discounts for
each user based on their search history, browsing records, booking behavior, membership
level, and other personal information. Online retailers like Walmart adjust prices or offer
promotional strategies personalized to consumers based on their browsing history, search
records, purchase frequency, geographic location, and other information. In the insurance
and lending industries, personalized pricing has long been prevalent. When purchasing
insurance products, insurance companies determine premiums based on features such
as age, gender, health condition, occupation, geographic location, and insurance history.
Similarly, when you need a loan for purchasing a car, lending companies determine the
final loan interest rate based on your credit rating, credit history, loan amount, loan term,
income and employment status, Loan Prime Rate (LPR), and competitor rates. The subse-
quent problem description, presented in Section 3, is precisely based on applications in the
lending industry, and numerical experiments were conducted using real lending industry
data for analysis.

The key to personalized pricing is to gain insight into the relationship between con-
sumers’ features and their purchasing decisions. This necessitates continuous learning
on the part of sellers. To this end, we consider that a monopolist sells a product in a
finite horizon, where consumers arrive sequentially, and the seller can observe consumers’
characteristic information. We employ a logit model to describe the consumer’s decision-
making process. The model parameters capture the joint impact of consumer features
and prices on product demand. At the beginning of each period, the seller sets prices
based on arriving consumer features, observes sale outcomes, and updates the model
parameters using Bayesian rules. In this learning process, trying additional prices helps in
learning the true values of the parameters as soon as possible. However, this may result
in a partial loss of revenue. To strike a balance between learning and earning, we employ
the widely used Thompson Sampling (TS) algorithm. However, encoding consumer’s
personal features into a high-dimensional vector leads to a high-dimensional Bayesian
inference for the corresponding parameters, which is very challenging. To address this,
we introduce Pólya-Gamma latent variables and propose a TS algorithm based on the
Pólya-Gamma distribution.

This study’s main findings and contributions are threefold. First, we investigate the
dynamic pricing problem with demand learning. Compared with problems in the existing
literature, the problem in this study is more complex, mainly in the sense that the demand
function is jointly affected by consumers’ personal features and prices. Since the consumer’s
personal features are encoded as a high-dimensional vector, the demand learning in this
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study is a high-dimensional Bayesian inference problem, treated as a difficult problem in
academia. Second, we propose a personalized dynamic pricing algorithm with improved
TS. Compared with the general TS algorithm, the algorithm proposed in this study has
faster convergence and lower regret values. Finally, the personalized pricing strategy
studied in this study can provide useful lessons for business operations.

The remainder of this paper is organized as follows. Section 2 reviews the relevant
literature. Section 3 introduces the dynamic pricing model incorporating reference prices
and extends it to the case of uncertain demand, that is, dynamic pricing based on the refer-
ence effect and demand learning. Section 4 describes the approximate solution algorithm
for the proposed model. Section 5 presents numerical analyses and discussions. Section 6
concludes the study.

2. Related Literature

Our study relates to the literature on dynamic pricing with demand learning, person-
alized dynamic pricing, and the multi-armed bandit solution method.

Dynamic pricing with demand learning. Classical dynamic pricing models are built
upon deterministic demand functions, where the variables influencing demand and their
corresponding coefficients are known. However, in reality, accurately obtaining such
information is highly challenging. Therefore, dynamic pricing with demand learning
has consistently attracted the attention of numerous scholars in the fields of revenue
management and operation management. Den [8] provided a comprehensive review of
the origins, development, and future research directions of dynamic pricing with learning.
Methodologically, current research on dynamic pricing with demand learning can be
classified into two major categories. One involves traditional statistical methods such
as maximum likelihood estimation [9,10], least squares estimation [11], and Bayesian
estimation [12–14]. These methods’ main characteristic is a predetermined form of the
demand function. The sellers must learn the function’s parameters, so the methods are
often referred to as parametric demand learning. The form of the demand function depends
on the specific research question. Another category gaining popularity recently is machine
learning methods for demand estimation [15–17]. A substitution effect among multiple
products in the Fast-Moving Consumer Goods industry will significantly affect product
demand forecasting. Lee et al. [18] utilized the latest machine learning algorithms to
perform the selection of a multi-product demand prediction model that considers the
substitution effect. Cai et al. [19] used a deep learning method and demonstrated the
positive performance of a deep learning-based choice model with real data. Spiliotis
et al. [20] compared the differences between statistical and machine learning methods
in demand forecasting. Other research has combined demand learning with factors that
impose constraints on pricing optimization, such as reference effects [21,22], inventory
control [23], discounting [24], and assortment optimization [25].

