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1. Introduction

Zadeh [1] pioneered the concept of fuzzy sets and laid the foundation for fuzzy math-
ematics. Following this, Liu [2] introduced the notions of fuzzy invariant subgroups and
fuzzy ideals and subsequently discussed several fundamental properties. Ahsan et al. [3–6]
conducted extensive research on the structures and properties of fuzzy semirings, integrating
fuzzy concepts into semiring structures and catalyzing further research in this area. Liu [7]
provided precise definitions of the operations of L-fuzzy ideals in rings. Consequently, nu-
merous researchers have delved into the studies of fuzzy prime ideals in rings. Swamy [8]
introduced the concepts of fuzzy ideals and fuzzy prime ideals of rings with truth values in a
complete lattice. Furthermore, Malik and Mordeson [9] undertook a thorough examination to
characterize all fuzzy prime ideals and confirmed the key properties associated with them.
Nanda [10,11] contributed by defining fuzzy fields and subsequently introduced the notions
of fuzzy algebras and fuzzy ideals over fuzzy fields. Biswas [12] enhanced the definitions of
fuzzy fields and fuzzy linear spaces. Subsequently, Kuraoka and Kuroki [13] introduced fuzzy
quotient rings derived from fuzzy ideals and investigated the relationship between fuzzy
quotient rings and fuzzy ideals. Gu and Lu [14] raised concerns regarding the validity of
Nanda’s definition of fuzzy fields, prompting redefinitions of fuzzy fields and fuzzy algebras.
Then, they proved that the homomorphic image is a fuzzy algebra. Moreover, researchers
have delved into the studies of fuzzy quotient algebras. In subsequent works, scholars pri-
marily focused on exploring fuzzy ideals in semigroups [15–18]. Zhou, Chen, and Chang [19]
introduced the concepts of L-fuzzy ideals and L-fuzzy subalgebras. Additionally, Addis,
Kausar, and Munir [20] provided the concept of homomorphic kernels on fuzzy rings and
proved three homomorphism theorems. Korma, Parimi, and Kifetew [21] conducted a study
on the properties of homomorphisms on fuzzy lattices and their quotients. As a result, three
isomorphism theorems regarding the quotients of fuzzy lattices were developed by them.

Adak, Nilkamal, and Barman [22] conducted a research on fuzzy semiprime ideals of
ordered semigroups. Hamidi and Borumand [23] explored the properties of EQ-algebras.
Kumduang and Chinram [24] investigated fuzzy ideals and fuzzy congruences in Menger
algebras. Furthermore, various scholars [25–27] have examined alternative approaches to
analyzing distinct algebraic structures. Since associative algebra is a very important class of
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algebraic structures, its theories can be applied to group, ring, and semiring structures. It is
an important foundation of modern mathematics. On the other hand, algebraic structures
hold a significant position in mathematics with wide-ranging applications in many disciplines
such as theoretical physics, computer sciences, information sciences, coding theories, and
so on. The study of fuzzy associative algebra is helpful to better understand other fuzzy
algebraic structure theories. This serves as ample motivation for us to revisit assorted concepts
and findings from the realms of abstract algebras, thereby extending their applications to the
broader framework of fuzzy sets.

In this paper, we provide the preliminaries in Section 2. In Section 3, we introduce the
concepts of fuzzy subalgebras and fuzzy ideals, and then we discuss their properties. The
quotients constructed by fuzzy ideals are presented in Section 4. In Section 5, we provide
three isomorphism theorems of fuzzy algebras.

2. Preliminaries

In this section, we provide fundamental theoretical knowledge, serving as the basis
for subsequent sections.

Definition 1 ([28]). Let (L,≤) be a poset. A poset (L,≤,∧,∨) is a lattice if any two elements a, b
have a least upper bound a ∨ b and a greatest lower bound a ∧ b, which we denote as L for short.
A lattice L is called a complete lattice if each of its subsets S has ∨S and ∧S, where ∨S and ∧S
represent the least upper bound and the greatest lower bound of all elements in S, respectively. In
particular, ∨∅ and ∧∅ represent the smallest element 0 and the largest element 1 of L, respectively.

Definition 2 ([29]). Let X be a nonempty set and L be a complete lattice. A fuzzy subset of X is a
function µ : X → L, where µ is called the membership function, X is called the carrier of µ, L is
called the truth set of µ, and for all x belonging to X, µ(x) is called the degree of membership of x.

We use FL(X) = {µ | µ : X → L} to represent the set of all membership functions on X.

Definition 3 ([29]). We define operations ∧, ∨ on FL(X) as follows:

µ(x) ∨ µ′(x) = max
{

µ(x),µ′(x)
}

,

µ(x) ∧ µ′(x) = min
{

µ(x),µ′(x)
}

,

µ̄(x) = 1 − µ(x),

for all x ∈ X, µ, µ′∈FL(X).

Definition 4 ([30]). Let A be a linear space on a field F, in which the multiplication operation is
defined as (α, β) → αβ, and it satisfies the axioms

(1) α(β + γ) = αβ + αγ,
(2) (α + β)γ = αγ + βγ,
(3) (kα)β = α(kβ) = k(αβ),
(4) α(βγ) = (αβ)γ,

for all α, β, γ ∈ A, k ∈ F; then, A is called an associative algebra over F.

