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Abstract: Human–robot interaction is becoming increasingly common to perform useful tasks in
everyday life. From the human–machine communication perspective, achieving effective interaction
in natural language is one challenge. To address it, natural language processing strategies have
recently been used, commonly following a supervised machine learning framework. In this context,
most approaches rely on the use of linguistic resources (e.g., taggers or embeddings), including
training corpora. Unfortunately, such resources are scarce for some languages in specific domains,
increasing the complexity of solution approaches. Motivated by these challenges, this paper explores
deep learning methods for understanding natural language commands emitted to service robots
that guide their movements in low-resource scenarios, defined by the use of Spanish and Nahuatl
languages, for which linguistic resources are scarcely unavailable for this specific task. Particularly,
we applied natural language understanding (NLU) techniques using deep neural networks and
transformers-based models. As part of the research methodology, we introduced a labeled dataset
of movement commands in the mentioned languages. The results show that models based on
transformers work well to recognize commands (intent classification task) and their parameters (e.g.,
quantities and movement units) in Spanish, achieving a performance of 98.70% (accuracy) and 96.96%
(F1) for the intent classification and slot-filling tasks, respectively). In Nahuatl, the best performance
obtained was 93.5% (accuracy) and 88.57% (F1) in these tasks, respectively. In general, this study
shows that robot movements can be guided in natural language through machine learning models
using neural models and cross-lingual transfer strategies, even in low-resource scenarios.

Keywords: natural language understanding; intent classification; slot filling; deep learning models;
service robots; low-resource domains; Nahuatl and Spanish utterances

MSC: 68T50

1. Introduction

Nowadays, the interaction between humans and robots in daily life has become a
common activity, mainly to accomplish useful tasks for humans [1]. An important challenge
is enabling robots to execute instructions conveyed in natural language (e.g., commands).
This form of communication simplifies the process for non-expert users in robotics to
instruct the machines on the task to be performed [2]. Recently, to face this challenge,
solutions based on natural language processing (NLP) have been proposed [3,4]. In partic-
ular, approaches based on natural language understanding (NLU) techniques have been
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proposed and evaluated as promising alternatives [5,6]. Overall, these approaches enable
the identification and extraction of parameters from commands provided to robots, such as
units of measurement, names, dates, and locations.

Frequently, NLU approaches in this field follow a supervised machine learning per-
spective, causing dependence on labeled training datasets. Therefore, one of the main
challenges is the availability of training data in different languages. In this context, human–
robot interaction faces complex challenges because many languages worldwide lack train-
ing corpora or linguistic resources for their processing (e.g., dictionaries and part-of-speech
taggers). Furthermore, there are domains in which only limited resources are available [7,8].
Particularly, work with indigenous languages faces challenges such as morphological com-
plexity and limited training data, as well as dialectal and orthographic variation [9]. To
solve these problems, some efforts have emerged to develop methods or tools involving
automatic translation and automatic speech recognition. For instance, for the machine
translation task, diverse contributions were presented at the First Workshop on Natural
Language Processing for Indigenous Languages of the Americas 2021 [10]. However,
understanding commands for robots in these languages is a low-resource domain that has
received little attention.

In this paper, we evaluated NLU approaches to map movement instructions emitted in
natural language for service robots, specifically Spanish and Nahuatl, into an intermediate
representation that can be easily translated to robot actions. The fundamental challenges
in NLU involve two tasks: identifying the intended action (intent classification) and
identifying the parameters associated with that action (slot filling) [11,12]. We explored
these tasks in Spanish and Nahuatl languages by evaluating deep neural architectures
such as biLSTM (Bidirectional Long Short-Term Memory) [13] and biGRU (Bidirectional
Gated Recurrent Unit) [14]. Since this scenario has low annotated data, we also evaluated
large pre-trained language models such as BETO and multilingual BERT [15]. Additionally,
we studied the use of zero [16,17] and few-shot [18,19] learning techniques to face the
scarcity of labeled data. As part of the methodology, we created a dataset containing
labeled movements in Spanish and Nahuatl to address the movements of mobile robots.

It is worth mentioning that the integration of technology into indigenous communities
is important for the development of a country. Designing applications specifically for
Nahuatl speakers enhances technology accessibility within their communities, contributes
to the preservation of the language, and reduces its marginalization. Particularly, Nahuatl is
a prominent indigenous language in Mexico with approximately 1,651,958 speakers across
at least 16 states [20]. To date, this domain has a low availability of linguistic resources for
these languages. For example, in the case of Nahuatl, monolingual and parallel datasets
are important to develop NLU-based methods; however, they are scarce [21].