Most of the above literature used price as the sole variable affecting demand. This study
incorporates both consumer’s personal characteristics and price into the factors influencing
demand; the consumer’s personal characteristics are encoded into a high-dimensional vector,
making the parameter estimation of the demand function more complicated.

Personalized dynamic pricing. Over the past decade, the rapid development of
industries such as information storage, cloud computing, and the Internet has provided
technological support for implementing personalized pricing. Many scholars have also
begun to research personalized pricing. Aydin and Ziya [1] assumed that consumers
provide a signal about their individual willingness to pay when they arrive to conduct
business and that firms can apply fully personalized pricing and partially personalized
pricing based on this signal. They found that in the fully personalized pricing model, the
optimal price is monotonic concerning the signal, while in the partially personalized pricing
model, the optimal price policy is of a threshold type. Chen et al. [26] investigated the
impact of consumer participation in identity management on firm profits, consumer surplus,
and social welfare when a firm implements personalized pricing. Steinberg [27] pointed
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out that firms utilizing big data for personalized pricing can increase social welfare and
contribute to a better state of affairs regarding both welfare and resource equality. Rhodes
and Zhou [28] explored the impact of personalized pricing on firms under different market
structures. They found that in a fixed market structure, personalized pricing intensifies
competition if there are many purchasing consumers in the market, thereby harming
company profits. When there are fewer purchasing consumers in the market, personalized
pricing is not advantageous for consumers. When the market structure is endogenous,
personalized pricing is always beneficial to consumers. While substantial research has
demonstrated the advantages of personalized pricing for consumers and social welfare,
concerns related to fairness and other aspects of business ethics arise because of severe
price discrimination. Seele et al. [29] provided an overview of the ethical challenges caused
by algorithm-based personalized pricing. In addressing the fairness of feature-based price
discrimination in a monopoly market, Das et al. [30] introduced a concept called α-fairness,
ensuring that individuals with similar characteristics face similar prices. Cohen et al. [31]
defined price fairness, demand fairness, consumer surplus fairness, and no-purchase
value fairness in price discrimination. They found that applying a moderate amount of
price fairness increases social welfare, while excessive implementation may lead to lower
welfare compared to not applying fairness. Additionally, imposing demand fairness or
consumer surplus fairness always reduces social welfare. Chen et al. [32] investigated the
implementation of personalized pricing from the perspective of privacy protection. To
mitigate the perceived unfairness among consumers because of personalized pricing, an
effective strategy is for firms to set a uniform product price while offering different coupons
to consumers, known as personalized promotions. Jagabathula et al. [33] represented
products as nodes in a directed acyclic graph, where the directed edges indicated consumer
preference order between two products. They constructed a non-parametric choice model
for consumers and proposed a back-to-back personalized promotion strategy based on
this model. Through testing on real datasets, the aforementioned personalized promotion
strategy was found to significantly increase the firm’s revenue. Hallikainen et al. [34] found
that personalized price promotions effectively alleviate the negative impact of consumers’
perceived cognitive effort on loyalty. In elucidating the basic purchase probability and
consumer trend probability, Baardman et al. [35] developed a new consumer trend demand
model, namely, the personalized demand model. They estimated the proposed demand
model using historical transaction data, and then established a personalized promotion
optimization model. The results revealed that personalized promotion strategies increased
the firm’s profit by 3–11%.

The above literature models personalized pricing from the perspective of willingness
to pay. This study additionally considered the impact of consumer’s personalized charac-
teristics on demand. Furthermore, we assumed that the relationship between personalized
features and demand is unknown.