Definition 5. Let A and B be associative algebras. Then, B is a subalgebra of A if B ⊆ A, and
every fundamental operation of B is the restriction of the corresponding operation of A.

3. Fuzzy Subalgebras and Fuzzy Ideals

In this section, we first give the concept of fuzzy associative algebras. Secondly, we
define fuzzy subalgebras, fuzzy homomorphisms, and fuzzy ideals in fuzzy associative
algebras and prove that the intersections of fuzzy subalgebras are fuzzy subalgebras, the
intersections of fuzzy ideals are fuzzy ideals, and both the homomorphic images and
preimages of fuzzy ideals are fuzzy ideals.
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Definition 6. Let A be an associative algebra over the number field F and L be a complete lattice.
µA ∈ FL(A) is a fuzzy algebra on A, satisfying

(1) µA(a1)∧µA(a2)≤µA(a1 + a2),
(2) µA(a1)∧µA(a2)≤µA(a1 · a2),
(3) µA(a1)≤µA(k · a1),
(4) µA(e) = 1;

for all a1, a2∈A, k ∈ F, e is a constant in A, and we denote it as (A, µA).

Remark 1. If A is a ring, then it satisfies (1), (2), and (4) of Definition 6; if A is a group, then it
satisfies (1), (4) or (2), (4) of Definition 6; if A is a semiring, then it satisfies (1), (2), and (4) of
Definition 6, and it is a commutative semigroup under addition; and if A is an associative algebra,
then it is a commutative group under addition, and the associative algebra has one more scalar
multiplication operation than a semiring.

Definition 7. Let A be an associative algebra, B be a subalgebra of A, L be a complete lattice, and
µA|B ∈ FL(A); then, (B, µA|B) is a fuzzy subalgebra of (A, µA).

Definition 8. Let (A, µA), (B, µB) be fuzzy algebras and a function α : A → B be a homomor-
phism from A to B. A mapping α : (A, µA) → (B, µB) is called a fuzzy homomorphism from
(A, µA) to (B, µB) if

µA(a) ≤ µB
(
α(a)

)
,

for all a ∈ A.

Example 1. The addition, multiplication, and scalar multiplication of polynomial sets over a field F
form associative algebras.

Let f1(x) = a1x2 + b1x+ c1 and f2(x) = a2x2 + b2x+ c2; then,
(

f1(x), µ1
)

and
(

f2(x), µ2
)

are fuzzy algebras. Suppose that α :
(

f1(x), µ1
)
→

(
f2(x), µ2

)
and µ2( f2(x)) = 1.5

(
µ1

(
f1(x)

))
,

for any ax2 + bx + c ∈ f1(x) and µ2
(
α(ax2 + bx + c)

)
= 1.5µ1

(
ax2 + bx + c

)
; thus, α is a

fuzzy homomorphism.

Remark 2. (1) A fuzzy homomorphism α : (A, µA) → (B, µB) is called a fuzzy monomorphism
from (A, µA) to (B, µB) if α : A → B is an injection;

(2) A fuzzy homomorphism α : (A, µA) → (B, µB) is called a fuzzy epimorphism from
(A, µA) to (B, µB) if α : A → B is a surjection;

(3) A fuzzy homomorphism α : (A, µA) → (B, µB) is called a fuzzy isomorphism from
(A, µA) to (B, µB) if α : A → B is a bijection.

Remark 3. (1) For all a ∈ A, µB
(
α(a)

)
=

∨
µA

(
α−1(α(a)

))
if a mapping α : (A, µA) →

(B, µB) is a fuzzy homomorphism;
(2) For all a ∈ A, µB(α(a)) = µA(a) if a mapping α : (A, µA) → (B, µB) is a fuzzy

isomorphism.

Definition 9. Let A be an associative algebra, R be a subalgebra of A, L be a complete lattice, and
a fuzzy set of R be a function µR : R → L. Then,

(1) (R, µR) is a fuzzy left ideal of (A, µA) if µR(a · b) ≥ µR(b) for all a ∈ A, b ∈ R;
(2) (R, µR) is a fuzzy right ideal of (A, µA) if µR(a · b) ≥ µR(a) for all a ∈ R, b ∈ A;
(3) (R, µR) is a fuzzy ideal of (A, µA) if µR(a · b) ≥ µR(a) ∨ µR(b) for all a ∈ R, b ∈ R.

Theorem 1. Let (A, µA) be a fuzzy algebra and {(Bi, µBi )|i ∈ I} be a set of fuzzy subalgebras of
(A, µA). Then,

∧
i∈I

(Bi, µBi ) is a fuzzy subalgebra of (A, µA).
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Proof. It is obvious that
∧
i∈I

Bi ⊂ A and
∧
i∈I

Bi is a subalgebra of A. Then, we have

∧
i∈I

µBi (ai + bi) ≥
∧
i∈I

(
µBi (ai) ∧ µBi (bi)

)
=

∧
i∈I

µBi (ai) ∧
∧
i∈I

µBi (bi),

∧
i∈I

µBi (ai · bi) ≥
∧
i∈I

(
µBi (ai) ∧ µBi (bi)

)
=

∧
i∈I

µBi (ai) ∧
∧
i∈I

µBi (bi),

and ∧
i∈I

µBi (kai) = µB1(ka1) ∧ . . . ∧ µBn(kan)

≥ µB1(a1) ∧ . . . ∧ µBn(an)

=
∧
i∈I

µBi (ai);

for all ai, bi ∈ Bi, k ∈ F, and
∧
i∈I

µBi (e) = 1.