The main contributions of this work are summarized as follows:

• Evaluation of different deep neural network models and pre-trained transformer-
based language models for identifying commands and parameters of movements
robot using low-resources scenarios from an NLU perspective: In particular, we
explored instructions specified in Spanish and Nahuatl languages, where this task
lacks annotated data. To our knowledge, using an indigenous language, especially
Nahuatl, has not been evaluated in this domain. Therefore, we provide the first
extensive study of the use of Nahuatl to guide service robots.

• A new labeled parallel corpus in Spanish and Nahuatl containing movement instruc-
tions for mobile robotics: While this dataset was created for intent classification and
slot-filling tasks, it can be utilized to investigate various NLP tasks. This dataset will
be publicly available for investigation purposes and to motivate further research on
this topic.

• An analysis of few-shot learning strategies adapted for classifying Nahuatl instances
in a low-resource cross-lingual scenario: To our knowledge, this strategy has not been
explored for identifying commands for a mobile robot in Nahuatl.
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• An analysis of the robustness of the models: We analyze the models’ performance
when errors are considered intentionally as a simulation of their potential application.

The rest of the document is organized as follows: Section 2 presents related work
and theoretical background. Section 3 introduces the data collection used in this research.
Section 4 exposes the implementation of the classification models. Section 5 presents the
experiments and results. Section 6 analyzes the impact of pre-trained word vectors applied
in the experiments and evaluates the robustness of the models to noise. Finally, conclusions
and future work are presented in Section 7.

2. Related Works and Theoretical Background
2.1. Natural Language to Interact with Robots

The interaction between humans and robots has gained importance recently, marking a
significant change in human–machine communication. Adopting natural language instead
of low-level machine languages has been a considerable focus in this area [1]. Significant ef-
forts have been made to translate natural language into commands for robots. For example,
in [22], the authors used a semantic analyzer to address the problem of converting natural
language commands in English into robot command language (RCL). For instance, the in-
struction “take a left, then the next right” is converted into the commands (do-sequentially
<turn-left> <turn-right>). The authors utilized the SemEval 2014 dataset, which consists
of 3409 English commands. The sequences with the highest probability were obtained
using a Hidden Markov Model tagger, achieving an overall accuracy of 92.45%. In [1],
an encoder–decoder RNN was used to translate natural language movement commands
into a set of precise trajectories, which include commands and related parameters to the
robot movements. The authors used a dataset consisting of 1600 unique entries in English,
obtaining an average accuracy of 79.23% and 73.65% for single and multiple movement
commands within a sentence, respectively.

Lately, deep neural networks have been evaluated in this field [23,24]. An example is
the [25] study, where a seq2seq neural network with LSTM was implemented to translate
Spanish commands into RCL, using a corpus resulting in 3785 sentences after expanding
seven original sentences. Another significant development is the ability of robots to under-
stand English navigation instructions as described in [26], where a dataset of 706 natural
language navigation instructions was used to achieve 56% accuracy in simulation systems
and 44.83% in field systems. Additionally, [27] demonstrated how a robotic planner can
understand English scripts to move and manipulate objects in a continuous configuration
space, achieving a 72% success rate on a test set of 657 statements.

2.2. Natural Language Understanding Approaches

Recently, NLU-based solutions have been used to address the challenge of compre-
hending human utterances in interactions with robots. The main goal is to understand
the meaning and intention of instructions expressed in natural languages. NLU typically
includes two tasks to provide a semantic analysis of user expressions: intent classification
and slot filling.

2.2.1. Intent Classification and Slot-Filling Tasks

The intent classification task (hereafter denoted as IC) determines the intention or
purpose behind a statement or query made by a user in natural language [28]. It can be
modeled as a sentence classification task, where each utterance is labeled with an intent [29].
For example, in the phrase “the vehicle runs at 3 km/h”, the intent is to run, which can
be mapped to a specific command of the intermediate language to control a mobile robot
(e.g., forward). Alternatively, in the slot filling task (hereafter referenced as SF), it is often
focused on identifying relevant information to understand the context and intention of the
user (i.e., arguments of the intents) [28]. Commonly, it uses IOB (inside–outside–beginning
tagging) to identify and extract specific and structured information from a text [30] with
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the aim of more deeply understanding the information contained in the text. For instance,
in the following sentence, “the vehicle runs at 3 km/h”, the slot is “3 km/h”.

