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Abstract: Let n > m be positive integers. Polynomials of the form zn ± zm ± 1 are called Borwein
trinomials. Using an old result of Bohl, we derive explicit formulas for the number of roots of a
Borwein trinomial inside the unit circle |z| < 1. Based on this, we determine all Borwein trinomials
that have a complex Pisot number as a root. There are exactly 29 such trinomials.
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1. Introduction

A real algebraic integer α > 1 is called a Pisot number after [1,2], if all the algebraic
conjugates of α over the field of rational numbers Q (other than α itself) are of absolute
value < 1. Pisot numbers attract a lot of attention in the study of number expansions with
algebraic number bases [3,4], substitution tilings [5–7], integer sequences with particular
regard to linear recurrences [8–10], distributions of the fractional parts of the powers of real
numbers [11,12] and many other areas [13,14].

Recently, there has been a surge in interest in complex-base number expansions [15–18]:
in the distributions of the powers of algebraic numbers [19,20]; in the complex plane C
with respect to the Gaussian lattice Z[i] = {a + bi : a, b ∈ Z, i2 = −1}; and in complex
algebraic integers with special multiplicative properties [21–24]. In these kinds of problems,
the complex analogues of the Pisot numbers in C play the same pivotal role as the Pisot
numbers in R. Recall that an algebraic number β ∈ C \R, |β| > 1 is called a complex Pisot
number if all of its algebraic conjugates β′ /∈ {β, β̄} satisfy |β′| < 1. Complex Pisot numbers
were considered first by Kelly and Samet [25,26]. The smallest complex Pisot numbers
were identified by Chamfy [27]; later, Garth [28,29] significantly expanded Chamfy’s list.
Nonetheless, recent research has increased the general interest in the spectra of complex
Pisot numbers.

In the present paper, we are interested in complex Pisot numbers that originate
from the simplest possible polynomials, namely Borwein trinomials. If the polynomial
f (z) ∈ Z[z]

f (z) = anzn + · · ·+ a1z + a0, ana0 6= 0 (1)

(1) has exactly three or four nonzero terms, then it is called a trinomial or a quadrinomial,
respectively. The polynomials that have all their coefficients aj ∈ {−1, 0, 1} are called
Borwein polynomials (in honor of the late P. Borwein, as in [30]). Thus, Borwein trinomials
are polynomials of the form zn ± zm ± 1. For example, z9 − z5 + 1 is a Borwein trinomial.
The main result of our paper is Theorem 1.

Theorem 1. Any Borwein trinomial that has a complex Pisot number as its root is of the form
± f (±z), where f (z) is one of the 17 polynomials listed in Table 1.
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Table 1. Representative Borwein trinomials that have a complex Pisot number as their root.

z3 + z + 1 z6 − z2 + 1
z3 − z2 + 1 z6 + z4 + 1
z4 + z + 1 z6 + z5 + 1
z4 + z2 − 1 z7 + z5 + 1
z4 + z3 + 1 z7 − z6 + 1
z5 + z + 1 z8 + z6 − 1
z5 − z2 + 1 z8 + z7 + 1
z5 + z3 + 1 z10 + z8 + 1
z5 − z4 + 1

All the polynomials in Table 1 are irreducible, except for z5 + z + 1, z7 + z5 + 1,
z8 + z7 + 1, and z10 + z8 + 1, which are all divisible by z2 + z + 1. In comparison, all
Borwein trinomials and quadrinomials that give a rise to real Pisot numbers were essentially
identified in [31] (after taking into account the irreducibility theorem of Ljunggren [32]).
The proof of Theorem 1 is based on the following result.

Theorem 2. Let n > m be positive integers. All Borwein trinomials f (z) = zn ± zm ± 1 with at
most two roots inside the unit disc |z| < 1 are given in Table 2.

Table 2. Representative Borwein trinomials with at most 2 zeros inside the open unit disk |z| < 1.
Only one polynomial out of ± f (±z) is shown.