In conclusion,
∧
i∈I

(Bi, µBi ) is a fuzzy subalgebra of (A, µA).

Theorem 2. Let (A, µA) be a fuzzy algebra and {(Ri, µRi )|i ∈ I} be a set of fuzzy ideals of
(A, µA). Then,

∧
i∈I

(Ri, µRi ) is a fuzzy ideal of (A, µA).

Proof. It is easy to obtain that
∧
i∈I

Ri is a subalgebra of A. Then, we have

∧
i∈I

µRi (ai · bi) ≥
∧
i∈I

(
µRi (ai) ∨ µRi (bi)

)
=

∧
i∈I

µRi (ai) ∨
∧
i∈I

µRi (bi),

for all ai, bi∈Ri.
In conclusion,

∧
i∈I

(Ri, µRi ) is a fuzzy ideal of (A, µA).

Remark 4. Let (A, µA) be a fuzzy algebra and {(Bi, µBi )|i ∈ I} be a set of fuzzy subalgebras of
(A, µA) [respectively, let {(Ri, µRi )|i ∈ I} be a set of fuzzy ideals of (A, µA)]. Then,

∨
i∈I

(Bi, µBi )

may not be a fuzzy subalgebra of (A, µA) [respectively,
∨
i∈I

(Ri, µRi ) may not be a fuzzy ideal of

(A, µA)].

Example 2. Consider polynomial algebras in Example 1, where addition, multiplication, and scalar
multiplication are defined in a conventional manner. Consider that two of these fuzzy subalgebras,
(F1, µ1) and (F2, µ2) are sets of fuzzy polynomial algebras:

(1) (F1, µ1): The fuzzy degree of the fuzzy subsets of all constant polynomials is 1; the fuzzy
degree of the other polynomials is 0.

(2) (F2, µ2): The fuzzy degree of fuzzy subsets of all linear polynomials is 1; the fuzzy degree
of the other polynomials is 0.

Obviously, both (F1, µ1) and (F2, µ2) are fuzzy subalgebras. However, (F1, µ1) ∨ (F2, µ2) is
not a fuzzy subalgebra; for example, the fuzzy degree of quadratic polynomial x2 is 0 in (F1, µ1) ∨
(F2, µ2); however, x2 is neither a constant polynomial nor a linear polynomial.
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Remark 5. One can provide an example of fuzzy ideals by following the construction method
described in Example 2.

Theorem 3. Let (A, µA), (B, µB) be fuzzy algebras, f : (A, µA) → (B, µB) be a fuzzy epimor-
phism, and (R, µR) be a fuzzy ideal of (A, µA). Then, ( f (R), µ f (R)) is a fuzzy ideal of (B, µB).

Proof. It is easy to obtain that f (R) is a subalgebra of B.
Suppose that a, b ∈R; thus, f (a), f (b) ∈ f (R). Then,

µ f (R)
(

f (a) · f (b)
)
=

∨
f (z)= f (a)· f (b)

µR(z)

=
∨

z=a·b
µR(a · b)

≥
∨

z=a·b

(
µR(a) ∨ µR(b)

)
=

(∨
µR(a)

)
∨
(∨

µR(b)
)

= µ f (R)
(

f (a)
)
∨ µ f (R)

(
f (b)

)
.

In conclusion, ( f (R), µ f (R)) is a fuzzy ideal of (B, µB).

Theorem 4. Let (A, µA), (B, µB) be fuzzy algebras, f : (A, µA) → (B, µB) be a fuzzy homo-
morphism, and (R, µR) be a fuzzy ideal of (B, µB). Then, ( f−1(R), µ f−1(R)) is a fuzzy ideal of
(A, µA).

Proof. It is easy to obtain that f−1(R) is a subalgebra of A.
Suppose that a, b ∈ f−1(R); thus, f (a), f (b) ∈ R. Then, from Remark 3(1), we have∨

µ f−1(R)(a · b) = µR
(

f (a · b)
)

= µR
(

f (a) · f (b)
)

≥ µR
(

f (a)
)
∨ µR

(
f (b)

)
=

∨
µ f−1(R)(a) ∨

∨
µ f−1(R)(b).

In conclusion, ( f−1(R), µ f−1(R)) is a fuzzy ideal of (A, µA).

4. Quotients of Fuzzy Algebras

In this section, we define the quotients constructed by fuzzy ideals and establish the exis-
tences of fuzzy homomorphisms and fuzzy isomorphisms between these quotient structures.

Definition 10. Let (A, µA) be a fuzzy algebra and (R, µR) be a fuzzy ideal of (A, µA). We define
an addition, a multiplication, and a scalar multiplication operations on A/R as follows:

(1) (a · R) + (b · R) = (a + b) · R,
(2) (a · R) · (b · R) = (a · b) · R,
(3) k(a · R) = (ka) · R,

for all a, b ∈ A, k ∈ F.