These tasks can be formally described as follows. Given an input utterance x =
(x1, x2, . . . , xT), where xi are the tokens, and T is the total number of tokens in the utterance,
the IC task is defined as the classification that assigns a correct intent label yintent to the
whole utterance x. The SF task is a token-level sequence labeling that assigns a correspond-
ing slot label to each token xi in the utterance, that is, yslot = yslot

1 , yslot
2 , . . . , yslot

T [11]. This
task is commonly used to extract the parameters (e.g., values, quantities, and units) or
specific information contained in the statements.

The two mentioned tasks have traditionally been tackled independently [31]. However,
more recently, several authors have devised strategies for addressing both assignments
concurrently [32,33] (hereafter denoted as the joint task). The aim is modeling and exploit-
ing the dependencies between the tasks—intents and slot filling—to improve performance
using a joint architecture. On the contrary, conducting each task in an independent manner
involves using and training architectures separately [34].

Different research works have tackled tasks related to intent classification and pa-
rameter detection. For example, in [35], a probabilistic graphical model is presented for
understanding natural language commands provided to autonomous systems that perform
mobile navigation in semi-structured environments. The performance reported was 86%
(accuracy) on an English corpus. On the other hand, [36] tackled the problem of giving
instructions in English, focusing on commands that model actions and their arguments.
For these tasks, the authors evaluated RNN and LSTM architectures. They also created a
dataset using the RoboCup’s generator (https://github.com/RoboCupAtHome/gpsr_co
mmand_generator, accessed on 5 September 2023). Similarly, the work presented in [37]
conducted a comparative analysis of four natural language understanding models: Mbot,
Rasa, LU4R, and ECG. The models were evaluated to comprehend commands for domestic
service robots. This includes recognizing actions and any supplementary information
within the commands. The results showed that Mbot and Rasa were models suitable for
this task.

2.2.2. Common Evaluation Metrics

The IC task is typically approached as a supervised classification problem, where the
common evaluation metrics are accuracy, precision, recall, and F1-score [38]. On the other
hand, the SF task is commonly evaluated at an entity level using evaluation metrics from
the Named Entity Recognition (NER) task [39] and following a multi-class classification
setting. The IOB format represents the data labels as Begin, Inside, and Outside tags. In
this regard, each slot type is considered as a classification label [38].

2.3. Deep Neural Networks and Large Pre-Trained Language Models

This section describes the theoretical background of models evaluated in this research.
It is organized into two subsections: deep neural networks and transformer-based models.

2.3.1. Deep Neural Networks

The architectures of neural networks are widely used in natural language processing
tasks and other applications related to sequence analysis. In general, deep neural models
use vectors of numbers from data, commonly word embeddings [40]. We introduce word
embeddings and some deep neural architectures in the following paragraphs.

Word Embeddings

These word vectors are numeric vectors representing words in a lower-dimensional
space and allowing words with similar meanings to have similar representations [41].
Hence, they are commonly used to capture semantic and contextual information. Generally,
these vectors can be learned from unlabeled data by applying techniques such as Word2vec
or FastText. The Word2vec model uses two main architectures to train the word vectors:

https://github.com/RoboCupAtHome/gpsr_command_generator
https://github.com/RoboCupAtHome/gpsr_command_generator
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Continuous Bag of Words (CBOW) and Skip-gram. The FastText model is an approach
based on the Skipgram model to learn word representations by considering subword
information [42]. Nowadays, it is a common practice to feed neural networks with word
vector representations, using them as the first data-processing layer [43]. Furthermore,
using pre-trained word embeddings has shown to be a powerful tool for different natural
language processing tasks [44,45].

Bidirectional Long Short-Term Memory (biLSTM)

The bidirectional LSTM network is a type of LSTM that was developed to enhance
the model’s performance in data classification processes, specifically within sequence
structures [46]. Bidirectional LSTMs make a backward and forward pass through the
sequence before passing on to the next layer [47]. This network is commonly used in the
Named Entity Recognition (NER) task [48].

Bidirectional Gated Recurrent Unit (biGRU)

A biGRU refers to a bidirectional variant of a GRU. It is often regarded as two RNNs
stacked on top of each other [49]. Each recurrent unit in a Gated Recurrent Unit (GRU)
network captures dependencies across different time scales. Like the LSTM unit, the
GRU architecture has gating units that modulate the flow of information within the unit
but without separate memory cells [50]. In NLP tasks, this architecture is important to
understand the context of a word in a sentence.

Conditional Random Field (CRF)

The CRF-based methods have shown to be effective approaches for addressing se-
quence labeling tasks [51]. The CRF models focus on the sentence level rather than indi-
vidual positions to find optimal sequences of labels. The inputs and outputs are directly
connected, unlike LSTM and bidirectional LSTM networks, where recurrent memory cells
are employed. It has been demonstrated that CRFs can achieve higher labeling accuracy
overall [52].

