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Abstract: Conditional copulas are useful tools for modeling the dependence between multiple
response variables that may vary with a given set of predictor variables. Conditional dependence
measures such as conditional Kendall’s tau and Spearman’s rho that can be expressed as functionals
of the conditional copula are often used to evaluate the strength of dependence conditioning on
the covariates. In general, semiparametric estimation methods of conditional copulas rely on an
assumed parametric copula family where the copula parameter is assumed to be a function of
the covariates. The functional relationship can be estimated nonparametrically using different
techniques, but it is required to choose an appropriate copula model from various candidate families.
In this paper, by employing the empirical checkerboard Bernstein copula (ECBC) estimator, we
propose a fully nonparametric approach for estimating conditional copulas, which does not require
any selection of parametric copula models. Closed-form estimates of the conditional dependence
measures are derived directly from the proposed ECBC-based conditional copula estimator. We
provide the large-sample consistency of the proposed estimator as well as the estimates of conditional
dependence measures. The finite-sample performance of the proposed estimator and comparison
with semiparametric methods are investigated through simulation studies. An application to real
case studies is also provided.

Keywords: empirical checkerboard Bernstein copula (ECBC); conditional dependence measures;
covariates

MSC: 62H05; 62H10; 62G05; 62P05

1. Introduction

Copulas have found many applications in the field of finance, insurance, system
reliability, etc., owing to their utility in modeling the dependence among variables (see, e.g.,
Nelsen [1], Jaworski et al. [2] and Joe [3] for details about copulas and their applications).
In some situations, the dependence structure between variables can be influenced by a set
of covariates, and it is thereby of interest to understand how such dependence changes
with the values of covariates. For instance, it is well known that the life expectancy at
birth of males and females in a country is often highly interdependent due to shared
economic or environmental factors, and it is possible that the strength of the dependence
relies on these factors. When the covariate is binary or discrete-valued with few levels,
one can estimate a copula for each given level of the discrete-valued covariate separately.
In constrast, the influence of a continuous-value covariate on the dependence structure
should be formulated in a functional way, and this is where conditional copulas (Patton [4];
Patton [5]) along with the corresponding conditional versions of dependence measures
come into play.

Suppose we are interested in the dependence among the components of a random
vector Y = (Y1, Y2, . . . , Yd) given covariates X = (X1, X2, . . . , Xp). The conditional joint and
marginal distribution of Y given X = x can be denoted as
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Fx(y) ≡ Fx(y1, y2, . . . yd) = P(Y1 ≤ y1, Y2 ≤ y2, . . . , Yd ≤ yd | X = x), (1)

and
Fjx(yj) = P(Yj ≤ yj | X = x) j = 1, . . . , d. (2)

If F1x, F2x, . . . , Fdx are continuous, then by an extension of the well-known Sklar’s
theorem (Sklar [6]) for conditional distributions (e.g., see Patton [5]), there exists a unique
copula Cx such that

Fx(y) = Cx(F1x(y1), F2x(y2), ..., Fdx(yd)) ∀y ∈ Rd, ∀y ∈ Rd, (3)

and the function Cx is called a conditional copula, which captures the conditional de-
pendence structure of Y given X = x. The focus of this paper is modeling continuous-
valued responses and covariates. Thus, in what follows, we assume that the conditional
marginal CDFs F1x, j = 1, . . . , d and the CDFs of each response and covariate are abso-
lutely continuous.

The literature contains a variety of parametric families for modeling copulas. Some
commonly used copula families are Archimedean copulas, elliptical copulas, etc.; see
Žežula [7] and Joe [3], etc. Assuming that the conditional copula belongs to a parametric
copula family where the copula parameter is a function of the covariate(s), there has been
previous work addressing the estimation of conditional copula in a semiparametric setting.
In regard to frequentist methods based on an assumed parametric class, Acar et al. [8]
propose to estimate the functional relationship between the copula parameter and the
covariate nonparametrically by using the local likelihood approach, but they assume known
marginals, and the maximization is conducted for a fixed value of the covariate. In other
words, with the intention of identifying the entire function between the copula parameter
and the covariate, it is necessary to solve the maximization problem for a sufficiently large
grid of values within the range of the covariate. Abegaz et al. [9] extend the work to a
more general setting of unknown marginals and apply a two-stage technique that has been
widely adopted in copula estimation: in the first stage, the nonparametric estimates of
conditional marginals are obtained using the kernel-based method, and by plugging in
these estimates, the functional link is estimated by maximizing the pseudo log-likelihood
in the second stage. As alternative estimation methods for the function relationship,
Vatter and Chavez-Demoulin [10] develop generalized additive models for the conditional
dependence structures, and Fermanian and Lopez [11] introduce so-called single-index
copulas, etc. In particular, conditional copulas of Archimedean copulas are studied, e.g.,
in Mesfioui and Quessy [12], Kasper [13] and the references therein. In the Bayesian
framework, inference for bivariate conditional copula models has been constructed in Craiu
and Sabeti [14], Sabeti et al. [15] and Levi and Craiu [16], among others.

However, the misspecification of the copula family could lead to severely biased
estimation even though a sophisticated and flexible parametric model is employed (e.g.,
see Geerdens et al. [17]), so it is required to select an appropriate copula model from a large
number of candidate families. In order to do so, many copula selection techniques have
been proposed in either the frequentist or Bayesian setting; e.g., Acar et al. [8] select the
copula family based on cross-validated prediction errors, while the deviance information
criterion (DIC) is utilized for the choice of copula in Craiu and Sabeti [14].