Theorem 5. Let (A, µA) be a fuzzy algebra, (R, µR) be a fuzzy ideal of (A, µA). There exists an
a ∈ A such that µA(a) = 1, µA/R is defined by

µA/R(a′/R) =

 1, a′ ∈ R,
sup
b∈R

µA(a′ · b), a′ /∈ R, ;

then, (A/R, µA/R) is a fuzzy algebra, which is called a fuzzy quotient algebra of (A, µA).
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Remark 6. First, we prove that the operations on A/R are well-defined.
Let a′, a′′, b′, b′′ ∈ A, r ∈ R, a′ · r and b′ · r belong to the same class, a′′ · r and b′′ · r belong

to the same class, thus,
µA(a′ · r) = µA(b′ · r), µA(a′′ · r) = µA(b′′ · r),

sup
r∈R

µA(a′ · r) = sup
r∈R

µA(b′ · r), and sup
r∈R

µA(a′′ · r) = sup
r∈R

µA(b′′ · r).

(1) If a′, b′ ∈ R, a′′, b′′ ∈ R, then
µA

(
(a′ · a′′) · r

)
= 1 = µA

(
(b′ · b′′) · r

)
.

(2) If a′, b′ /∈ R, a′′, b′′ /∈ R, then
sup
r∈R

µA
(
(a′ · a′′) · r

)
= sup

r∈R
µA

(
a′ · (a′′ · r)

)
= sup

a′′ ·r=r̄,
r̄∈R

µA(a′ · r̄),

sup
r∈R

µA
(
(b′ · b′′) · r

)
= sup

r∈R
µA

(
b′ · (b′′ · r)

)
= sup

b′′ ·r= ¯̄r,
¯̄r∈R

µA(b′ · ¯̄r),

and a′ · r̄ ∈ a′ ·R, b′ · ¯̄r ∈ b′ ·R , then sup
a′′·r=r̄,

r̄∈R

µA(a′ · r̄) = sup
b′′·r=¯̄r,

¯̄r∈R

µA(b′ · ¯̄r), thus, sup
r∈R

µA
(
(a′ · a′′) · r

)
= sup

r∈R
µA

(
(b′ · b′′) · r

)
, we can obtain that the multiplication operation is well-defined. In the same

way, we can obtain that addition and scalar multiplication operations are well-defined.
Next, we prove Theorem 5.

Proof. Let us prove that the result under multiplication is true.
Suppose that a1, a2 ∈ A.
(1) If a1, a2 ∈ R, then

µA/R
(
(a1 · R) · (a2 · R)

)
= µA/R

(
(a1 · a2) · R

)
= 1;

thus, µA/R(a1 · R) ∧ µA/R(a2 · R) ≤ µA/R((a1 · R) · (a2 · R)).
(2) If a1 ∈ R, a2 /∈ R, then

µA/R
(
(a1 · R) · (a2 · R)

)
= sup

b∈R
µA

(
(a1 · a2) · b

)
≥ sup

a1∈R,a2 /∈R
µA(a1 · a2

)
∧ sup

b∈R
µA(b)

≥ sup
a1∈R,a2 /∈R

µA(a1 · a2) ∧ 1

= µA/R(a2 · R).

In addition, µA/R(a1 · R) = 1; then, µA/R(a1 · R) ∧ µA/R(a2 · R) = µA/R(a2 · R). Thus,
µA/R(a1 · R) ∧ µA/R(a2 · R) ≤ µA/R

(
(a1 · R) · (a2 · R)

)
.

In conclusion, the result under multiplication is true.
Similarly, we can prove that the results under addition and scalar multiplication are

true.
Thus, (A/R, µA/R) is a fuzzy algebra.

Remark 7. The definition of µA/R in Theorem 5 conforms to the Zadeh extension principle.

Theorem 6. Let (A, µA) be a fuzzy algebra; there exists an a ∈ A such that µA(a) = 1. Let
(R, µR) be a fuzzy ideal of (A, µA) and (A/R, µA/R) be a fuzzy quotient algebra of (A, µA). µA/R
is defined by

µA/R(a′/R) =

 1, a′ ∈ R,
sup
b∈R

µA(a′ · b), a′ /∈ R, .

We define a mapping as follows:

v : (A, µA) → (A/R, µA/R), v(a′) = a′/R,
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for all a′ ∈ A; then, v is a fuzzy homomorphism.

Proof. First, it is easy to obtain that v is a homomorphism.
Next, we prove that v is a fuzzy homomorphism.
(1) If a1, a2∈ R, then

µA/R
(
(a1 · R) · (a2 · R)

)
= µA/R

(
(a1 · a2) · R

)
= 1.

Thus, µA(a1) ∧ µA(a2) ≤ µA/R
(
(a1 · R) · (a2 · R)

)
.

(2) If a1 ∈ R, a2 /∈ R, then

µA/R
(
(a1 · R) · (a2 · R)

)
= sup

b∈R
µA

(
(a1 · a2) · b

)
≥ sup

a1∈R
µA(a1) ∧ sup

a2 /∈R
µA(a2) ∧ sup

b∈R
µA(b)

= sup
a1∈R

µA(a1) ∧ sup
a2 /∈R

µA(a2) ∧ 1

≥ µA(a1) ∧ µA(a2).

Thus, µA(a1) ∧ µA(a2) ≤ µA/R
(
(a1 · R) · (a2 · R)

)
.

In conclusion, the result under multiplication is true. Similarly, we can prove that the
results under addition and scalar multiplication are true.

Hence, v is a fuzzy homomorphism.