2.3.2. Transformer-Based Pre-Trained Language Models

NLP advances recently incorporated transformer-based pre-trained language models,
showing superior performance on various natural language processing tasks [53,54]. The
transformer architecture is based on attention mechanisms [55], either the self-attention
mechanism or Multi-Head Attention [56]. The successful performance achieved by this
architecture in different NLP tasks has inspired the development of large pre-trained
language models working under the “pre-training then fine-tuning” paradigm [15]. This
implies that language models can be pre-trained on large unannotated corpora and fine-
tuned for specific tasks on smaller supervised datasets. In this regard, Bert-based models
have recently gained popularity.

Bert-Based Models

Recently, language-pre-trained transformer-based models have shown to be successful
in several NLP tasks, for example, BERT [57], ROBERTA [58], etc. In particular, BERT,
which stands for Bidirectional Encoder Representations from Transformers (BERT), is an
architecture transformer-based neural network architecture. This pre-trained model was
trained on large amounts of text. During its training, BERT learns to predict hidden words
in a sentence due to its bidirectional contextualization. This pre-training technique allows
BERT to capture complex semantic and syntactic relationships in language [57].

BERT can be adapted for tasks with a smaller and more specific dataset through a
fine-tuning process [4,57]. In the following paragraphs, two pre-trained models applied in
this research are briefly described:

• Multilingual BERT: Unlike BERT, which was trained on English data, Multilingual
BERT (hereafter, denoted as mBERT) was trained on Wikipedia in 104 different lan-
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guages [59]. Its ability to generalize in a cross-lingual manner [59] allows capturing
shared linguistic knowledge across different languages [60].

• BETO: This is a pre-trained BERT-based language model for Spanish NLP tasks with a
similar size to the BERT model and trained on a large Spanish corpus gathered from
different sources [61]. BETO has shown its effectiveness in tasks in Spanish, such
as text classification and named entity recognition, outperforming other pre-trained
multilingual models [61,62].

Recently, several works have leveraged the properties of pre-trained models to study
the interaction of robots and humans. In this context, Bucker et al. [63] developed a
natural language interface for human–robot interaction, allowing users to adjust the trajec-
tories of autonomous agents. To achieve this, they utilized BERT and CLIP (Contrastive
Language-Image Pre-training) for fusing language data with trajectory information through
multimodal transformers. The experiments revealed that this integration yields more in-
tuitive interfaces than conventional approaches. It is important to mention that a few
works address the use of languages other than English. For example, [64] developed a
BERT-based model to tackle Turkish natural language understanding building a single
model for both NLU tasks (intent and slot classification). However, little attention has been
paid to processing utterances in indigenous languages such as Nahuatl.

Cross-Lingual Transfer Learning

The cross-lingual setting is a concept focused on performing detection tasks where
there are few or non-existent training datasets in the target language [65]. It has been
used to leverage data from higher-resource languages to enhance classification models’
performance on low-resource languages. In recent years, large pre-trained transformer-
based models have shown their effectiveness for tackling cross-lingual transfer learning to
transfer knowledge from one language to another [66]. In this regard, two settings recently
explored are zero-shot and few-shot cross-lingual learning.

In the zero-shot learning case, a pre-trained model is fine-tuned on task-specific super-
vised training data in the source language (e.g., English), and it is used for evaluating the
task on another target-language test data [18,67,68], that is, not a single labeled instance
exists for a target language [17]. Zero-shot cross-lingual has been used for different text
classification tasks, such as news sentiment classification [69] and named entity disambigua-
tion [70]. Recently, this ability has been exploited to tackle tasks involving low-resource
languages [71].

On the other hand, cross-lingual few-shot learning aims to classify inputs based
on only a limited number of samples (shot) [65]. Recently, few-shot crosslingual trans-
fer has outperformed zero-shot learning on several text classification tasks [72]. Also,
few-shot learning has shown skills to address the low-resource challenge in non-English
languages [73]. The multilingual BERT model has shown cross-lingual capabilities, per-
forming well as a zero-shot cross-lingual transfer model [74]. Some studies have shown
sensitivity to the selection of few shots [18].

Recently, some methods have emerged for intent classification and slot-filling tasks on
few-shot settings using benchmarks such as ATIS, CLINC, and SNIPS [75,76]. However,
we did not find approaches under these scenarios that guide a robot in Nahuatl.