N(f ) = 1 N(f ) = 2 N(f ) = 2

z2 + z− 1 z4 + z2 − 1 z3 + z2 + 1
z3 + z2 − 1 z4 − z2 − 1 z3 − z + 1
z3 + z + 1 z6 + z4 − 1 z4 + z3 + 1
z4 + z− 1 z6 − z4 − 1 z4 + z + 1
z5 + z− 1 z6 + z2 + 1 z5 + z4 + 1

z6 + z2 − 1 z5 − z3 + 1
z8 + z2 − 1 z5 + z2 + 1
z8 − z2 − 1 z5 − z + 1
z10 + z2 − 1 z6 + z + 1
z10 + z2 + 1 z7 + z2 + 1

z7 − z + 1
z8 + z + 1

We also note that Borwein trinomials appear to have no multiple roots in C (see
Proposition 2).

More generally, the number of zeros of a Borwein trinomial or a Borwein quadrinomial
is interesting in the context of the distribution of zeros of polynomials with small coeffi-
cients [30]. For this, let us state the definition for the zero number N( f ) of a polynomial
f (z). First, recall that f (z) splits over the field of complex numbers C into

f (z) = an(z− α1)(z− α2) · · · (z− αn),

where the complex zeros α1, α2, . . . , αn ∈ C of f (z) are not necessarily distinct. The zero
counting functions with respect to the unit circle are introduced through the formulas

N( f ) = #{j, 1 6 j 6 n : |αj| < 1}

and
U( f ) = #{j, 1 6 j 6 n : |αj| = 1},
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where the zeros are counted with the multiplicities. The reciprocal polynomial f ∗(z) is
defined by

f ∗(z) = zn f (1/z) = a0zn + a1zn−1 + · · ·+ an−1z + an.

Note that
N( f ∗) = #{j, 1 6 j 6 n : |αj| > 1}.

Hence, one always has that

N( f ) + N( f ∗) + U( f ) = n.

A complex number with absolute value 1 is called a unimodular number. Note that
every root of unity is a unimodular number. However, not every unimodular number is a
root of unity, since eni 6= 1 for every positive integer n.

We derive Theorem 2 from Proposition 3, which gives explicit formulas for N( f ) for
any Borwein trinomial f (z). Finally, Proposition 3 is derived from an old result of Bohl (see
Theorem 3).

Previous work on the smallest complex Pisot numbers [27–29] was based on the
complicated computation of the coefficients of Taylor–Maclaurin series of bounded ana-
lytic functions (Schur functions), a method pioneered by Dufresnoy and Pisot [1,2]. Our
new contribution to expand the list of known complex Pisot numbers is based on Bohl’s
formula [33,34] (discussed below in the next section).

The paper is organized as follows. In Section 2, we prove Proposition 3 and Theorems
1 and 2. The irreducibility of Borwein trinomials is considered in Section 3. We explicitly
describe irreducible Borwein trinomials (see Corollary 4). This result has already been proven
by Ljunggren (see Theorem 3 in [35]). Nevertheless, we give an alternative proof based on
Proposition 3.

2. Proofs of Theorems

Let x be a real number. Recall that bxc denotes the largest rational integer that is less
than or equal to x. Similarly, dxe denotes the smallest rational integer that is greater than
or equal to x. We will need the following basic properties of bxc and dxe, which follow
directly from the definitions of these functions.

Proposition 1. The following statements are true.

(i) For any real number x, bxc 6 x 6 dxe.
(ii) For any real number x, the equalities dxe = −b−xc and bxc = −d−xe hold.
(iii) For any real numbers a and b, a < b, the interval (a, b) contains exactly dbe − bac − 1

rational integers.

The main tool in the proof of Theorem 2 is the following result due to Bohl: for a
modern formulation, see the expository note [34] (also formulated as Theorem 3.2 in [36]).