Theorem 7. Let (A, µA), (B, µB) be fuzzy algebras, f ′ : (A, µA) → (B, µB) be a fuzzy ho-
momorphism, (R, µR) and (R′, µR′) be fuzzy ideals of (A, µA) and (B, µB), respectively, and
(A/R, µA/R) and (B/R′, µB/R′) be fuzzy quotient algebras of (A, µA) and (B, µB), respectively.
A mapping f : (A/R, µA/R) → (B/R′, µB/R′) is defined as follows:

f (a · R) = b · R′, f (R) ⊆ R′, f (a · R) = f (a) · R,

for all a · R ∈ A/R, b · R′ ∈ B/R′, µB/R′ is defined by

µB/R′(b/R′) =

 1, b ∈ R′,
sup

f (a/R)=b/R′
µA(a · R), b /∈ R′, ;

then, f is a fuzzy homomorphism.

(A, µA)
f ′−−−−→ (B, µB)

α

y yβ

(A/R, µA/R)
f−−−−→ (B/R′, µB/R′)

Proof. First, it is easy to obtain that f is a homomorphism.
Next, we prove that f is a fuzzy homomorphism.
Let us prove that the result under multiplication is true.
(1) If b ∈ R′, then µB/R′(b · R′) = 1; thus, µA/R(a · R)≤ µB/R′(b · R′).
(2) If b /∈ R′, then

µB/R′(b · R′) = sup
f (a·R)=b·R′

µA/R(a · R)

= ∨
f (a·R)=b·R′

µA/R(a · R)

≥ µA/R(a · R).
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In conclusion, the result under multiplication is true.
Similarly, we can prove that the results under addition and scalar multiplication

are true.
Hence, f is a fuzzy homomorphism.

Theorem 8. Let (A, µA), (B, µB) be fuzzy algebras, f : (A, µA) → (B, µB) be a fuzzy homomor-
phism, and (R, µR) be a fuzzy ideal of (B, µB). Thus, ( f−1(R), µ f−1(R)) is a fuzzy ideal of (A, µA),
and (A/ f−1(R), µ1) is a fuzzy quotient algebra. We define a mapping as follows:

α : (A/ f−1(R), µ1) → (B/R, µ2), α
(
a/ f−1(R)

)
= b/R,

for all a/ f−1(R) ∈ A/ f−1(R), and µ2 is defined as follows:

µ2(b/R) =


1, b ∈ R,

sup
α(a′/ f−1(R))=b′/R,b′∈R

µ1
(
(a · a′) · f−1(R)

)
, b /∈ R, .

If b ∈ R, then µ1
(
α−1(b/R)

)
= 1, and there exists an a′′/ f−1(R) ∈ A/ f−1(R) such that

µ1
(
a′′/ f−1(R)

)
= 1; then, α is a fuzzy isomorphism.

Proof. First, we prove that α is a homomorphism.
Suppose that a1/ f−1(R), a2/ f−1(R),(a1 · a2)/ f−1(R),(a1 + a2)/ f−1(R) ∈ A/ f−1(R),

b1/R, b2/R, (b1 +b2)/R,(b1 ·b2)/R,b/R, b∗/R ∈ B/R,α
(
a1/ f−1(R)

)
= b1 ·R, α

(
a2/ f−1(R)

)
=

b2 · R,α
(
(a1 · a2)/ f−1(R)

)
= b · R, α

(
(a1 + a2)/ f−1(R)

)
= b∗ · R, b1 · b2 = b, b1 + b2 = b∗; then,

we have

α
((

a1/ f−1(R)
)
·
(
a2/ f−1(R)

))
= α

(
(a1 · a2)/ f−1(R)

)
= b · R

= (b1 · b2) · R

= (b1 · R) · (b2 · R)

= α
(
a1/ f−1(R)

)
· α

(
a2/ f−1(R)

)
,

α
((

a1/ f−1(R)
)
+

(
a2/ f−1(R)

))
= α

(
(a1 + a2)/ f−1(R)

)
= b∗ · R

= (b1 + b2) · R

= (b1 · R) + (b2 · R)

= α
(
a1/ f−1(R)

)
+ α

(
a2/ f−1(R)

)
,

and
α
(

k
(
a1/ f−1(R)

))
= α

(
k
(
a1/ f−1(R)

))
= (kb1) · R

= kα
(
a1/ f−1(R)

)
.

Thus, α is a homomorphism.
Next, we prove that α is a bijection.
(i) For any a1/ f−1(R), a2/ f−1(R) ∈ A/ f−1(R), if a1/ f−1(R) ̸= a2/ f−1(R), then

α
(
a1/ f−1(R)

)
̸= α

(
a2/ f−1(R)

)
; thus, α is an injection.

(ii) For any b/R ∈ B/R, there exists an a1/ f−1(R) ∈ A/ f−1(R) such that α
(
a1/ f−1(R)

)
=

b1/R; thus, α is a surjection.
From the above proof, we can obtain that α is an isomorphism.
Finally, we prove that α is a fuzzy isomorphism.
Suppose that b1, b2 ∈ B; then,
(1) If b1, b2 ∈ R, then
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µ2
(
(b1 · R) · (b2 · R)

)
= µ2

(
(b1 · b2) · R

)
= 1 = µ1

(
(a1 · a2) · f−1(R)

)
.