Acknowledging the limitations of parametric copula models as mentioned above, fully
nonparametric approaches have also been proposed for conditional copula estimation. Gij-
bels et al. [18] suggest the empirical estimators for conditional copulas where the weights
are smoothed over the covariate space through kernel-based methods. They further derive
nonparametric estimates for the conditional dependence measures including conditional
Kendall’s tau and conditional Spearman’s rho. Since the bandwidth selection is very crucial
for any of the smoothing methods, they also develop an algorithm for selecting the band-
widths. The asymptotic properties of the estimators together with conditional dependence
measure estimates are established in Veraverbeke et al. [19]. Gijbels et al. [20] further consider
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more complex covariates like multivariate covariates, and box-type conditioning events are
studied in Derumigny and Fermanian [21]. On the other hand, there has been recent work
on the Bayesian nonparametric estimation of conditional copulas. Leisen et al. [22] introduce
the effect of a covariate on the Bayesian infinite mixture models proposed by [23]. However,
the large-sample asymptotic properties of the Bayesian models have been almost unexplored
and still remain an area of open work.

In this paper, we focus on the nonparametric estimation of conditional copulas and
have realized a relatively easy way by employing the empirical checkerboard Bernstein
copula (ECBC) estimator proposed in Lu and Ghosh [24]. ECBC is constructed by extending
the Bernstein copula, allowing for varying degrees of the polynomials, which is a genuine
smooth copula for any number of degrees and any finite sample size. When the covariates
are continuous-valued, the main idea of extending the copula models to include covariates
is to first estimate the full copula of responses along with covariates and then take partial
derivatives to obtain the conditional distribution of responses given the covariates. As a
fully nonparametric approach, it is not required to make any selection of the proper copula
family, which is a key step in semiparametric methods to avoid the adverse consequence of
model misspecification. Compared to the kernel-based empirical estimators, the selection of
bandwidths is unnecessary as well, making it easy to implement in practice. The proposed
ECBC-based conditional copula estimator immediately leads to nonparametric estimates of
the conditional dependence measures, which can be expressed in a very neat form under
matrix operations. The large-sample consistency of the proposed estimator is also provided
in the paper.

The rest of the paper is organized as follows: in Section 2, we present a model for con-
ditional copula and closed-form estimates of popular multivariate conditional dependence
measures based on the novel methodology of conditional copula estimation. Section 3
shows the finite-sample performance for the proposed methodology. Section 4 provides a
real case study. Finally, we make some general comments in Section 5.

2. Models for Conditional Copula

In the following, we focus on the bivariate conditional copula of (Y1, Y2) with a single
covariate X for simplicity. Notice that the extension to more than two dimensions and
multiple covariates is straightforward.

Suppose we have i.i.d. samples (Yi1, Yi2, Xi), i = 1, . . . , n, where (Yi1, Yi2), i = 1, . . . , n
are i.i.d observations of the random vector (Y1, Y2) of which the conditional dependence
structure is of our interest. Xi, i = 1, . . . , n are i.i.d. observations of the covariate X.
We assume all components of (Y1, Y2, X) are continuous-valued random variables with
absolutely continuous marginal distributions, and the conditional marginal distributions of
Y1 and Y2 given X = x are also absolutely continuous. The goal is to estimate the conditional
copula Cx from a random sample of i.i.d. observations (Yi1, Yi2, Xi), i = 1, . . . , n.

As suggested by Gijbels et al. [18], it is often favorable to remove the effect of the
covariate on the marginal distributions before estimating Cx. In order to do that, we
can transform the original observations (Yi1, Yi2) to marginally uniformly distributed
(unobserved) samples

(Ui1, Ui2) ≡ (F1Xi (Yi1), F2Xi (Yi2)), i = 1, . . . , n, (4)

which can be estimated by pseudo-observations

(Ûi1, Ûi2) ≡ (F̂1Xi (Yi1), F̂2Xi (Yi2)), i = 1, . . . , n, (5)

where F̂1x and F̂2x are the estimated conditional marginal distributions.
Motivated by Janssen et al. [25] who apply the empirical Bernstein estimator of the

bivariate copula derivative to conditional distribution estimation with a single covariate, we
are able to use the multivariate copula estimator ECBC as proposed in Lu and Ghosh [24]
to estimate the conditional marginal distributions of Y1 and Y2 given X = x, respectively.
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Specifically, for j ∈ {1, 2}, we have i.i.d samples (Yij, Xi), i = 1, . . . , n and the corresponding
pseudo-observations (Ŵij, V̂i) = (FnYj(Yij), FnX(Xi)), i = 1, . . . , n, where FnYj and FnX are
the modified empirical estimation of the (unconditional) marginal distributions FYj and FX ,

respectively, e.g., FnX(x) = 1
n+1 ∑n

i=1 I(Xi ≤ x). These pseudo-observations can be then
treated as samples from a two-dimensional copula Cj, which can be estimated by the ECBC
copula estimator as follows

C#
j (wj, v) =

gj

∑
h=0

mj

∑
k=0

θ̃h,k

(
gj

h

)
wh

j (1 − wj)
gj−h

(
mj

k

)
vk(1 − v)mj−k, (6)

where
θ̃h,k = C#

jn(
h
gj

,
k

mj
), (7)

and C#
jn is the empirical checkerboard copula. The ECBC estimation process is detailed in

Lu and Ghosh [24]. Then, the partial derivative C(1)
j of Cj with respect to v can be estimated

by using

C#(1)
j (wj, v) ≡

∂C#
j (wj, v)

∂v

=

gj

∑
h=0

mj−1

∑
k=0

λ̃h,k

(
gj

h

)
w

hj
j (1 − wj)

gj−hmj

(
mj − 1

k

)
vk(1 − v)mj−k−1,

(8)

where
λ̃h,k = θ̃h,k+1 − θ̃h,k. (9)

Notice that the following relationship holds between the conditional marginal distri-
bution function of Yj given X = x and the partial derivative C(1)

j (wj, v)

Fjx(yj) = P(Yj ≤ yj | X = x) = C(1)
j (FYj(yj), FX(x)). (10)

Thus, we can estimate the conditional marginal distributions using

F̂jx(yj) = C#(1)
j (FnYj(yj), FnX(x)) (11)

for j = 1, 2, and then the corresponding pseudo-observations (Ûi1, Ûi2), i = 1, . . . , n of the
conditional copula Cx adjusted for the effect of the covariate on the marginal distributions
can be estimated as given in (5).