2.4. Evaluating the Robustness of Text Classification Systems with Noisy Data

Noise in text analysis has a significant impact on classifier performance. Hence, data
cleaning is a crucial part of the data-processing cycle. However, unstructured text with
noise is common in automatic environments, such as speech transcription or handwriting
recognition [77]. In most NPL tasks, it is difficult to guarantee the absence of noise in the
data. In this regard, the work in [77] simulated noise on benchmark datasets to study the
effect of different types of noise on automatic text classification. On the other hand, the
authors in [78] proposed methods to enhance the robustness of machine translation systems
by emulating natural noise in clean data.
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In particular, to enable a service robot to understand a motion command even when
the commands contain grammatical and word recognition errors due to voice-to-text tran-
scription by automatic speech recognition systems, it is necessary to train the classification
model with a dataset that includes transcription errors [79]. In this regard, we evaluated the
robustness of the models by introducing typographical errors into the dataset, simulating
transcription errors due to Automatic Speech Recognition (ASR) systems [77].

3. Data Collections

We constructed a dataset comprising commands in Nahuatl and Spanish to conduct the
experiments. This contains manually labeled phrases related to service robot navigation, for
example, the command “carrito muévete lentamente por la calle” in Spanish and “tepostle
xi nemi cayolic ipan octle” in Nahuatl, which correspond to the phrase “cart moves slowly
down the street” in English. The dataset contains a total of 383 natural language navigation
instructions for each language. The dataset includes the following fields: phrase, category,
and entity tagging in IOB format (which is commonly used for labeling tokens tasks related
to named entity recognition). Figures 1 and 2 show an example of one command in Spanish
and Nahuatl in the datasets: “robot turns thirty-five degrees” and “tepoztle xi mollini ipan
opochmaitl”, respectively. In the figures, the entities and intentions are shown along with
the IOB tagging. Particularly, in the IOB format, the symbols B, I, and O indicate the start
of a named entity, a token that is inside a named entity, and a token that is not part of any
named entity, respectively [80].

Phrase: robot  gira  treinta               y                      cinco                grados
(robot turns thirty-five degrees)

Entity tagging:     O     O  B-turn_quantity  I-turn_quantity  I-turn_quantity  B-turn_unit

Category: Girar (Turns)

Figure 1. Example output for intent classification and slot filling of a natural language instruction
in Spanish.

Phrase: tepoztle xi mollini ipan opochmaitl           isiuhca
(robot turns left hand quickly)

Entity tagging:     O     O  O       O    B-angle_direction  B-velocity_quantity

Category: Girar (Turns)

Figure 2. Example output for intent classification and slot filling of a natural language instruction
in Nahuatl.

To build the dataset, we collected several commands in Spanish during mobile robotics
competitions in university contests. These commands were translated manually into Nahu-
atl language by a Nahuatl speaker (this activity was performed by Amadeo Hernández,
the first author of this paper, a native Nahuatl speaker from Hidalgo Huasteca in Mexico).

Figure 3 provides an overview of the labeling process. As observed, each instruc-
tion passes through two labeling processes: intents and IOB. The output of this process
corresponds to the categorized expressions and the parameters labeled in IOB format.
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------------
------------
------------
------------
------------
------------
------

Utterances

Example
robot turns thirty-five degrees

Intent 
Labeling

IOB Tagging

Labeled Utterances

Example
Category: Turns

Example
Slot labels:
O O B-turn_quantity I-turn_quantity

Slot Tags

Figure 3. Representation of the data-labeling process for intent classification and slot-filling tasks.
Each instruction in the dataset is independently labeled for each task.

Some dataset statistics are given in Table 1. Since this is a parallel corpus, the Spanish
and Nahuatl datasets have an equal number of instances. The dataset partitions were
randomly generated, allocating 20% for testing, 15% for validation, and the remaining
percentage for training.

Table 1. Some statistics of the generated datasets for Spanish and Nahuatl languages. The categories
correspond to the intentions of the queries in the datasets.

Category

Partition Forward Turn Stop Backward Total

Training 53 84 57 55 249
Validation 16 20 11 10 57

Test 17 32 15 13 77

Total 86 136 83 78 383

The entities or slots correspond to the quantities and units involved in the instructions
of movements such as angles, coordinates, velocity, etc. Table 2 summarizes the entities in
the proposed datasets.

Table 2. Categories of entities used in the examples labeled in IOB format.