Solution method of multi-armed bandit (MAB). The MAB problem refers to the chal-
lenge of selecting optimal actions to maximize cumulative rewards within limited periods,
with the core issue being the balance between exploration and exploitation. Recently,
the MAB framework has gained widespread application in various fields, such as recom-
mendation systems [36,37], healthcare [38], and dynamic pricing [39–42]. Currently, three
commonly used algorithms for solving the MAB problem are the ε-greedy algorithm, Upper
Confidence Bound (UCB) algorithm, and TS. The ε-greedy algorithm refers to an agent
randomly choosing a non-greedy action with a small probability ε (ε > 0) during decision
making (i.e., exploring with probability ε) and choosing a greedy action with a probability
of 1− ε (i.e., exploiting with probability 1− ε). However, this algorithm randomly selects a
non-greedy action with equal probability ε, which has some blindness and may overlook
actions with potentially higher rewards (i.e., actions chosen less frequently). Therefore,
scholars developed the UCB algorithm. This algorithm considers the sum of the current
action’s reward and uncertainty as the objective function for optimization. This encourages
the agent to choose actions with greater uncertainty during exploration. However, the
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UCB algorithm also has limitations, particularly in handling high-dimensional state spaces.
The third commonly used algorithm is TS. Compared to the first two algorithms, TS is
a random algorithm that updates the posterior distribution based on each action’s prior
distribution and observed data. Then, it samples a parameter from the posterior distri-
bution and chooses the optimal action based on this parameter. TS can fully utilize prior
knowledge and has lower computational complexity compared to the first two algorithms.
It has also received attention from many scholars. Ferreira et al. [43] considered a price-
based network revenue management problem, where a retailer sells a limited inventory of
multiple products over a finite period, and proposed a dynamic pricing algorithm based
on TS to learn unknown parameters in the demand model. Building on this, Ringbeck and
Huchzermeier [44] combined Gaussian processes with the TS algorithm to create a Bayesian
framework for demand learning. Miao and Chao [25] proposed a learning algorithm based
on TS to solve a joint assortment optimization and pricing problem.

In practical applications, agents often encounter contextual bandit problems, where
rewards depend not only on the selected actions, but also on contextual information from
the environment. Consequently, numerous scholars have studied algorithms for solving
contextual bandit problems. The most prominent focus has been on linear contextual
bandits, where rewards are linearly related to the actions and context. Li et al. [45] proposed
a LinUCB algorithm, which models rewards as a linear function of actions and context and
then selects the optimal action based on the UCB principle. The advantage of this algorithm
lies in its simplicity of computation and the ability to obtain rigorous theoretical guarantees.
However, it cannot handle nonlinear models. To address this limitation, Zhou et al. [46]
introduced the Neural UCB algorithm, which utilizes neural networks to model the reward
function, enabling it to adapt to various types of problems, especially more complex ones.
However, due to the significant computational resources required for training and inference
in neural networks, particularly when dealing with large-scale datasets, the Neural UCB
algorithm suffers from high computational complexity. Additionally, the performance of
the algorithm is noticeably affected by the hyperparameters in the neural network. When it
is challenging to describe the reward function using parameterized models, the Decision
Tree Bandit algorithm [47] offers a viable alternative. Its core idea is to use a decision
tree to model the relationship between contextual information and rewards and make
action selections based on this model. However, the limitation of this algorithm lies in
its sensitivity to the data distribution. If the data are noisy, this may lead to a decrease in
model performance.

We adopted TS to solve personalized dynamic pricing with demand learning. How-
ever, in this study’s context, consumers’ personal characteristics form a high-dimensional
vector, presenting a challenge to Bayesian inference. Improvements to the basic TS
are required.