Theorem 3 (Bohl’s theorem, [33,36]). Let f (z) = zn + pzm + q be a trinomial, where p, q ∈ C
and m and n are coprime positive integers such that n > m. Assume that, for a real number
v > 0, there exists a triangle with edge lengths vn, |p|vm, and |q|. Let α = ∠(|p|vm, |q|) and
β = ∠(vn, |q|). Then, the number of roots of f (z) that lie in the open disc |z| < v is given by the
number of integers located in the open interval (C f − δ f , C f + δ f ), where

C f =
n(π + arg(p)− arg(q))−m(π − arg(q))

2π

and
δ f =

nα + mβ

2π
.
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Note that if f (z) is a polynomial such that f (0) 6= 0 and ` is a positive integer, then
N( f (z`)) = `N( f (z)).

Proposition 2. Let n > m be positive integers and a, b ∈ {±1}. Then, the polynomial zn + azm +
b has no multiple roots in C.

Proof of Proposition 2. For a contradiction, assume that z0 ∈ C is a multiple root of
f (z) = zn + azm + b. Then, f (z0) = f ′(z0) = 0. Since f ′(z) = nzn−1 + amzm−1 =
zm−1(nzn−m + am), we have that zn−m

0 = −am/n and |z0|n−m = m/n < 1. Hence, |z0| < 1.
On the other hand, f ′(z0) = 0 implies that zn

0 = −am/nzm
0 . Substituting this into f (z0) =

zn
0 + azm

0 + b = 0 yields −am/nzm
0 + azm

0 + b = 0. Hence, zm
0 = −bn/(a(n − m)) and

|z0|m = n/(n− m) > 1. Therefore, |z0| > 1, which contradicts the previously obtained
inequality |z0| < 1.

Proposition 3. Let n > m be coprime positive integers. Then,

N(zn + zm + 1) = n−m− 1− 2
⌊

n− 2m
3

⌋
,

N(zn + zm − 1) = 2
⌈

n + m
6

⌉
− 1,

N(zn − zm + 1) = 2
⌈

n + 4m
6

⌉
−m− 1,

N(zn − zm − 1) = n− 2
⌊

2n−m
6

⌋
− 1.

Proof of Proposition 3. We will apply Theorem 3 to the polynomial f (z) = zn + pzm + q,
where p = ±1, q = ±1, and v = 1. Note that, in Theorem 3, the triangle with edge
lengths vn = 1, |p|vm = 1, and |q| = 1 is an equilateral triangle. Hence, α = β = π/3 and
δ f = (nα + mβ)/(2π) = (n + m)/6. By Theorem 3, N( f ) equals the number of integers
located in the open interval (C f − δ f , C f + δ f ), where

C f =
n(π + arg(p)− arg(q))−m(π − arg(q))

2π
.

We will consider only the case f (z) = zn + zm + 1. The remaining formulas for N( f )
in Proposition 3 can be obtained completely analogously.

Let f (z) = zn + zm + 1. Then, p = q = 1 and arg(p) = arg(q) = 0. Hence, C f =
(n−m)/2. By Theorem 3, N( f ) equals the number of integers located in the open interval
(C f − δ f , C f + δ f ) = ((n− 2m)/3, (2n−m)/3). Hence, in view of Proposition 1 (iii),

N( f ) =
⌈

2n−m
3

⌉
−
⌊

n− 2m
3

⌋
− 1.

Note that (2n−m)/3 = n−m− (n− 2m)/3. Then, in view of Proposition 1 (ii),

N( f ) =
⌈

n−m− n− 2m
3

⌉
−
⌊

n− 2m
3

⌋
− 1

= n−m− 1 +
⌈
−n− 2m

3

⌉
−
⌊

n− 2m
3

⌋
= n−m− 1− 2

⌊
n− 2m

3

⌋
.