Now, we can use the covariate-adjusted pseudo-observations (Ûi1, Ûi2), i = 1, . . . , n
along with the pseudo-observations of the covariate V̂i, i = 1, . . . , n to estimate a
three-dimensional copula C(u1, u2, v) again using ECBC and denote it as C#(u1, u2, v). Sim-
ilar to (8), it is easy to obtain the partial derivative C#(1) of C# with respect to v, which is
denoted as

C#(1)(u1, u2|v) ≡
∂C#(u1, u2, v)

∂v

=
l1

∑
h1=0

l2

∑
h2=0

m−1

∑
k=0

γ̃h1,h2,km
(

m − 1
k

)
vk(1 − v)m−k−1

2

∏
s=1

(
ls
hs

)
uhs

s (1 − us)
ls−hs ,

(12)

where
γ̃h1,h2,k = θ̃h1,h2,k+1 − θ̃h1,h2,k. (13)

Notice that we can use C#(1)(u1, u2|FnX(x)) as an estimate of the conditional copula
Cx; however, C#(1)(u1, u2|v) is itself a valid bivariate copula for any value of v ∈ [0, 1] only
asymptotically. This is because the conditional marginal distributions of C#(1)(u1, u2|v) are
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not necessarily uniform distributions for finite samples. Aiming to obtain a more accurate
estimate of the conditional copula for small samples, we consider the conditional marginal
distributions of C#(1)(u1, u2|v) given as

F1(u1|v) ≡ C#(1)(u1, 1|v)

=
l1

∑
h1=0

m−1

∑
k=0

γ̃h1,l2,km
(

m − 1
k

)
vk(1 − v)m−k−1

(
l1
h1

)
uh1

1 (1 − u1)
l1−h1 ,

(14)

and

F2(u2|v) ≡ C#(1)(1, u2|v)

=
l2

∑
h2=0

m−1

∑
k=0

γ̃l1,h2,km
(

m − 1
k

)
vk(1 − v)m−k−1

(
l2
h2

)
uh2

2 (1 − u2)
l2−h2 ,

(15)

By using Sklar’s theorem, we are able to obtain a conditional copula estimator which
is a genuine copula itself denoted as

C#(u1, u2|v) = C#(1)(F−1
1 (u1|v), F−1

2 (u2|v)|v), (16)

where F−1
1 (u1|v) and F−1

2 (u2|v) are the inverse functions of F1 and F2, respectively. It is to
be noted that C#(u1, u2|v) is a valid copula for any value of v ∈ [0, 1], and as a result, the
conditional copula Cx can be estimated by

C#
x(u1, u2) = P(F1x(y1) ≤ u1, F2x(y2) ≤ u2 | X = x) = C#(u1, u2|FnX(x)). (17)

Let ||g||(v) = sup
(u1,u2)∈[0,1]2

|g(u1, u2|v)| denote the conditional supremum norm of a

conditional function g(u1, u2|v) defined on the unit square [0, 1]2 for a fixed v. We denote
the common supremum norm as || · ||. The following theorem provides the large-sample
consistency of the estimator C#(u1, u2|v) for fixed value of 0 < v < 1 using the conditional
supremum norm. The proof is in Appendix A.

Theorem 1. Assume that the underlying trivariate copula C(u1, u2, v) is absolutely continuous
and the conditional copula Cv(u1, u2|v) = ∂C(u1,u2,v)

∂v is Lipschitz continuous on [0, 1]3. Then, for
any fixed 0 < v < 1, we have

E(||C# − Cv||(v))
a.s.→ 0 as n → ∞.

where the expectation is taken with respect to the empirical prior distribution of l1, l2, and m as
given for ECBC.

Remark 1. Following the hierarchical shifted Poisson distributions proposed for ECBC in Lu and
Ghosh [24], the empirical prior distribution of l1, l2, and m is given as

lj|αj ∼ Poisson(nαj) + 1 and αj ∼ Uni f
(1

3
,

2
3

)
j = 1, 2,

m|α ∼ Poisson(nα) + 2 and α ∼ Uni f
(1

3
,

2
3

)
.

The choice of the above priors is motivated by the asymptotic theory of empirical checkerboard
copula methods Janssen et al. [26]. Sample sizes or, more generally, data-dependent priors have been
used extensively in the literature (e.g., see Wasserman [27] and Parrado-Hernández et al. [28]), and
these have been shown to produce desirable asymptotic properties of the posterior distributions.
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Next, by extending the dependence measures given in Schweizer et al. [29] to condi-
tional versions, we are able to estimate the conditional dependence measures (e.g., condi-
tional Spearman’s rho, conditional Kendall’s tau, etc.) using the estimator C#(1)(u1, u2|v).
For instance, the estimate of conditional Kendall’s tau takes the form

τ̂(v) = 4
∫ 1

0

∫ 1

0
C#(1)(u1, u2|v)dC#(1)(u1, u2|v)− 1, (18)

and the estimate of the conditional Spearman’s rho is given as

ρ̂(v) = 12
∫ 1

0

∫ 1

0

(
C#(1)(u1, u2|v)− F1(u1|v)F2(u2|v)

)
dF1(u1|v)dF2(u2|v). (19)

Let us denote

ηh1,h2|v ≡ m
m−1

∑
k=0

γ̃h1,h2,k

(
m − 1

k

)
vk(1 − v)m−k−1, h1 = 0, ..., l1, h2 = 0, . . . , l2. (20)