3. Problem Description and Model Formulation

Consider a monopolist, hereafter referred to as the seller, that sells a product over
a horizon of length T. Consumers arrive sequentially, and only one consumer arrives
in each period. When a consumer arrives in period t, the seller observes d-dimensional
personalized features of the consumer, denoted by Zt = {zt1, zt2, . . . , ztd} ∈ Rd. We
assume that {Zt, t = 1, 2, . . . , T} are independent and identically distributed. For the
convenience of the subsequent explanations, we define the augmented feature vector
Xt = [1, zt1, . . . , ztd]

T ∈ Rd+1, where the first element represents the intercept term. Accord-
ingly, we denote the mean and covariance matrix of Xt by µ and Σ, where Σ = E[XtXT

t ]
is a symmetric and positive-definite matrix. In period t, the seller first chooses a price
pt ∈ [pmin, pmax] after observing Xt = xt, and then the consumer decides whether to
purchase the product. Consequently, demand Dt is jointly influenced by price pt and
feature vector xt. We assume that each consumer purchases at most one product. If the
consumer accepts the price pt, then Dt = 1; otherwise, Dt = 0. That is, the demand follows
a Bernoulli distribution.
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Following Ban and Keskin [48], we use the logit demand to describe a consumer’s
purchasing decisions,

Dt =

{
1 with probability eα·xt+(β·xt)pt

1+eα·xt+(β·xt)pt

0 with probability 1
1+eα·xt+(β·xt)pt

,
(1)

where α, β ∈ Rd+1 are vectors of the demand parameters that are fixed and unknown to
the seller.

Let θ := (α, β), and its range is a compact rectangle Θ in R2(d+1). Given θ ∈ Θ and xt,
the seller’s revenue in period t is

rt(pt, xt) = pt ·
eα·xt+(β·xt)pt

1 + eα·xt+(β·xt)pt
. (2)

The seller’s goal is to dynamically adjust the price pt to maximize total revenue over
the time horizon T. For the sake of analysis, we assume that the product cost is zero and
there are no stockouts.

The parameter θ is unknown, which poses a challenge to the seller’s pricing decision.
A common and feasible solution is to learn the parameter θ through price experiments.
Specifically, the seller has a prior belief of θ and sets the price pt based on observed
consumers’ personal features. Consumers decide whether to accept pt and make a purchase.
The seller then updates the belief of θ based on the consumer’s purchasing decision. We
assume that the seller employs the Bayesian update rule. Clearly, setting additional prices
(i.e., exploring) facilitates learning the true value of θ; however, this is impractical in actual
operations. On the one hand, the cost of conducting price experiments is high. On the other
hand, excessive exploration without fully leveraging current learning results can lead to
profit loss. Therefore, the seller must strike a balance between exploration and exploitation;
that is, the seller faces an MAB problem.

Currently, the primary common algorithms used to solve MAB problem are the ε-
greedy algorithm, Boltzmann exploration, pursuit, UCB algorithm, and TS algorithm. As
a stochastic Bayesian method, TS performs well in solving sequential decision problems;
therefore, we employed TS to solve the above personalized dynamic pricing problem.

4. Algorithm

In this section, we first introduce the main procedure of the TS algorithm used for
parameter learning. We then propose an improved TS algorithm to solve the previous
section’s problem.

4.1. Thompson Sampling Based on Laplace Approximation

TS can be traced back to 1933 when Thompson developed an optimization method to
allocate two drugs among different treatments in clinical trials [49]. As a stochastic Bayesian
method for solving sequential decision making, especially for its good performance in
solving contextual MAB problems, more scholars have progressively paid attention to the
TS algorithm in recent years.

In the problem setting here, the main procedure of the TS algorithm is as follows:
given the prior distribution of the parameter θ, in each period, the seller samples a θ̂ from
the posterior distribution. Subsequently, the seller calculates the optimal price pt based on
the principle of maximizing revenue; that is, pt = arg max

pt∈[pmin,pmax]
rt(θ̂, pt, xt). Finally, the

seller observes the realized demand at the price pt, and updates the posterior distribution of
θ according to the Bayesian rule. Note that the sampling in the first period was performed
based on the prior distribution. Algorithm 1 summarizes the above procedures in pseudo-
code form.
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Algorithm 1 TS

1: For t = 1, 2, · · · , T do
2: Sample θ̂

3: pt ← arg max
pt∈[pmin,pmax]

rt(θ̂, pt, xt)