The reciprocal polynomial (zn ± zm ± 1)∗ is of the form ±zn ± zn−m + 1. Therefore,
Proposition 3 implies the following corollary.



Mathematics 2024, 12, 1129 5 of 10

Corollary 1. Let n > m be coprime positive integers. Then,

N((zn + zm + 1)∗) = 2
⌈

n + m
3

⌉
−m− 1,

N((zn + zm − 1)∗) = n− 2
⌊

n + m
6

⌋
− 1,

N((zn − zm + 1)∗) = 2
⌈

5n− 4m
6

⌉
− n + m− 1,

N((zn − zm − 1)∗) = 2
⌈

2n−m
6

⌉
− 1.

Note that for f (z) = zn ± zm ± 1, N( f ∗) equals the number of roots of f (z) that lie
strictly outside the unit circle |z| = 1. Now, in view of Proposition 3, Corollary 1, and
the formula

N( f ) + N( f ∗) + U( f ) = n

we can determine the number of unimodular roots of f (z).

Corollary 2. Let n > m be coprime positive integers. Then,

U(zn + zm + 1) = 2
(

1−
(⌈

n + m
3

⌉
−
⌊

n + m
3

⌋))
,

U(zn + zm − 1) = 2
(

1−
(⌈

n + m
6

⌉
−
⌊

n + m
6

⌋))
,

U(zn − zm + 1) = 2
(

1−
(⌈

n + 4m
6

⌉
−
⌊

n + 4m
6

⌋))
,

U(zn − zm − 1) = 2
(

1−
(⌈

2n−m
6

⌉
−
⌊

2n−m
6

⌋))
.

Proof of Corollary 2. We will consider only the case f (z) = zn + zm + 1. The remaining
formulas for U( f ) can be obtained completely analogously.

Let f (z) = zn + zm + 1. By Proposition 3 and Corollary 1,

N( f ) = n−m− 1− 2
⌊

n− 2m
3

⌋
and N( f ∗) = 2

⌈
n + m

3

⌉
−m− 1.

Hence, the formula N( f ) + N( f ∗) + U( f ) = n implies

U( f ) = n− N( f )− N( f ∗) = n−
(

n−m− 1− 2
⌊

n− 2m
3

⌋)
−
(

2
⌈

n + m
3

⌉
−m− 1

)
= 2m + 2 + 2

⌊
n− 2m

3

⌋
− 2
⌈

n + m
3

⌉
= 2m + 2 + 2

⌊
n + m

3
−m

⌋
− 2
⌈

n + m
3

⌉
= 2 + 2

⌊
n + m

3

⌋
− 2
⌈

n + m
3

⌉
= 2

(
1−

(⌈
n + m

3

⌉
−
⌊

n + m
3

⌋))
.

The following corollary has already been proven by Ljunggren (see Theorem 3 in [35]).
Nevertheless, we give an alternative proof of this result.
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Corollary 3. Let n > m be coprime positive integers.

1. The polynomial f (z) = zn + zm + 1 has a unimodular root if and only if n + m is divisible
by 3. Furthermore, if n + m is divisible by 3, then f (z) = (z2 + z + 1)g(z), where the
polynomial g(z) has no unimodular roots.

2. The polynomial f (z) = zn + zm − 1 has a unimodular root if and only if n + m is divisible
by 6. Furthermore, if n + m is divisible by 6, then f (z) = (z2 − z + 1)g(z), where the
polynomial g(z) has no unimodular roots.

3. The polynomial f (z) = zn − zm + 1 has a unimodular root if and only if n + 4m is divisible
by 6. Furthermore, if n + 4m is divisible by 6, then f (z) = (z2 − z + 1)g(z), where the
polynomial g(z) has no unimodular roots.

4. The polynomial f (z) = zn − zm − 1 has a unimodular root if and only if 2n−m is divisible
by 6. Furthermore, if 2n − m is divisible by 6, then f (z) = (z2 − z + 1)g(z), where the
polynomial g(z) has no unimodular roots.