Then, we can rewrite the estimator C#(1)(u1, u2|v) and its conditional marginal distri-
butions as

C#(1)(u1, u2|v) =
l1

∑
h1=0

l2

∑
h2=0

ηh1,h2|v
2

∏
s=1

(
ls
hs

)
uhs

s (1 − us)
ls−hs , (21)

F1(u1|v) =
l1

∑
h1=0

ηh1,l2|v

(
l1
h1

)
uh1

1 (1 − u1)
l1−h1 , (22)

and

F2(u2|v) =
l2

∑
h2=0

ηl1,h2|v

(
l2
h2

)
uh2

2 (1 − u2)
l2−h2 , (23)

respectively. As a result, a closed-form estimate of conditional Kendall’s tau takes the form

τ̂(v) = 4
l1

∑
h1=0

l2

∑
h2=0

l1−1

∑
g1=0

l2−1

∑
g2=0

ηh1,h2|v(ηg1+1,g2+1|v − ηg1+1,g2|v − ηg1,g2+1|v + ηg1,g2|v)

2

∏
s=1

ls

(
ls
hs

)(
ls − 1

gs

)
B(hs + gs + 1, 2ls − hs − gs)− 1,

(24)

where B is the beta function. Similarly, we are able to obtain a closed-form estimate of the
conditional Spearman’s rho as

ρ̂(v) = 12
l1

∑
h1=0

l2

∑
h2=0

l1−1

∑
g1=0

l2−1

∑
g2=0

(ηh1,h2|v − ηh1,l2|vηl1,h2|v)(ηg1+1,l2|v − ηg1,l2|v)(ηl1,g2+1|v − ηl1,g2|v)

2

∏
s=1

ls

(
ls
hs

)(
ls − 1

gs

)
B(hs + gs + 1, 2ls − hs − gs).

(25)

For the purpose of computing the estimates of conditional dependence measures more
efficiently, we apply matrix operations to the tensor products in expressions (24) and (25).
For given (h1, h2), h1 = 1, . . . , l1, h2 = 1, . . . , l2, let us denote

ah1,g1 = l1

(
l1
h1

)(
l1 − 1

g1

)
B(h1 + g1 + 1, 2l1 − h1 − g1), g1 = 0, . . . l1 − 1. (26)

and

bh2,g2 = l2

(
l2
h2

)(
l2 − 1

g2

)
B(h2 + g2 + 1, 2l2 − h2 − g2), g2 = 0, . . . l2 − 1. (27)
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Then, we have ah1 = (ah1,0, . . . , ah1,l1−1)
T and bh2 = (bh2,0, . . . , bh2,l2−1)

T . We also
denote a l1 × l2 matrix Dv = (dg1,g2|v)l1×l2 where dg1,g2|v = ηg1+1,g2+1|v − ηg1+1,g2|v −
ηg1,g2+1|v + ηg1,g2|v. Thus, the estimate of conditional Kendall’s tau given in (29) can be
rewritten as

τ̂(v) = 4
l1

∑
h1=1

l2

∑
h2=1

ηh1,h2|vaT
h1

Dvbh2 − 1. (28)

Furthermore, we can denote two l1 × l2 matrices, Hv = (ηh1,h2|v)l1×l2 and Gv =

(aT
h1

Dvbh2)l1×l2 , and as a result, we have

τ̂(v) = 4Tr(HT
v Gv)− 1. (29)

Similarly, we are able to rewrite the estimate of conditional Spearman’s rho given
in (25). Let us first denote two vectors, pv = (pg1|v)

T
l1

where pg1|v = ηg1+1,l2|v − ηg1,l2|v, g1 =

0, . . . , l1 − 1 and qv = (qg2|v)
T
l2

where qg2|v = ηl1,g2+1|v − ηl1,g2|v, g2 = 0, . . . , l2 − 1. Then,
we have

ρ̂(v) = 12
l1

∑
h1=1

l2

∑
h2=1

(ηh1,h2|v − ηh1,l2|vηl1,h2|v)a
T
h1
(pv ⊗ qv)bh2 . (30)

If we further denote two l1 × l2 matrices, Rv = (rh1,h2|v)l1×l2 where rh1,h2|v = ηh1,h2|v −
ηh1,l2|vηl1,h2|v and Jv = (aT

h1
(pv ⊗ qv)bh2)l1×l2 , then we have

ρ̂(v) = 12Tr(RT
v Jv) (31)

By applying the above matrix operations, we are able to obtain very neat expressions
of the estimates of conditional dependence measures, and the computational efficiency can
be improved significantly.

3. Numerical Illustrations Using Simulated Data

We now show the finite-sample performance of the conditional copula estimator
C#

x(u1, u2). Similar to the simulation setup in Acar et al. [8], data (Ui1, Ui2|Xi), i = 1, . . . , n
are generated from the Clayton copula using the package copula in R under the following
models: (Ui1, Ui2)|Xi ∼ C(u1, u2|θi), where θi = exp(0.8Xi − 2) and Xi ∼ Uni f (0, 3). The
true copula parameter varies from 0.14 to 1.49 with Spearman’s rho ranging from 0.10 to
0.60. The pseudo-observations of the covariate are defined as Vi ≡ FnX(Xi), i = 1, . . . , n,
where FnX(x) = 1

n+1 ∑n
i=1 I(Xi ≤ x). N = 100 replicates are drawn from the true copula

with sample size n = 200.
Figure 1 shows the contour plots of the Monte Carlo average of the estimated C#

x(u1, u2)
given x = 0.5, x = 1, x = 1.5, and x = 2, respectively, across 100 Monte Carlo replicates.
The contour plots are drawn based on a 15 × 15 equally spaced grid of points in the unit
square, meaning that for a given v, we need to find 15 + 15 = 30 roots. Since F1 and F2
are both non-decreasing functions, we can calculate the inverse functions F−1

1 (u1|v) and
F−1

2 (u2|v) by applying the function uniroot in R to Equations (22) and (23) for a given value
of v. The true copula parameters are 0.20 (Spearman’s rho equal to 0.09), 0.30 (Spearman’s
rho equal to 0.20), 0.45 (Spearman’s rho equal to 0.27), and 0.67 (Spearman’s rho equal to
0.37) for x = 0.5, x = 1, x = 1.5, and x = 2, respectively.
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(a) x = 0.5 (b) x = 1

(c) x = 1.5 (d) x = 2

Figure 1. The contour plots of the Monte Carlo average of the estimated C#
x(u1, u2) given x = 0.5,

x = 1, x = 1.5, and x = 2, respectively.