Thus, µ2
(
(b1 · R) · (b2 · R)

)
= µ1

(
(a1 · a2) · f−1(R)

)
.

(2) If b1 ∈ R, b2 /∈ R, since (A/ f−1(R), µ1
)

is a fuzzy algebra, we have
µ1

(
(a1 · a2 · a′) · f−1(R)

)
≥ µ1

(
a1 · f−1(R)

)
∧ µ1

(
a2 · f−1(R)

)
∧ µ1

(
a′ · f−1(R)

)
; thus,

µ2
(
(b1 · R) · (b2 · R)

)
= µ2

(
(b1 · b2) · R

)
= sup µ1

(
(a1 · a2 · a′) · f−1(R)

)
≥ sup

α
(

a1· f−1(R)
)
=b1·R,

µ1
(
a1 · f−1(R)

)
∧ sup

α
(

a2· f−1(R)
)
=b2·R

µ1
(
a2 · f−1(R)

)
∧ sup

α
(

a′ · f−1(R)
)
=b′ ·R,b′∈R

µ1
(
a′ · f−1(R)

)
= 1 ∧ sup

α
(

a2· f−1(R)
)
=b2·R

µ1
(
a2 · f−1(R)

)
∧ 1

= sup
α
(

a2· f−1(R)
)
=b2·R

µ1
(
a2 · f−1(R)

)
≥ µ1

(
a2 · f−1(R)

)
.

From the definition of fuzzy algebras, we have µ1
(
(a1 · a2) · f−1(R)

)
≥ µ1

(
a1 ·

f−1(R)
)
∧ µ1

(
a2 · f−1(R)

)
; thus, µ1

(
(a1 · a2) · f−1(R)

)
≤ µ2

(
(b1 · R) · (b2 · R)

)
.

Conversely, whether b1 · b2 ∈ R or b1 · b2 /∈ R, there always exists an (a1 · a2) · f−1(R) ∈
A/ f−1(R) such that µ1

(
(a1 · a2) · f−1(R)

)
≤ µ2

(
(b1 · R) · (b2 · R)

)
.

In conclusion, the result under multiplication is true.
Similarly, we can prove that the results under addition and scalar multiplication

are true.
In conclusion, α is a fuzzy isomorphism.

5. Homomorphism Theorems

In this section, we give the concept of homomorphic kernels and prove that they are
fuzzy ideals. In addition, three homomorphism theorems are proved.

Definition 11. Let (A,µA),(B,µB) be fuzzy algebras, α : (A, µA) → (B, µB) be a fuzzy homo-
morphism, and L be a complete lattice. Then, the kernel of α is defined as follows:

Kerα = {a ∈ A | α(a) = 0}, µ : Kerα → L, µ(a) = 1,
which we denote as (Kerα,µ) for short.

Example 3. Let (A,µA),(B,µB) be fuzzy matrices, α : (A, µA) → (B, µB), and for all (a, µa),
(c, µc)∈ (A, µA), α

(
(a, µa)

)
= (a, µa) · (c, µc) = (b, µb); then, Kerα = {(c, µc) ∈ (A, µA)|(a, µa) ·

(c, µc) = 0}, and the 0 here represents the null matrix.

Theorem 9. (Kerα,µ) is a fuzzy ideal of (A, µA).

Proof. Suppose that a, b ∈ Kerα; then,

µ(a · b) ≥ µ(a) ∧ µ(b) = 1 ∧ 1 = 1 = µ(a) ∨ µ(b).

Thus, (Kerα,µ) is a fuzzy ideal of (A, µA).
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Theorem 10. Let (A, µA), (B, µB) be fuzzy algebras and α : (A, µA) → (B, µB) be a fuzzy
epimorphism. There exists an a ∈ A such that µA(a) = 1, (A/Kerα,µA/Kerα) is a fuzzy quotient
algebra of (A, µA), and µA/Kerα is defined by

µA/Kerα(a′/Kerα) =

 1, a′ ∈ a/Kerα,
sup

b∈a/Kerα

µA(a′ · b), a′ /∈ a/Kerα, .

If a′ ∈ a/Kerα, then, µB(α(a′)) = 1. v : (A, µA) → (A/Kerα,µA/Kerα) is a fuzzy
homomorphism, and v(a′) = a′/Kerα for all a′ ∈ A. We define a mapping as follows:

β:(A/Kerα,µA/Kerα) → (B,µB), β
(
a′/Kerα

)
= α

(
a′
)
,

for all a′ ∈ A; then, β is a fuzzy isomorphism.

(A, µA)
α //

ν ((

(B, µB)77

β

(A/Kerα, µA/Kerα)

Proof. Suppose that a1, a2 ∈ A. We can obtain that β is a homomorphism using Theorem 6.

We only need to prove that β is a bijection and µB

(
β
(
(a1 · a2)/Kerα

))
= µA/Kerα

(
(a1 ·

a2)/Kerα
)
.

First, we prove that β is a bijection.
(i) For any a1, a2 ∈ A, if a1/Kerα ̸= a2/Kerα, then, α(a1) ̸= α(a2); thus, β is an injec-

tion.
(ii) For any c ∈ B, since α is surjective, there exists an a′ ∈ A such that α(a′) = c. Since

a′/Kerα ∈ A/Kerα, then β(a′/Kerα) = α(a′) = c; thus, β is a surjection.