4: Apply pt and observe Dt
5: θ̂←
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We assume that the prior distribution π(θ) of θ is a Gaussian distribution; that is,
π(θ) ∼ N(µ, Σ), where µ is the mean, and Σ is the covariance. According to Bayes’ rule,
the posterior distribution of θ in period t is

ft(θ|Ht−1 ) ∝ π(θ)∏t−1
τ=1

(eα·xτ+(β·xτ)pτ )
Dτ

1 + eα·xτ+(β·xτ)pτ
, (3)

where Ht−1 = {x1, . . . , xt−1, p1, . . . , pt−1, D1, . . . , Dt−1} is a historical dataset containing in-
formation about the features of the consumers who have arrived, historical price, and demand.

However, the logistic likelihood function is mathematically intractable, resulting in an
inability to solve Equation (3) explicitly. In fact, Bayesian inference on logistic models has
long been a recognized challenge in academia. Therefore, many scholars have developed
some approximate inference methods. The Laplace approximation (LA) is a widely used
method for approximating Bayesian inference [50].

The primary idea behind LA is to approximate the posterior distribution using a
multivariate Gaussian distribution. We define that

gt(θ) = log π(θ) + log ∏t−1
τ=1

(eα·xτ+(β·xτ)pτ )
Dτ

1 + eα·xτ+(β·xτ)pτ
. (4)

The mean of the above multivariate Gaussian distribution is µ̂t = argmax
θ

gt(θ), and

the covariance is Σ̂t = (−∇2gt(µ̂))
−1. That is, the posterior distribution is N(µ̂, Σ̂). Algo-

rithm 2 summarizes the TS algorithm based on the LA (i.e., LP-TS).

Algorithm 2 LP-TS

1: Input The mean µ and covariance Σ of the prior distribution, sales period T, historical dataset
H0 = Φ, upper price u, and lower price l
2: For t = 1, 2, · · · , T do
3: Observe the consumer’s feature vector Xt
4: Sample θ̂ from N(µ, Σ)

5: Compute the optimal price pt ← arg max
pt∈[pmin,pmax]

pt · eα̂·xt+(β̂·xt )pt

1+eα̂·xt+(β̂·xt )pt

6: Observe the relation of demand Dt

7: Update the posterior distribution µ← argmax
θ

gt−1(θ) , Σ← (−∇2 log gt−1(µ))
−1

8: Update the historical dataset Ht = Ht−1 ∪ {Xt, pt, Dt}

4.2. Thompson Sampling Based on Pólya-Gamma Distribution

Definition 1. Given b > 0 and c ∈
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, if the random variable W satisfies the Equation (5),
then W follows a Pólya-Gamma distribution with parameters b and c, denoted by W ∼ PG(b, c).

W =
1

2π2

∞

∑
k=1

Gk

(k− 1/2)2 + c2/(4π2)
, (5)

where Gk, k = 1, 2, · · · , are independently and identically distributed gamma random variables,
i.e., Gk ∼ Γ(b, 1).
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According to ref. [51], the PG distribution has the following properties:

(eψ)
a

(1 + eψ)b = 2−bekψ
∫ ∞

0
e
−ωψ2

2 h(ω)dω, (6)

where ψ ∈
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where 1 1( , , )t tu k k =  and 1( , )tdiag   = . This indicates that the posterior dis-

tribution is a multivariate conditional Gaussian distribution. Therefore, sampling from the 

posterior distribution ( , )θ ω D  can be realized in the following two steps: 

( ) (1, )θ θi iPG y  (9) 

( ) ( , ),θ ω,D N m V   (10) 

, b > 0, k = a− b/2, ω ∼ PG(b, 0), and h(ω) is the corresponding
probability density function (pdf). Let yt = (Xt, Xt pt), ψ = θyt; we can then write the
logistic likelihood function in period t as

Lt(θ) =
(eθyt−1)

Dt

1 + eθ·yt−1
∝ ekt(θyt−1)

∫ ∞

0
e
−ωt(θyt−1)