It can be observed from the plots that all the estimated contour lines overlap with
the true lines at the boundaries, which is evidence that the conditional copula estimator
C#(u1, u2|v) is a genuine copula with uniform conditional marginal distributions. More-
over, there is almost no bias between the estimated conditional copula averaged over
100 Monte Carlo samples and the true conditional copula across different values of the
covariate, illustrating that the proposed ECBC-based method works well in estimating the
conditional copula.

Then, we can plot the conditional Kendall’s tau and conditional Spearman’s rho
as given in (29) and (31) as a function of the covariate in Figure 2. The covariate x
ranges from 0 to 3, so we compute the dependence measures at seven different values
(0.05, 0.5, 1, 1.5, 2, 2.5, 2.95). The following plots show the Monte Carlo average of esti-
mates of dependence measures and the 90% Monte Carlo confidence bands (5th and 95th
percentiles of the dependence measure estimates) across 100 Monte Carlo replicates.

Overall, the estimates averaged over 100 Monte Carlo samples seem to be fairly close
to the true conditional dependence measures across different values of the covariate. The
variance tends to increase and the Monte Carlo average tends to underestimate a little bit
when it becomes closer to the boundaries of the covariate.
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(a) conditional Kendall’s tau (b) conditional Spearman’s rho

Figure 2. The plots of the estimated conditional Kendall’s tau and conditional Spearman’s rho as a
function of the covariate.

Next, we would like to compare the performance of our proposed nonparametric
method to the semiparametric method in Acar et al. [8] through simulation studies. They
assume a conditional copula model where the copula function comes from a parametric cop-
ula family and the copula parameter is a function of the covariate. Different copula families,
e.g., Clayton and Gumbel, were considered, and the functional relationship between the
copula parameter and the covariate was estimated using a nonparametric local likelihood
approach. The severe consequence of the misspecified copula model was investigated in
Acar et al. [8], and they proposed a copula selection method based on cross-validated pre-
diction errors. In contrast, the proposed conditional copula estimator is fully nonparametric,
so there is no need to make any choice of the copula family.

The simulation setups follow Acar et al. [8]. The data (Ui1, Ui2|Xi), i = 1, . . . , n are gen-
erated from the Clayton copula under the following models: (Ui1, Ui2)|Xi ∼ C(u1, u2|θi),
where (i): θi = exp(0.8Xi − 2) and Xi ∼ Uni f (2, 5); (ii): θi = exp(2 − 0.3(Xi − 2)2 and
Xi ∼ Uni f (2, 5). The sample size is n = 200.

The comparison can be made numerically by calculating the conditional Kendall’s tau
and some performance measures, including the integrated square bias (IBIAS2), integrated
variance (IVAR) and integrated mean square error (IMSE) as given in Acar et al. [8]:

IBIAS2 =
∫
[2,5]

[
E[τ̂x(x)]− τx(x)

]2dx = 3
∫
[0,1]

[
E[τ̂(v)]− τ(v)

]2dv, (32)

IVAR =
∫
[2,5]

E
[
[τ̂x(x)− E[τ̂x(x)]]2

]
dx = 3

∫
[0,1]

E
[
[τ̂(v)− E[τ̂(v)]]2

]
dv, (33)

IMSE =
∫
[2,5]

E
[
[τ̂x(x)− τx(x)]2

]
dx = 3

∫
[0,1]

E
[
[τ̂(v)− τ(v)]2

]
dv, (34)

where the second equality holds because τx(X) = τ(FX(X)) = τ(V) and X ∼ Uni f (2, 5).
We compute Monte Carlo estimates of these performance measures by following the tricks
in Segers et al. [30] and compare our proposed method (referred to as “ECBC-based”) to
the local likelihood method (referred to as “Local”) in Acar et al. [8]. The results are shown
in Table 1.

From the results, we can see that when data are generated from the Clayton copula
(the underlying true copula), our ECBC-based method outperforms the local likelihood
method for the incorrect parametric case (Gumbel) in terms of bias and MSE, although the
performance is not as good as the local likelihood method for the correct parametric case
(Clayton). Nonetheless, the advantage of the proposed nonparametric method is that we
can avoid the adverse impact of misspecified copula and obtain a fairly good estimation
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of conditional copula and conditional dependence measures without having to select the
‘best’ copula model from numerous copula families.

Table 1. Comparison of the proposed method (referred to as “ECBC-based”) to the local likeli-
hood method (referred to as “Local”) using Monte Carlo estimates of three performance measures,
IBIAS2, IVAR and IMSE. Data are generated from the Clayton copula under two different functional
relationships between the copula parameter and the covariate.