Next, we prove that µB

(
β
(
(a1 · a2)/Kerα

))
= µA/Kerα

(
(a1 · a2)/Kerα

)
.

(1) If a1, a2 ∈ a/Kerα, then µA/Kerα

(
(a1 ·Kerα)·(a2 ·Kerα)

)
= µA/Kerα

(
(a1 · a2)·Kerα

)
=

1. In this case, µB
(
α(a1 · a2)

)
= 1.

Thus, µA/Kerα

(
(a1 · a2) · Kerα

)
=µB

(
β
(
(a1 · a2) · Kerα

))
.

(2) If a1 ∈ a/Kerα, a2 /∈ a/Kerα, then

µA/Kerα

(
(a1 · Kerα) · (a2 · Kerα)

)
= µA/Kerα

(
(a1 · a2) · Kerα

)
= sup

b∈a/Kerα

µA
(
(a1 · a2) · b

)
≥ sup

a1∈a/Kerα

µA(a1) ∧ sup
a2 /∈a/Kerα

µA(a2) ∧ sup
b∈a/Kerα

µA(b)

= sup
a1∈a/Kerα

µA(a1) ∧ sup
a2 /∈a/Kerα

µA(a2) ∧ 1

≥ µA(a1) ∧ µA(a2).

For any a1, a2 ∈ A,

µB
(
α(a1 · a2)

)
= ∨µA

(
α−1(α(a1 · a2)

))
≥ µA(a1) ∧ µA(a2);

then, µA/Kerα

(
(a1 · a2) · Kerα

)
≤µB

(
β
(
(a1 · a2) · Kerα

))
.
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Let β′ : (B, µB) → (A/Kerα, µA/Kerα), and β′(α(a′)) = a′/Kerα for all a′ ∈ A.
(3) If a1, a2 ∈ a/Kerα, then the process of the proof is similar to (1).
(4) If a1 ∈ a/Kerα, a2 /∈ a/Kerα, then

µA/Kerα

(
(a1 · Kerα) · (a2 · Kerα)

)
= µA/Kerα

(
(a1 · a2) · Kerα

)
= sup

b∈a/Kerα

µA((a1 · a2) · b)

≥ sup
a1∈a/Kerα

µA(a1) ∧ sup
a2 /∈a/Kerα

µA(a2) ∧ sup
b∈a/Kerα

µA(b)

= 1 ∧ sup
a2 /∈a/Kerα

µA(a2) ∧ 1

≥ µA(a2).

From the definition of µB, µB
(
α(a1 · a2)

)
≥ µA(a1) ∧ µA(a2), we have

µB

(
β
(
(a1 · a2) · Kerα

))
= µB

(
α(a1 · a2)

)
≤ µA/Kerα

(
(a1 · a2) · Kerα

)
.

Hence, µB

(
β
(
(a1 · a2) · Kerα

))
= µA/Kerα

(
(a1 · a2) · Kerα

)
.

In conclusion, the result under multiplication is true. Similarly, we can prove that the
results under addition and scalar multiplication are true; thus, β is a fuzzy isomorphism.

Theorem 11. Let (A, µA) be a fuzzy algebra, (R1, µR1) and (R2, µR2) be fuzzy ideals of (A, µA),
(R2, µR2) be a fuzzy subalgebra of (R1, µR1), (A/R1, µ1) and (A/R2, µ2) be fuzzy quotient al-
gebras of (A, µA),

(
(A/R2)/(R1/R2), µ3

)
be a fuzzy quotient algebra of (A/R2, µ2). There

exists an (a′′/R2)/(R1/R2) ∈ (A/R2)/(R1/R2) such that µ3
(
(a′′/R2)/(R1/R2)

)
= 1, µ1 is

defined as follows:

µ1(a/R1) =


1, a ∈ (a′′/R2)/(R1/R2),

sup
a′∈(a′′/R2)/(R1/R2)

µ3

((
(a · a′)/R2

)
/(R1/R2)

)
, a /∈ (a′′/R2)/(R1/R2), .

We define a mapping as follows:
α :

(
(A/R2)/(R1/R2), µ3

)
→ (A/R1, µ1), α

(
(a/R2)/(R1/R2)

)
= a/R1,

for all (a/R2)/(R1/R2) ∈ (A/R2)/(R1/R2); then, α is a fuzzy isomorphism.

Proof. For any a1, a2 ∈ A, a1/R1, a2/R1 ∈ A/R1,(a1/R2)/(R1/R2),(a2/R2)/(R1/R2) ∈
(A/R2)/(R1/R2), we have α

(
(a1/R2)/(R1/R2)

)
= α

(
(a2/R2)/(R1/R2)

)
⇔ a1/R1 =

a2/R1; thus, α is a well-defined bijection.
Similarly, we can obtain that α is a homomorphism using Theorem 6; thus, α is an

isomorphism.
Next, we prove that α is a fuzzy isomorphism.
(1) If a1, a2 ∈ (a′′/R2)/(R1/R2), then

µ1
(
(a1 · R1) · (a2 · R1)

)
= µ1

(
(a1 · a2) · R1

)
= 1 = µ3

((
(a1 · a2)/R2

)
/(R1/R2)

)
.