Note that the polynomial g(z) in this corollary is irreducible (see Theorem 4).

Proof of Corollary 3. The first part of every proposition follows directly from Corollary 2.
1. Assume that n + m is divisible by 3. According to Corollary 2, the trinomial

f (z) = zn + zm + 1 has precisely two unimodular roots. It suffices to show that ζ = e
2πi

3 is
a root of f (z) (indeed, if f (ζ) = 0, then f

(
ζ̄
)
= f (ζ) = 0, so that ζ and ζ̄ = e−

2πi
3 are the

only unimodular roots of f (z) and z2 + z + 1 = (z− ζ)(z− ζ̄) divides f (z)). We have that
n + m = 3t for some positive integer t. Moreover, ζ is a primitive third root of unity, whose
minimal polynomial is z2 + z + 1 = (z− ζ)(z− ζ̄). Since ζ3 = 1, we have that

f (ζ) = ζn + ζm + 1 = ζ3t−m + ζm + 1 = ζ−m + ζm + 1 = ζ−m
(

ζ2m + ζm + 1
)

.

Note that m is not divisible by 3 since m and n are coprime and n + m = 3t. Hence,
ζm is also a primitive third root of unity, and thus a root of z2 + z + 1. Therefore, f (ζ) =
ζ−m(ζ2m + ζm + 1

)
= 0.

2. Assume that n + m is divisible by 6. According to Corollary 2, the trinomial
f (z) = zn + zm − 1 has precisely two unimodular roots. As in the proof of the first
proposition, it suffices to show that ζ = e

πi
3 is a root of f (z). We have that n + m = 6t

for some positive integer t. Moreover, ζ is a primitive sixth root of unity, whose minimal
polynomial is z2 − z + 1 = (z− ζ)(z− ζ̄). Since ζ6 = 1, we have that

f (ζ) = ζn + ζm − 1 = ζ6t−m + ζm − 1 = ζ−m + ζm − 1 = ζ−m
(

ζ2m − ζm + 1
)

.

Note that m is coprime to 6 since m and n are coprime and n + m = 6t. Hence, ζm

is also a primitive sixth root of unity, and thus a root of z2 − z + 1. Therefore, f (ζ) =
ζ−m(ζ2m − ζm + 1

)
= 0.

3. Assume that n + 4m is divisible by 6. According to Corollary 2, the trinomial
f (z) = zn − zm + 1 has precisely two unimodular roots. As in the proof of the first
proposition, it suffices to show that ζ = e

πi
3 is a root of f (z). We have that n + 4m = 6t

for some positive integer t. Moreover, ζ is a primitive sixth root of unity, whose minimal
polynomial is z2 − z + 1 = (z− ζ)(z− ζ̄). Since ζ6 = 1, we have that

f (ζ) = ζn − ζm + 1 = ζ6t−4m − ζm + 1 = ζ−4m − ζm + 1 = ζ2m − ζm + 1.

Note that m is coprime to 6 since m and n are coprime and n + 4m = 6t. Hence, ζm

is also a primitive sixth root of unity, and thus a root of z2 − z + 1. Therefore, f (ζ) =
ζ2m − ζm + 1 = 0.

4. This proposition follows from the second proposition by considering the reciprocal
polynomial −(zn − zm − 1)∗ = zn + zn−m − 1.
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Proof of Theorem 2. Let n > m be positive integers. Suppose that f (z) = zn ± zm ± 1 is a
Borwein trinomial such that N( f ) 6 2. Consider two possible cases: gcd(n, m) = 1 and
gcd(n, m) > 1.