Clayton Copula: θ = exp(0.8X − 2)

Estimation Method Parametric Model IBIAS2 (×10−2) IVAR (×10−2) IMSE (×10−2)

Local Clayton 0.017 0.553 0.570

Local Gumbel 3.704 1.716 5.389

ECBC-Based N/A 0.323 2.569 2.892

Clayton copula: θ = exp(2 − 0.3(X − 4)2)

Estimation Method Parametric Model IBIAS2 (×10−2) IVAR (×10−2) IMSE (×10−2)

Local Clayton 0.040 0.288 0.328

Local Gumbel 4.808 1.301 6.109

ECBC-Based N/A 0.855 1.876 2.731

4. Real Case Study

We now apply the proposed methodology to a data set of life expectancy at birth
of males and females with GDP (in USD) per capita as a covariate for 210 countries or
regions. The data are available from the World Factbook 2020 of CIA. Similar data sets were
analyzed in Gijbels et al. [18] and Abegaz et al. [9]. Life expectancy at birth summarizes the
average number of years to be lived in a country, while GDP per capita is often considered
as an indicator of a country’s standard of living. We are interested in the dependence
between the life expectancy at birth of males and females and would like to see if the
strength of dependence is influenced by the GDP per capita. In other words, it is of interest
to investigate the dependence between the life expectancy at birth of males (Y1) and females
(Y2) conditioning on the covariate X, where X = log10(GDP) is a log10 transformation of
GDP per capita.

The pairwise scatterplots of the data are shown in Figure 3a, from which we can see
that there is strong positive correlation between the life expectancy of males (referred to as
Male) and females (referred to as Female). Figure 3a also shows that the life expectancy
tends to increase with the log10 transformation of GDP per capita (referred to as log10.GDP)
for both males and females. Before estimating the conditional copula of (Y1, Y2) given
X, we first remove the effect of the covariate X on the marginal distributions of Y1 and
Y2. As a result, the covariate-adjusted pseudo-observations of Y1 and Y2 (referred to as
Male.pseudo and Female.pseudo, respectively) and the pseudo-observations of X (referred
to as log10.GDP.pseudo) are given in Figure 3b.

We then estimate the conditional copula and the conditional dependence of life ex-
pectancy at birth of males and females given the covariate X. Figure 4 shows the estimated
conditional Kendall’s tau as a function of log10(GDP). It can be observed from the plot
that the estimate of Kendall’s tau decreases from around 0.8 to 0.6 as the GDP per capita
increases from 103 = 1000 to 104.6 ≈ 40,000 USD, and it picks up slightly as the GDP
per capita becomes greater than 40,000 USD. Overall, the dependence between the life
expectancy at birth of males and females is relatively larger for countries with a lower GDP
per capita (less than 10,000 USD), and the dependence is relatively smaller for countries
with a higher GDP per capita (greater than 10,000 USD).
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(a) pairwise scatterplots of the raw data (b) pairwise scatterplots of the pseudo data
Figure 3. Life expectancy data.

Figure 4. Estimated conditional Kendall’s tau as a function of log10(GDP).

5. Conclusions

This article provides a nonparametric approach for estimating conditional copulas
based on the empirical checkerboard Bernstein copula (ECBC) estimator. The proposed
nonparametric method has its own advantages compared to the semiparametric methods
as it fixes the issue of model misspecification by not relying on any selection of copula
family and demonstrates a good finite-sample performance. The large-sample consistency
of the proposed ECBC-based conditional copula estimator is also presented. In addition,
we derive closed-form nonparametric estimates of the conditional dependence measures
from the proposed estimator.

Due to the complexity in modeling and inference caused by the dependence of con-
ditional copula on the covariates, it is quite common in practice, particularly for vine
copulas, to assume that the dependence structure is not influenced by the value of covari-
ates, which is referred to as ‘simplifying assumption’. Under simplifying assumption, the
conditional copula CI|J(|VJ = vJ) does not depend on vJ , i.e., for every uI ∈ [0, 1]p, the
function vJ ∈ Rq → CI|J(uI |VJ = vJ) is a constant function (that depends on uI). See,
e.g., Haff et al. [31], Acar et al. [32], Stoeber et al. [33], Nagler and Czado [34] and Schellhase
and Spanhel [35]).

In the literature, there have been some available tests of the simplifying assumption;
see Acar et al. [36], Gijbels et al. [37], Gijbels et al. [38], Derumigny and Fermanian [39],
Kurz and Spanhel [40], etc. Our proposed ECBC-based conditional copula estimator can
be useful for constructing new tests of the simplifying assumption. We have shown the
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framework of obtaining a general estimate of the conditional copula that is allowed to
vary with the value of covariates. It is also straightforward to obtain an estimate satisfying
the simplifying assumption based on the covariate-adjusted pseudo-observations again
using the ECBC estimator. Therefore, it could be possible to build test statistics based on
some discrepancy criteria like the Kolmogorov–Smirnov type, Anderson–Darling type, etc.,
where the distributions of such test statistics could be approximated by bootstrap schemes.

Another interesting topic for future work would be extending the estimation frame-
work to high-dimensional conditional copula. We can perhaps first use some dimension
reduction methods like principal component analysis (PCA) and then develop copula
models based on the lower dimensional principal components of the covariates.
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Appendix A

Proof of Theorem 1. We denote

Pm,k(v) =
(

m
k

)
vk(1 − v)m−k. (A1)

Then, we can rewrite the Bernstein copula as

B(C; u1, u2, v) =
l1

∑
h1=0

l2

∑
h2=0

m

∑
k=0

C
(

h1

l1
,

h2

l2
,

k
m

)
Pl1,h1(u1)Pl2,h2(u2)Pm,k(v), (A2)

and the ECBC copula estimator as

B(C#
n; u1, u2, v) =

l1

∑
h1=0

l2

∑
h2=0

m

∑
k=0

C#
n

(
h1

l1
,

h2

l2
,

k
m

)
Pl1,h1(u1)Pl2,h2(u2)Pm,k(v), (A3)

where C#
n is the empirical checkerboard copula. Thus, the partial derivative of three-

dimensional ECBC B(C#
n; u1, u2, v) with respect to v takes the form of

C#(1)(u1, u2|v) ≡
∂B(C#

n; u1, u2, v)
∂v

=
l1

∑
h1=0

l2

∑
h2=0

m

∑
k=0

C#
n

(
h1

l1
,

h2

l2
,

k
m

)
Pl1,h1(u1)Pl2,h2(u2)P

′
m,k(v),

(A4)

where P
′
m,k(v) is the derivative of Pm,k(v) with respect to v.