2

2 h(ωt; 1, 0)dωt, (7)

where kt = Dt − 1/2, and h(ωt; 1, 0) is the pdf of a PG distribution with parameters (1,0).
Therefore, given the latent variables ω = [ω1, · · · , ωt] and past demands D = [D1, · · · , Dt],
the posterior distribution of θ can be expressed as

π(θ|ω, D ) = π(θ)∏t
i=1 Li(θ|ωi ) ∝ π(θ)∏t

i=1 e
ωi
2 (θ·yt−ki/ωi)

2
∝ π(θ)e{

−1
2 (u−θy)Ω(u−θy)T}, (8)

where u = (k1/ω1, · · · ,kt/ωt) and Ω = diag(ω1, · · ·ωt). This indicates that the posterior
distribution is a multivariate conditional Gaussian distribution. Therefore, sampling from
the posterior distribution π(θ|ω, D ) can be realized in the following two steps:

(ωi |θ) ∼ PG(1, θyi) (9)

(θ|ω, D ) ∼ N(mω, Vω), (10)

with Vω = (YtΩtYT
t + Σ−1)

−1 and mω = Vω(YT
t K +Σ−1µ), where Yt = [y1, y2, · · · , yt] and

K = [k1, k2, · · · , kt]
T .

Based on the above analysis, we constructed the TS algorithm based on the PG
distribution (PG-TS), which is described in Algorithm 3.

Algorithm 3 PG-TS

1: Input The mean µ and covariance Σ of the prior distribution, sales period T, historical dataset
H0 = Φ, upper price u, and lower price l
2: When t = 1 do
3: Observe the consumer’s feature vector Xt
4: Sample θ̂ from N(µ, Σ)

5: Compute the optimal price pt ← arg max
pt∈[pmin,pmax]

pt · eα̂·x+(β̂·x)pt

1+eα̂·x+(β̂·x)pt

6: Observe the relationship of demand Dt
7: Update the historical dataset Ht = {Xt, pt, Dt}
8: For t = 2 do
9: Observe the consumer’s feature vector Xt and θ̂0

t ← θ̂t−1
10: For m = 1, 2, · · ·M do
11: For i = 1, 2, · · · , t− 1 do
12: Sample ωi

∣∣∣θ̂m−1
t ∼ PG(1, θ̂m−1

t yi)

13: Ωt−1 = diag(ω1, ω2, · · · , ωt−1), Kt−1 = [D1 − (1/2), · · · , Dt−1 − (1/2)]T

14: Vω ← (Yt−1Ωt−1YT
t−1 + Σ−1)

−1 , mω ← Vω(YT
t−1Kt−1 + Σ−1µ)

15: θ̂m
t |Dt−1 , ω ∼ N(Vω , mω)

16: θ̂t ← θ̂M
t

17: Compute the optimal price pt ← arg max
pt∈[pmin,pmax]

pt · eα̂·x+(β̂·x)pt

1+eα̂·x+(β̂·x)pt

18: Observe the relationship of demand Dt
19: Update the historical dataset Ht = Ht−1 ∪ {Xt, pt, Dt}
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5. Computational Results

To verify the effectiveness of PG-TS, the performances of Algorithms 2 and 3 are
analyzed in this section by comparing the simulated and real datasets, respectively. The
performance of the Bayesian learning algorithm can be quantified using the regret value.
The goal of the algorithm is to minimize the cumulative regret value over the sales cycle
after T periods of iterations. The regret value is represented by the difference between
the sales profit when the parameters are known and the sales profit obtained when the
algorithm’s learning requirements are implemented. When assuming that p∗t is the optimal
price adopted when the parameters are known and pt denotes the price derived from the
learning algorithm, the regret value is defined as follows:

regret =
T

∑
i=1

rt(θ, p∗t , Xt)− rt(θ, pt, Xt). (11)

5.1. Simulate Experiment

In this section, we consider two scenarios: a discrete and a continuous price experiment.
To better validate the effectiveness of the proposed algorithm in this paper, in addition to
the TS-LP algorithm, we also included the LogisticUCB [52] and the BootstrappedTS [53]
algorithm for comparison. However, since these two algorithms are mainly applied to
MAB problems with discrete action spaces, we present only the comparison results for
discrete pricing experiments.