Case 1. We have that gcd(n, m) = 1. We will apply Theorem 3 to the polynomial
f (z) = zn + pzm + q, where p = ±1, q = ±1 and v = 1. Note that in Theorem 3, the
triangle with edge lengths vn = 1, |p|vm = 1, and |q| = 1 is an equilateral triangle. Hence,
α = β = π/3 and δ f = (nα + mβ)/(2π) = (n + m)/6. By Theorem 3, N( f ) equals the
number of integers located in the open interval (C f − δ f , C f + δ f ), where

C f =
n(π + arg(p)− arg(q))−m(π − arg(q))

2π
.

Hence, by (iii) and (i) of Proposition 1, we have

N( f ) =
⌈

C f + δ f

⌉
−
⌊

C f − δ f

⌋
− 1 > (C f + δ f )−

⌊
C f − δ f

⌋
− 1

> (C f + δ f )− (C f − δ f )− 1 = 2δ f − 1 =
n + m− 3

3
.

Recall that N( f ) 6 2. Thus, (n + m− 3)/3 6 2, which is equivalent to n + m 6 9.
Thus, we are left to compute N( f ) for every polynomial f (z) = zn ± zm ± 1, where n > m,
gcd(n, m) = 1, and n + m 6 9. In total, there are 13 pairs (n, m) satisfying these conditions,
namely

(8, 1), (7, 2), (7, 1), (6, 1), (5, 4), (5, 3), (5, 2), (5, 1),

(4, 3), (4, 1), (3, 2), (3, 1), (2, 1).

Hence, there are exactly 4× 13 = 52 polynomials f (z) = zn ± zm ± 1 to be considered.
Applying Proposition 3 (one can use any mathematics software, e.g., SageMath [37]), we
obtain all such polynomials with N( f ) = 1 and N( f ) = 2, which are given in the first and
third columns of Table 2, respectively.

Case 2. We have that gcd(n, m) > 1. Denote a = gcd(n, m). Then n = an1 and
m = am1 for some coprime positive integers n1 > m1. Furthermore, f (z) = zn ± zm ±
1 = g(za), where g(z) = zn1 ± zm1 ± 1 is a Borwein trinomial. One has that N( f (z)) =
N(g(za)) = aN(g(z)). This, in view of a > 1 and N( f ) 6 2, implies a = 2, N( f ) = 2, and
N(g(z)) = 1. We have already determined all Borwein trinomials g(z) with N(g) = 1 in
Case 1 (see the first column in Table 2). Hence, f (z) = g(z2) for any polynomial g(z) from
the first column of Table 2. All such trinomials f (z) = g(z2) with N( f ) = 2 are given in the
second column of Table 2.

Proof of Theorem 1. Let f (z) = zn ± zm ± 1 be a Borwein trinomial such that one of
its roots, say β, is a complex Pisot number. Denote by p(z) the minimal polynomial
of β. Then, p(z) is irreducible and divides f (z). By Theorem 4, every root (if any) of
the quotient f (z)/p(z) is a unimodular number (if f (z) is irreducible, then f (z) = p(z)
and f (z)/p(z) = 1). Hence, both polynomials f (z) and p(z) have the same number of
roots outside the unit circle |z| > 1, and this number equals 2 since p(z) is the minimal
polynomial of a complex Pisot number. Therefore, N( f ∗) = N(p∗) = 2. Now, we have
that the Borwein trinomial f ∗(z) has exactly two roots inside the unit circle |z| < 1, namely
β−1 and β̄−1. Recall that β ∈ C \ R. Thus, both roots of f ∗(z) inside the unit circle
|z| < 1 are non-real numbers. On the other hand, Table 2 lists all Borwein trinomials
g(z) with N(g) = 2 in the second and third columns (see Theorem 2). One can easily
check that all of these polynomials have two non-real roots inside the unit circle |z| < 1,
except for polynomials z4 + z2 − 1, z6 + z4 − 1, z6 + z2 − 1, z8 + z2 − 1, and z10 + z2 − 1,
which all have two real roots inside the unit circle |z| < 1. Hence, all Borwein trinomials
f (z) = zn ± zm ± 1, which have a complex Pisot number as a root, are given in Table 1.
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3. Irreducibility of Borwein Trinomials

Selmer [38] studied the irreducibility of trinomials zn ± z± 1. In particular, he proved
that the trinomial zn − z− 1 is irreducible for every positive integer n > 1. Tverberg [39]
proved that a trinomial zn ± zm ± 1 is reducible if and only if it has a unimodular root.
Ljunggren [35] extended this result to any quadrinomial zn ± zm ± zp ± 1.