Let us denote the partial derivative of the Bernstein copula B(C; u1, u2, v) with respect
to v as

C(1)(u1, u2|v) ≡
∂B(C; u1, u2, v)

∂v

=
l1

∑
h1=0

l2

∑
h2=0

m

∑
k=0

C
(

h1

l1
,

h2

l2
,

k
m

)
Pl1,h1(u1)Pl2,h2(u2)P

′
m,k(v),

(A5)
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and the partial derivative of the empirical Bernstein copula B(Cn; u1, u2, v) with respect to
v as

C(1)
n (u1, u2|v) ≡

∂B(Cn; u1, u2, v)
∂v

=
l1

∑
h1=0

l2

∑
h2=0

m

∑
k=0

Cn

(
h1

l1
,

h2

l2
,

k
m

)
Pl1,h1(u1)Pl2,h2(u2)P

′
m,k(v).

(A6)

Using the triangle inequality, we have

||C#(1) − Cv||(v) ≤ ||C#(1) − C(1)||(v) + ||C(1) − Cv|(v)

≤ ||C#(1) − C(1)
n ||(v) + ||C(1)

n − C(1)|(v) + ||C(1) − Cv||(v).

First, we can show that

||C#(1) − C(1)
n ||(v)

= ||
l1

∑
h1=0

l2

∑
h2=0

m

∑
k=0

(
C#

n

(
h1

l1
,

h2

l2
,

k
m

)
− Cn

(
h1

l1
,

h2

l2
,

k
m

))
Pl1,h1(u1)Pl2,h2(u2)P

′
m,k(v)||(v)

≤ max
0≤h1≤l1,0≤h2≤l2,0≤k≤m−1

∣∣∣∣C#
n

(
h1

l1
,

h2

l2
,

k + 1
m

)
− Cn

(
h1

l1
,

h2

l2
,

k + 1
m

)∣∣∣∣
l1

∑
h1=0

l2

∑
h2=0

m

∑
k=0

|Pl1,h1(u1)||Pl2,h2(u2)||P
′
m,k(v)|

≤ max
0≤h1≤l1,0≤h2≤l2,0≤k≤m−1

∣∣∣∣C#
n

(
h1

l1
,

h2

l2
,

k + 1
m

)
− Cn

(
h1

l1
,

h2

l2
,

k + 1
m

)∣∣∣∣ m

∑
k=0

|P′
m,k(v)|.

In the above, the second inequality follows from the fact that since (
lj
hj
)u

lj
j (1 − uj)

lj−hj ,

lj = 0, 1, . . . , hj, j = 1, 2 are binomial probabilities, ∑
lj
hj=0 (

lj
hj
)u

hj
j (1 − uj)

lj−hj = 1 for any

uj ∈ [0, 1], j = 1, 2. Under the assumption that the marginal CDFs are continuous, it follows
from Remark 2 in Genest et al. [41] that for d-dimensional copula

||C#
n − Cn|| ≤

3
n

,

and from Lemma 1 in Janssen et al. [26], it follows that for any fixed 0 < v < 1,

m

∑
k=0

|P′
m,k(v)| ∼

√
2
π

m1/2√
v(1 − v)

= O(m1/2) as m → ∞.

Thus, for any fixed 0 < v < 1, we have

||C#(1) − C(1)
n ||(v)

≤ max
0≤h1≤l1,0≤h2≤l2,0≤k≤m−1

∣∣∣∣C#
n

(
h1

l1
,

h2

l2
,

k + 1
m

)
− Cn

(
h1

l1
,

h2

l2
,

k + 1
m

)∣∣∣∣ m

∑
k=0

|P′
m,k(v)|

≤ ||C#
n − Cn||

m

∑
k=0

|P′
m,k(v)| = O(m1/2n−1).

Next, we can use a similar technique to show that

||C(1)
n − C(1)|(v)

≤ max
0≤h1≤l1,0≤h2≤l2,0≤k≤m−1

∣∣∣∣Cn

(
h1

l1
,

h2

l2
,

k + 1
m

)
− C

(
h1

l1
,

h2

l2
,

k + 1
m

)∣∣∣∣ m

∑
k=0

|P′
m,k(v)|
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By using Lemma 1 in Janssen et al. [42] and Equation (3) in Kiriliouk et al. [43], for the
d-dimensional copula, we obtain

||Cn − C|| ≤ 3
n
+ O(n−1/2(log log n)1/2) a.s.

= O(n−1/2(log log n)1/2) a.s..

Thus, it follows that for any fixed 0 < v < 1,

||C(1)
n − C(1)||(v) = O(m1/2n−1/2(log log n)1/2), a.s..

Hence, for any fixed 0 < v < 1, we have

||C#(1) − C(1)||(v) ≤ ||C#(1) − C(1)
n ||(v) + ||C(1)

n − C(1)|(v) = O(m1/2n−1/2(log log n)1/2), a.s..

Next, by mean value theorem, there exists k
m < ξk <

k+1
m s.t.