Label Category

angle Turn angle
coordinate Coordinates (x, y)
distance Advance distance
turn Turn in some direction
time Move for a certain time
velocity Move at a certain speed
O Uncategorized entity

4. Model Training and Configuration

In this research, we applied NLU techniques to evaluate the understanding of navi-
gation commands for service robots in low-resource domains. Specifically, we evaluated
some NLU-based methods to identify and extract specific information, such as the intention
behind the instruction (actions) and entity recognition (parameters necessary to act).

The models are focused on solving the intent classification and slot-filling tasks. We
also tested a joint approach that combines components designed to perform both previously
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mentioned tasks into a single network structure. The implementation of the models is
described in the following subsections.

4.1. Models Setup for Intent Classification and Slot Filling

For the Intent Classification (IC) task, the SVM, biLSTM, biGRU methods, and the
pre-trained models BETO [61] and mBERT [81] were tested. Word vectors were created
to be used as inputs to the neural networks, including pre-trained word vectors from
fastText [82] and Word2vec [83]. The softmax function was used in the final output layer to
obtain the probability of the intent.

For the slot-filling (SF) task, several methods were tested, including biLSTM, biL-
STM+CRF [84], biGRU, and the pre-trained models BETO and mBERT. The input to the
networks consisted of word vectors created from the training dataset, and pre-trained word
vectors from fastText and Word2vec were also applied. The output consists of one label for
each word in IOB format [80]. The training of the networks is performed in the same way
as in intent classification, using a subset of data from the Spanish and Nahuatl corpus.
The models described were configured as follows:

• biLSTM and biGRU: 112 hidden layers, 64 units, dropout layer of 0.2, batch size of 64,
and an Adam optimizer.

• BETO and mBERT: epochs 3, learning rate of 1 × 10−4, and batch size of 16.

In the biLSTM network, pre-trained Word2vec (https://code.google.com/archive/p/
word2vec/, accessed on 18 October 2023) and fastText (https://fasttext.cc/, accessed on 9
October 2023) word vectors of 300 dimensions were applied, which were obtained using
the Skip-gram model described in [42] with default parameters. The biLSTM network is
augmented with the CRF layer to decode the best tag sequence for the input sentences [84].

4.2. A Joint Model for Intent Classification and Slot Filling

To consider the interaction between the two tasks, intent classification and slot filling,
we implemented the following deep models:

• CNN-biLSTM. This joint model is based on a CNN-biLSTM architecture [31]. The
model integrates a Convolutional Neural Network (CNN) configured with 240 filters,
64 hidden layers and dropout layer of 0.2 with a biLSTM to identify intents and
extract the associated slots. The initial layer in the architecture of a model is a word
embedding layer. This layer feeds to a CNN layer as a feature extractor. This CNN
layer is succeeded by global max pooling and, subsequently, connected to a biLSTM
module to capture contextual information of the sequences. The output from the LSTM
feeds two branches. One branch generates target predictions by a TimeDistributed
module, while the other is a fully connected layer focused on classification intentions.

• biLSTM+CRF. The first layer is the word representation through embeddings, and
this layer is used as input to the biLSTM network. This network processes sequences
in two directions, allowing it to capture both the preceding and following context
of each word. The output of the biLSTM network is used as input to the CRF layer,
which models sequential dependencies among entity label tags while considering the
correlations between the tags [52].

• Joint model using BERT (joint-Bert). BERT is a language model based on the trans-
former architecture and has excelled in natural language processing (NLP) tasks. BERT
takes the entire input into account, allowing it to understand queries better. The joint
model simplifies intent classification (IC) and slot-filling (SF) tasks, as only one model
needs to be trained and fine-tuned for both tasks [34]. The input to the model con-
sists of sentences with annotations for intentions and slots, which are then converted
into tokenized representations, and attention masks are generated. A pre-trained
BERT model is used to fine-tune the model on the training data. The model’s output
sequences are used for intent classification and slot filling.

• Joint model using BETO (joint-BETO). This model follows the same architecture as the
previous one; we only changed the pre-trained model by BETO.

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://fasttext.cc/
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5. Experiments and Results

In this section, we present a series of experiments to classify natural language expres-
sions in Spanish and Nahuatl into commands with parameters that the service robot can
execute to reach the movement specified by the user. To accomplish this objective, we
address two tasks, IC and SF, performed independently (experiments 1 and 2) and using
a joint architecture (experiment 3). Table A1 in Appendix A presents a summary of the
experimental setup. It outlines the objective, language, task, and models evaluated for each
experiment.