Theorem 4 ([39] and Theorem 3 in [35]). Let n > m be positive integers. The trinomial
f (z) = zn ± zm ± 1 is reducible over the rationals if and only if it has a unimodular root. If f (z)
has unimodular roots, these roots can be collected to give a rational factor of f (z). The other factor
of f (z) is then irreducible.

Note that, for any polynomial f (z) and any positive integer a, one has that U( f (za)) =
aU( f (z)). Thus, f (za) has a unimodular root if and only if f (z) has a unimodular root.
Combining this and Theorem 4, we obtain that, for any positive integer a, the trinomial
zn ± zm ± 1 is irreducible if and only if the trinomial zna ± zma ± 1 is irreducible. Hence,
considering the irreducibility of a trinomial zn ± zm ± 1, one can always assume that m and
n are coprime.

The following corollary has already been proven by Ljunggren (see Theorem 3 in [35]).
Nevertheless, we give an alternative proof of this result.

Corollary 4. Let n > m be positive integers and a = gcd(n, m).

1. The polynomial f (z) = zn + zm + 1 is reducible if and only if (n + m)/a is divisible by
3. Furthermore, if (n + m)/a is divisible by 3, then f (z) has exactly 2a unimodular roots,
which are the roots of z2a + za + 1, and the quotient f (z)/(z2a + za + 1) is an irreducible
polynomial.

2. The polynomial f (z) = zn + zm − 1 is reducible if and only if (n + m)/a is divisible by
6. Furthermore, if (n + m)/a is divisible by 6, then f (z) has exactly 2a unimodular roots,
which are the roots of z2a − za + 1, and the quotient f (z)/(z2a − za + 1) is an irreducible
polynomial.

3. The polynomial f (z) = zn − zm + 1 is reducible if and only if (n + 4m)/a is divisible by
6. Furthermore, if (n + 4m)/a is divisible by 6, then f (z) has exactly 2a unimodular roots,
which are the roots of z2a − za + 1, and the quotient f (z)/(z2a − za + 1) is an irreducible
polynomial.

4. The polynomial f (z) = zn − zm − 1 is reducible if and only if (2n− m)/a is divisible by
6. Furthermore, if (2n−m)/a is divisible by 6, then f (z) has exactly 2a unimodular roots,
which are the roots of z2a − za + 1, and the quotient f (z)/(z2a − za + 1) is an irreducible
polynomial.

Proof of Corollary 4. We will consider only the case f (z) = zn + zm + 1. The remaining
three propositions can be proven completely analogously.

Let f (z) = zn + zm + 1 and f̃ (z) = zn/a + zm/a + 1. Note that n/a and m/a are coprime
and f (z) = f̃ (za). Furthermore, U( f (z)) = U( f̃ (za)) = aU( f̃ (z)). Hence, by Theorem 4,
the trinomial f (z) is reducible if and only if the trinomial f̃ (z) has a unimodular root. By
Corollary 3, the trinomial f̃ (z) has a unimodular root if and only if n/a+m/a = (n+m)/a
is divisible by 3. This proves the first part of the proposition.

Assume that (n + m)/a is divisible by 3. Then, by Corollary 3, the trinomial f̃ (z) can
be factored as f̃ (z) = (z2 + z + 1)g(z), where g(z) is a polynomial that has no unimodular
roots. Hence, f (z) = f̃ (za) = (z2a + za + 1)g(za). Note that every root of z2a + za + 1 is
a root of unity since z3a − 1 = (za − 1)

(
z2a + za + 1

)
. Finally, Theorem 4 implies that the

quotient f (z)/(z2a + za + 1) = g(za) is an irreducible polynomial.