C(1)(u1, u2|v)

=
l1

∑
h1=0

l2

∑
h2=0

m−1

∑
k=0

m
(

C
(

h1

l1
,

h2

l2
,

k + 1
m

)
− C

(
h1

l1
,

h2

l2
,

k
m

))
Pl1,h1(u1)Pl2,h2(u2)Pm−1,k(v),

=
l1

∑
h1=0

l2

∑
h2=0

m−1

∑
k=0

Cv

(
h1

l1
,

h2

l2

∣∣ξk

)
Pl1,h1(u1)Pl2,h2(u2)Pm−1,k(v),

=
l1

∑
h1=0

l2

∑
h2=0

m−1

∑
k=0

(
Cv

(
h1

l1
,

h2

l2

∣∣ξk

)
− Cv

(
h1

l1
,

h2

l2

∣∣ k
m − 1

)
+ Cv

(
h1

l1
,

h2

l2

∣∣ k
m − 1

))
Pl1,h1(u1)Pl2,h2(u2)Pm−1,k(v).

Notice that

k
m

− k + 1
m

<
k
m

− k
m − 1

< ξk −
k

m − 1
<

k + 1
m

− k
m − 1

<
k + 1

m
− k

m
,

which means that ∣∣∣∣ξk −
k

m − 1

∣∣∣∣ < 1
m

.

If Cv(u1, u2|v) = ∂C(u1,u2,v)
∂v is Lipschitz continuous on [0, 1]3, then there exists a Lips-

chitz constant L s.t.∣∣∣∣Cv

(
h1

l1
,

h2

l2

∣∣ξk

)
− Cv

(
h1

l1
,

h2

l2

∣∣ k
m − 1

)∣∣∣∣ ≤ L
∣∣∣∣ξk −

k
m − 1

∣∣∣∣ ≤ L
m

,

and based on Lemma 3.2 in Segers et al. [30], we also have

||
l1

∑
h1=0

l2

∑
h2=0

m−1

∑
k=0

Cv

(
h1

l1
,

h2

l2

∣∣ k
m − 1

)
Pl1,h1(u1)Pl2,h2(u2)Pm−1,k(v)− Cv||

≤ L
(

1
2
√

l1
+

1
2
√

l2
+

1
2
√

m − 1

)
.
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Thus,

||C(1) − Cv||(v)

≤ ||
l1

∑
h1=0

l2

∑
h2=0

m−1

∑
k=0

(
Cv

(
h1

l1
,

h2

l2

∣∣ξk

)
− Cv

(
h1

l1
,

h2

l2

∣∣ k
m − 1

))
Pl1,h1(u1)Pl2,h2(u2)Pm−1,k(v)||

+ ||
l1

∑
h1=0

l2

∑
h2=0

m−1

∑
k=0

Cv

(
h1

l1
,

h2

l2

∣∣ k
m − 1

)
Pl1,h1(u1)Pl2,h2(u2)Pm−1,k(v)− Cv||

≤ L
m

+ L
(

1
2
√

l1
+

1
2
√

l2
+

1
2
√

m − 1

)
.

Finally, for any fixed 0 < v < 1, we obtain

||C#(1) − Cv||(v) ≤ ||C#(1) − C(1)||(v) + ||C(1) − Cv||(v)

≤ L
m

+ L
(

1
2
√

l1
+

1
2
√

l2
+

1
2
√

m − 1

)
+ O(m1/2n−1/2(log log n)1/2), a.s..

The empirical prior of the degrees m, l1, and l2 is given as

m|α ∼ Poisson(nα) + 2 and α ∼ Uni f
(1

3
,

2
3

)
,

lj|αj ∼ Poisson(nαj) + 1 and αj ∼ Uni f
(1

3
,

2
3

)
j = 1, 2.

Notice that Pr( 1
3 ≤ α ≤ 2

3 ) = 1 and Pr( 1
3 ≤ αj ≤ 2

3 ) = 1, j = 1, 2; then, E(m1/2n−1/2

(log log n)1/2) ≤ n1/3n−1/2(log log n)1/2 → 0 as n → ∞. In the proof of Theorem 1 in Lu

and Ghosh [24], it has been shown E
(√

1
lj

∣∣αj

)
≤
√

1−e−n
αj

nαj → 0, j = 1, 2, E
(√

1
m−1

∣∣α) ≤√
1−e−nα

nα → 0 as n → ∞ and E
(

1
m

∣∣α) ≤ 1−e−nα

nα → 0 as n → ∞. Thus, taking expectation
with respect to the prior distributions of l1, l2 and m as given for ECBC, it follows that

E(||C#(1) − Cv||(v))

≤ E
(

L
m

)
+ E

(
L
(

1
2
√

l1
+

1
2
√

l2
+

1
2
√

m − 1

))
+ E

(
O(m1/2n−1/2(log log n)1/2)

)
→ 0 as n → ∞ a.s.

Since C(u1, 1|v) = u1 and C(1, u2|v) = u2 and C#(1)(u1, u2|v) converges to Cv(u1, u2|v)
uniformly on [0, 1]2 as n → ∞ for any fixed 0 < v < 1, then we have

E(||F1(u1|v)− u1||(v)) ≡ E

(
sup

u1∈[0,1]
|F1(u1|v)− u1|

)
= E

(
||C#(1)(u1, 1|v)− C(u1, 1|v)||(v)

)
≤ E

(
||C#(1) − C(1)||(v)

)
a.s.→ 0,

and

E(||F2(u2|v)− u2||(v)) ≡ E

(
sup

u2∈[0,1]
|F2(u2|v)− u2|

)
= E

(
||C#(1)(1, u2|v)− C(1, u2|v)||(v)

)
≤ E

(
||C#(1) − C(1)||(v)

)
a.s.→ 0.

For any fixed 0 < v < 1, F1 and F2 are non-decreasing functions, so F−1
1 (u1|v)

a.s.→ u1

and F−1
2 (u2|v)

a.s.→ u2. Thus, we obtain the uniform convergence of

E(||C# − Cv||(v)) = E(||C#(1)(F−1
1 (u1|v), F−1

2 (u2|v)|v)− Cv||(v))
a.s.→ 0
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as n → ∞ for any fixed 0 < v < 1.
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