Figure 4 presents the general workflow for conducting experiments. During the
training phase, we explored various architectures aimed at training a classifier. Specifically,
we assessed deep neural networks (e.g., BiLSTM and BiGRU) and pre-trained BERT-based
models through fine-tuning. In the prediction phase, the trained classifier assigns labels to
new unlabeled utterances. While the diagram outlines the pipeline for both tasks, they are
developed independently (with the exception of Experiment 3). Therefore, inputs (labeled
utterances with intents or annotations in IOB format) and outputs (intents or IOB tags)
depend on the task that is being evaluated.

Training a classifier

Fine-tuning

Training dataset
Labeled utterances with intentions (IC task)

or annotations in IOB format (SF task)

Tr
ai

n
in

g 
p

h
a

se
P

re
d

ic
ti

o
n

 p
h

as
e

Unlabeled 
utterances

Predicting labels
for unlabeled utterances

Classification outputs
(IC output or SF output)

Example:
robot turns thirty-five degrees

Example:
(robot turns left quickly, 
turn) 
or

Word 
Embeddings

RNN
Layers

Classification
Layer

Trained
classifier

Pre-trained
BERT-based 

models

(robot turns left quickly, 
O O O B-velocity)

Example
Category: Turn
or
IOB tags:
O O B-turn_quantity I-turn_quantity

Figure 4. Overview of the experimental framework. This is a general methodology that we followed
to conduct the experiments for intent classification and slot-filling tasks.

5.1. Experimental Settings
5.1.1. Pre-Processing

For the experiments, the text was converted to lowercase. Characters that interfere with
the sentence’s meaning, such as stop words, special characters, spaces, and punctuation
marks, were removed.

5.1.2. Baseline Methods

We considered a baseline method for each task: intent classification and slot filling.
For the former, a traditional Bag of Words (BOW) was trained using an SVM as the classifier.
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It was configured with a linear kernel and a regularization parameter of two. On the other
hand, a biLSTM model was used as a baseline method for the entity detection task. It was
configured with 112 hidden states, 64 units, a batch size of 64, and the Adam optimizer.

5.1.3. Evaluation

We mainly reported accuracy and macro F1-score measures, which are widely used to
assess the models’ performance in the intent classification and slot-filling tasks.

5.2. Experiment 1: Intent Classification

This experiment is aimed at evaluating the intent classification task for detecting the
intention of movement instructions for a service robot in Spanish and Nahuatl scenarios.
To achieve it, we evaluated methods based on deep neural networks such as a biLSTM, a
biGRU, and transformers (BETO and mBERT). Table 3 shows the performance obtained.
The results obtained by the baseline approach are also shown for comparison purposes.

Table 3. Experimental results in intent classification. Several deep neuronal architectures were
evaluated in Spanish and Nahuatl scenarios.

Method
Spanish Nahuatl

Accuracy F1-Score Accuracy F1-Score

SVM (baseline) 0.9091 0.8912 0.8571 0.8338
biLSTM 0.9351 0.9158 0.9091 0.8933
biGRU 0.9481 0.9350 0.9214 0.9067
mBERT 0.9740 0.9610 0.8831 0.8597
BETO 0.9870 0.9724 – –

The pre-trained model BETO obtained the best performance in Spanish, while the
biGRU-based model performed better for Nahuatl. Compared to the baseline in Spanish,
BETO surpassed it by 7.79% (accuracy), while in Nahuatl, the biGRU network achieved a
absolute difference of 6.43% with the baseline. These results suggest that transformer-based
methods have a wide understanding of the contexts in this task. In general, we observed
that the methods based on transformers outperformed the baseline in classifying long
utterances, compound sentences, or those containing compound words. For example,
for the Nahuatl case, we observed that the baseline found difficulties in classifying the
expression “quetzilnenemi”, which means “to walk slowly”. It should have been classified
as “Forward”; however, it was categorized as “backward”. This phrase is composed of
“quetzi”, which means slowly, and “nenemi”, which means to walk.

It is important to point out that, to date, we have not found a transformer specifically
trained for text classification in Nahuatl.

5.3. Experiment 2: Slot Filling

This experiment aims to evaluate deep neural architectures to detect action parameters
in Spanish and Nahuatl commands (i.e., the slot-filling task). We evaluated the models
biLSTM, biLSTM+CRF, biGRU, and the pre-trained transformers BETO and mBERT. The
results are shown in Table 4. It is possible to note that the biGRU network achieves the best
performance in Nahuatl scenarios, achieving values of F1-score of 89.92%.
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Table 4. Results of the slot-filling task. Different deep neural architectures were evaluated for the
Spanish and Nahuatl datasets.