In the continuous price experiment, the feature vector of consumer t is xt ∈ R6, where
xt1 = 1 denotes the intercept term. [xt2, · · · , xt6] are independent and identically distributed
random variables obeying a Gaussian distribution with mean [−3,−3,−3,−3,−3] and
covariance I5. We generated 1000 random data points from the above Gaussian distribution
as the feature set, and we assumed that the true values of the unknown parameter θ were
[1.311, 0.715,−1.545,−0.008, 0.621, 0.720, 0.266, 0.109, 0.004,−0.175, 0.433]. The range of the
price was from 0 to 300.

In the discrete price experiment, we assumed that [xt2, · · · , xt6], obeying a Gaussian
distribution with mean [0, 0, 0, 0, 0] and variance 0.25I5. Similarly, we generated 1000 pieces
of random data obeying the above Gaussian distribution. The true values of the unknown
parameter θ were [0.833, 0.196, 0.356,−2.343,−1.085, 0.560, 0.939,−0.978, 0.503,0.406, 0.323].
The set of feasible prices was [20, 40, 60, 80, 100].

To test the performance of the PG-TS algorithm under different PG sampling pa-
rameters (i.e., M), we selected five different values of M, which were [1,50,100,150,200].
Figures 1 and 2 show the results of the numerical experiments.
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The figures show that in both the discrete price experiment and the continuous price
experiment, the cumulative regret values of the PG-TS algorithm that we proposed were
significantly lower than those of the LP-TS, LogisticUCB, and BootstrappedTS algorithms.
Moreover, it can achieve convergence in a shorter period. Even when the worst M value
was selected, PG-TS could converge quickly, and the cumulative regret values were much
lower than those of the LP-TS algorithm. LP struggles to converge to the global optimum
of the logistic likelihood function; thus, the LP-TS algorithm failed to reach convergence
in both the discrete price experiment and the continuous price experiment. In addition,
the convergence speed and regret value of the TS-PG algorithm did not differ much for
different values of M. This shows that the performance of the algorithm proposed here is
more stable.

5.2. Real Experiment

In this experiment, we used an online loan dataset (i.e., CPRM-12-001: On-Line Auto
Lending) provided by the Center for Revenue Management and Pricing at Columbia
University’s Graduate School of Business to test the constructed algorithm. This dataset is
widely used in dynamic pricing studies [48,54]. This dataset comprises 208,085 automobile
loan applications received by an online lending company in the United States, spanning
from July 2002 to November 2004. Each record includes the loan type applied for and
the borrower’s personal information, such as loan amount, borrower’s credit score, Prime
Rate, state of residence, and competitor interest rates, among other information. The online
lending company determines an interest rate quote based on the borrower’s application
information. Upon receiving the quote, the borrower decides whether to accept or reject it.
The dataset includes the interest rate offered by the lending company for each borrower
and the borrower’s decision (i.e., accept or reject).

To correspond with the personalized dynamic pricing problem described in this study,
we represented the price as the net present value of the repayments. Specifically, the price
was a function of the monthly repayment amount, interest rate, and loan period, which
was expressed as

p = Monthly Payment×
Term

∑
i=1

(1 + rate)−i − Loan Amount (12)

For the sake of computational convenience, we selected the first 2000 records from
the new car loan data in California, with a loan term of 36 months. In determining the
feature vector, we followed the method proposed by Ban and Keskin [48]. This involves
adding an intercept term to the feature data, standardizing the data, and then using a
logistic regression model for feature selection. The model’s regression coefficients were
considered the true values for the parameter θ. Notably, using estimated parameters as
true values may introduce some noise. However, the main purpose of this study was to
validate the constructed algorithm in solving real problems; therefore, the above treatment
is acceptable. The final element of the features includes the borrower’s credit score (FICO
score), loan amount, loan prime rate, and competitor’s interest rate, with θ values being
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[−2.914, 0.918, 0.584, 1.837,−0.691, 3.719,−0.116, 4.546, 0.356]. Similarly to the simulated
experiment, we selected five different values for M. Figure 3 shows the experimental results.
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Figure 3 indicates that in the real dataset, the PG-TS algorithm demonstrates significant
advantages over the LP-TS algorithm, both in terms of cumulative regret and convergence
speed. When M = 100, the performance of the PG-TS algorithm is optimal. Moreover,
regardless of the value of M, the regret values of the PG-TS algorithm consistently remain
lower than those of the LP-TS algorithm.