A real algebraic integer α > 1 is called a Salem number after [40–42], if all other algebraic
conjugates of α lie in the unit disc |z| 6 1 with at least one conjugate on the unit circle
|z| = 1. In particular, the minimal polynomial of every Salem number is of even degree
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and self-reciprocal: f ∗(z) = f (z). Note that none of the algebraic conjugates of a Salem
number is a root of unity. Therefore, by Corollary 4, no Salem number is the root of a
Borwein trinomial.

4. Conclusions

In the present paper, we identify all complex Pisot numbers β ∈ C that arise from
polynomials of the simplest possible shape, namely {−1, 0, 1} – trinomials. We hope that
the Pisot numbers listed in Table 1 for Theorem 1 will find application in new complex
number systems [15,17,18], quasi-crystals [16], and digital filter designs [43,44]. In the
future, it would be interesting to extend these results to the quadrinomial case.
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34. Čermák, J.; Fedorková, L. On a nearly forgotten polynomial result by P. Bohl. Am. Math. Mon. 2023, 130, 176–181. [CrossRef]
35. Ljunggren, W. On the irreducibility of certain trinomials and quadrinomials. Math. Scand. 1960, 8, 65–70. [CrossRef]
36. Theobald, T.; de Wolff, T. Norms of roots of trinomials. Math. Ann. 2016, 366, 219–247. [CrossRef]
37. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 10.2), 2023. Available online: https://www.

sagemath.org (accessed on 28 December 2023).
38. Selmer, E.S. On the irreducibility of certain trinomials. Math. Scand. 1956, 4, 287–302. [CrossRef]
39. Tverberg, H. On the irreducibility of the trinomials xn ± xm ± 1. Math. Scand. 1960, 8, 121–126. [CrossRef]
40. Salem, R. A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan. Duke Math. J. 1944, 11, 103–108.

[CrossRef]
41. Salem, R. Power series with integral coefficients. Duke Math. J. 1945, 12, 153–172. [CrossRef]
42. Salem, R. Algebraic Numbers and Fourier Analysis; D. C. Heath and Company: Boston, MA, USA, 1963; 66p.
43. Vowden, C.J.; Vowden, B.J. Chaos in digital filters: identification of all periodic symbolic sequences admissible adjacent to zero.

Nonlinearity 2007, 20, 975–1006. [CrossRef]
44. Vowden, C.J.; Vowden, B.J. Symmetric and non-symmetric periodic orbits for the digital filter map. Dyn. Syst. 2008, 23, 437–466.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1017/S0305004100029418
http://dx.doi.org/10.1016/S1631-073X(03)00236-X
http://dx.doi.org/10.1090/mcom/3570
http://dx.doi.org/10.1016/j.jnt.2014.05.003
http://dx.doi.org/10.7146/math.scand.a-13928
http://dx.doi.org/10.1007/BF01451170
http://dx.doi.org/10.1080/00029890.2022.2144090
http://dx.doi.org/10.7146/math.scand.a-10593
http://dx.doi.org/10.1007/s00208-015-1323-8
https://www.sagemath.org
https://www.sagemath.org
http://dx.doi.org/10.7146/math.scand.a-10478
http://dx.doi.org/10.7146/math.scand.a-10599
http://dx.doi.org/10.1215/S0012-7094-44-01111-7
http://dx.doi.org/10.1215/S0012-7094-45-01213-0
http://dx.doi.org/10.1088/0951-7715/20/4/010
http://dx.doi.org/10.1080/14689360802169042

	Introduction
	Proofs of Theorems
	Irreducibility of Borwein Trinomials
	Conclusions
	References