Thus, µ1
(
(a1 · R1) · (a2 · R1)

)
= µ3

((
(a1 · a2)/R2

)
/(R1/R2)

)
.

(2) If a1 ∈ (a′′/R2)/(R1/R2), a2 /∈ (a′′/R2)/(R1/R2), since
(
(A/R2)/(R1/R2), µ3

)
is a fuzzy algebra, we have µ3

((
(a1 · a2 · a′)/R2

)
/(R1/R2)

)
≥ µ3

(
(a1/R2)/(R1/R2)

)
∧
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µ3
(
(a2/R2)/(R1/R2)

)
∧ µ3

(
(a′/R2)/(R1/R2)

)
; thus,

µ1((a1 · R1) · (a2 · R1)) = µ1((a1 · a2) · R1)

= sup
a′∈(a′′/R2)/(R1/R2)

µ3

((
(a1 · a2 · a′)/R2

)
/(R1/R2)

)
≥ sup

a1∈(a′′/R2)/(R1/R2)

µ3
(
(a1/R2)/(R1/R2)

)
∧ sup

a2 /∈(a′′/R2)/(R1/R2)

µ3
(
(a2/R2)/(R1/R2)

)
∧ sup

a′∈(a′′/R2)/(R1/R2)

µ3
(
(a′/R2)/(R1/R2)

)
= sup

a1∈(a′′/R2)/(R1/R2)

µ3
(
(a1/R2)/(R1/R2)

)
∧ sup

a2 /∈(a′′/R2)/(R1/R2)

µ3
(
(a2/R2)/(R1/R2)

)
∧ 1

= sup
a1∈(a′′/R2)/(R1/R2)

µ3
(
(a1/R2)/(R1/R2)

)
∧ sup

a2 /∈(a′′/R2)/(R1/R2)

µ3
(
(a2/R2)/(R1/R2)

)
≥ µ3

(
(a1/R2)/(R1/R2)

)
∧ µ3

(
(a2/R2)/(R1/R2)

)
.

Thus, µ3
(
(a1 · R2)/(R1/R2)

)
∧ µ3

(
(a2 · R2)/(R1/R2)

)
≤ µ1

(
(a1 · a2)/R1

)
.

Conversely, whether a1 · a2 ∈ (a′′/R2)/(R1/R2) or a1 · a2 /∈ (a′′/R2)/(R1/R2), there

always exists an a ∈ (a′′/R2)/(R1/R2) such that µ1(a/R1) = µ1
(
(a1 · a2)/R1

)
= µ3

((
(a1 ·

a2)/R2
)
/(R1/R2)

)
.

In conclusion, the result under multiplication is true. Similarly, we can prove that the
results under addition and scalar multiplication are true.

Hence, α is a fuzzy isomorphism.

Theorem 12. Let (A, µA) be a fuzzy algebra, (H, µH) be a fuzzy algebra of (A, µA), and (R, µR)
be a fuzzy ideal of (A, µA); then, (HR/R, µ4) and (H/H ∩ R, µ5) are fuzzy quotient algebras.
We define a mapping as follows:

α′ : (HR/R, µ4) → (H/H ∩ R, µ5), α(hr/r) = h/h ∩ r,
for all hr/r ∈ HR/R, there exists an h′′r/r ∈ HR/R such that µ4(h′′r/r) = 1, and µ5(h/h ∩ r)
is defined by

µ5(h/h ∩ r) =

 1, h ∈ h′′r/r,
sup

h′∈h′′r/r
µ4

(
(hr · h′r)/r

)
, h /∈ h′′r/r, ;

then, similar to the proof of Theorem 11, we can obtain that α′ is a fuzzy isomorphism.

6. Conclusions

In this paper, we discussed the properties of fuzzy ideals and quotients of fuzzy asso-
ciative algebras. In Section 3, we provided the concepts of fuzzy associative algebras, fuzzy
homomorphisms, and fuzzy ideals over a common number field. In Theorems 1 and 2,
we proved that the intersections of the subalgebras were fuzzy subalgebras and the in-
tersections of fuzzy ideals were fuzzy ideals. In Theorems 3 and 4, we showed that if
f : (A, µA) → (B, µB) is a fuzzy epimorphism, then the homomorphic images and preim-
ages of fuzzy ideals are fuzzy ideals. In Section 4, we defined an addition, a multiplication,
and a scalar multiplication operation on quotient structures constructed by fuzzy ideals. We
proved that the quotient structures created by fuzzy ideals were fuzzy algebras and there
were fuzzy homomorphisms between fuzzy algebras and its fuzzy quotient algebras. In
Theorem 7, we proved that if (R, µR) and (R′, µR′) are fuzzy ideals of (A, µA) and (B, µB),
respectively, then f : (A/R, µA/R) → (B/R′, µB/R′) is a fuzzy homomorphism. In Section 5,
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we defined the concepts of kernels in fuzzy homomorphisms, and in Theorem 9, we proved
that the kernels were fuzzy ideals. In particular, we proved that if α : (A, µA) → (B, µB) is
a fuzzy epimorphism, then A/Kerα is isomorphic to (B, µB). Moreover, we proved two
other homomorphism theorems.

This work helps us to better understand other specific fuzzy algebra structure theories
and provides important theoretical support for the study of other algebraic theories. On
this basis, the classification and representation of fuzzy associative algebras can be studied
in the future.
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