5.3. Managerial Insights

In this section, we discuss the managerial insights that the findings of our study may
have, aiming to assist firms in better operation and management practices.

Association between Consumer Features and Demand. Our research suggests a close
association between consumers’ personalized features and product demands. Therefore,
it is imperative for firms to diligently collect and analyze consumers’ personalized char-
acteristic information, incorporating it into their pricing decision-making considerations.
It is crucial to note that while collecting data, businesses must strictly adhere to data
privacy and compliance regulations to protect consumers’ privacy rights and personal
information security.

Data-Driven Decision Making. In practical operations, firms should utilize algorithms
to analyze and process data, enabling them to more scientifically and effectively formulate
pricing policies based on the analysis results. This approach helps in reducing decision-
making risks and uncertainties. Furthermore, algorithmic pricing offers the advantage of
real-time price adjustments, effectively addressing market changes.

Establishing Personalized Marketing Strategies. Personalized marketing not only
meets the diverse needs of different consumers, enhancing consumer satisfaction, but
also enables firms to generate more revenue, achieving a win–win situation for both the
enterprise and consumers. To address the issue of consumers’ low acceptance of direct
personalized pricing, firms can adopt indirect personalized pricing methods, such as
personalized promotions. For instance, offering coupons of different denominations to
different consumers and providing subsidies based on individual consumer features.

6. Conclusions

In both the corporate and academic realms, personalized dynamic pricing has had
a profound impact. The judicious application of personalized pricing strategies not only
increases corporate profits, but also enhances social welfare and improves consumer satis-
faction. This article details the construction of a logit demand model to study personalized
dynamic pricing strategies for individual consumers. We proposed a Thompson sampling
algorithm based on the Polya-Gamma distribution to address the demand learning chal-
lenge in personalized pricing. Specifically, this study employed this algorithm to learn
unknown parameters in the personalized demand model, establishing a Bayesian frame-
work based on the PG distribution and providing an effective method for estimating the
posterior distribution of the logistic model after parameter estimation.
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Compared to the more popular methods such as LogisticUCB, BootstrappedTS, and
the traditional Laplace approximation method, the PG-TS algorithm proposed in this
paper performs well in balancing exploration and exploitation. However, it also has some
limitations. Firstly, there are still challenges in terms of computational complexity. As the
dimensionality of the feature vector increases and the PG sampling parameter M grows
larger, the required computational time significantly increases. Secondly, the proposed
algorithm is dependent on the prior distribution of parameters, and appropriate prior
distributions contribute to better results. Thirdly, it lacks some degree of generalization
ability. When faced with multinomial logistic demand models for multiple products, the
proposed algorithm appears to be somewhat inadequate.

This study suggests several avenues for future research. First, the assumption of
known prior distributions for unknown parameters may not hold in practice; future re-
search could explore effective ways to learn demand in personalized pricing scenarios
when the prior distribution is unknown or misspecified. Second, we did not consider dif-
ferences in fairness perception among consumers resulting from personalized pricing and
the consequent changes in demand. Future research could incorporate consumer fairness
perception factors into the demand model, developing personalized pricing models and
learning algorithms that consider the impact of consumer fairness perception. Addition-
ally, in the real world, companies often operate in competitive environments, and future
research could explore the personalized dynamic pricing issues for firms in competitive
markets. Finally, future research could extend to multi-product category optimization,
where consumer demand is influenced not only by prices and individual characteristics,
but also by interchangeable product features.
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