Method
Spanish Nahuatl

Accuracy F1-Score Accuracy F1-Score

biLSTM (baseline) 0.9598 0.8905 0.9602 0.8550
biLSTM+CRF 0.9350 0.9090 0.9221 0.8701

biGRU 0.9724 0.9185 0.9735 0.8992
mBERT 0.9872 0.9256 0.9518 0.8857
BETO 0.9910 0.9696 – –

In general, the transformers-based models showed superior performance in Spanish,
while the biGRU network obtained the best results for the Nahuatl language. We noted
that in Spanish, the pre-trained model BETO achieved a performance of 96.96%, obtaining
a difference of 4.4% and 7.91% over the mBERT model and the baseline, respectively.
In contrast, for Nahuatl, the biGRU model outperformed the baseline by 4.42%. The
results suggest that while using transformers is appropriate, important outcomes are
achieved when they are pre-trained, specifically in the language under consideration.
Additionally, the findings showed that recurrent neural architectures offer an adequate
option for predicting parameters in movement instructions.

5.4. Experiment 3: Intent Classification and Slot Filling as a Joint Task

The purpose of this experiment is to evaluate the joint architecture that combines the
components of intent classification and slot filling into a single network structure. The
main idea is to try to improve the performance of each task by leveraging the information
shared by these components. For this, we applied a combination of a CNN and a biLSTM
(CNN+biLSTM), a biLSTM with a CRF layer (biLSTM+CRF), BETO, and mBERT. Table 5
shows the results.

Table 5. Experimental results obtained when joint models were used to tackle both tasks (IC and SF).

Method
Spanish Nahuatl

IC (Accuracy) SF (F1-Score) IC (Accuracy) SF (F1-Score)

CNN+biLSTM 0.9351 0.8337 0.8442 0.8153
biLSTM+CRF 0.9480 0.9185 0.9220 0.9022
joint mBERT 0.9649 0.9480 0.8772 0.7832
joint BETO 0.9825 0.9310 – –

Despite training the architecture using information from both tasks, the performance
is reported separately. For the intent classification task in Spanish, the best performance
was achieved by the BETO, with an accuracy of 98.25%. However, mBERT also showed a
good performance of 96.49%, with a difference between both models of only 1.76%. This
indicates that both models are feasible for application in the Spanish IC task. On the other
hand, in Nahuatl scenarios, the biLSTM+CRF model achieved the highest performance,
92.20% and 90.22% for the IC and SF tasks, respectively. In general, we observed that,
for this research, the joint models often do not have significant advantages over their
individual counterparts.

6. Analysis

In this section, we deepen this study by analyzing the performance of the evaluated
methods. Specifically, we first focused on exploring the impact of using different pre-
trained word vectors to feed the neural networks. Later, we evaluated the robustness of
the methods when they were trained on noisy data, simulating real scenarios of speech
recognition systems. The last rows of Table A1 in Appendix A present a summary of
this section.
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6.1. Comparison of Word Embedding Models for IC and SF

Recognizing the influence of embeddings on the performance of models, we in-
vestigated the utilization of different word embedding models in this section. Specif-
ically, pre-trained embeddings from fastText (we used embeddings for Spanish from
https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.es.vec, accessed on 22 Novem-
ber 2023 and for Nahuatl https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.na
h.vec, accessed on 22 November 2023) and Word2vec (Embeddings for Spanish from
http://vectors.nlpl.eu/repository/20/68.zip, accessed on 6 December 2023 and for Nahuatl
https://sparknlp.org/2022/03/16/w2v_cc_300d_nah_3_0.html, accessed on 6 December
2023) were compared against embeddings generated for the problem at hand by using an
embedding layer in the networks. The evaluation was conducted using the models based
on biLSTM and biGRU neural networks (which are described in Section 4.1). Figure 5
shows the comparison results.

(a) (b)

(c) (d)

Figure 5. Comparison of the use of different word embeddings for intent classification and slot
filling. The pre-trained embeddings were selected according to the language of the datasets. The
embedding models were evaluated by feeding neural networks (biLSTM and biGRU). (a) Spanish
Intent classification; (b) Nahuatl Intent classification; (c) Spanish Slot filling; (d) Nahuatl Slot filling.

In general, we observed that the neural models benefited from fastText embeddings in
Spanish scenarios in both tasks. The pre-trained embeddings in this language covered more
than 90% of the vocabulary. Conversely, for Nahuatl, models relying on an embedding layer
outperformed those based on pre-trained word vectors. We attributed this performance
difference to the limited coverage of pre-trained embeddings for the vocabulary of the
dataset for this indigenous language, around 30% (coverage) for both Word2vec and
fastText. Hence, the generated corpus-specific word embeddings obtained important
improvements with respect to the other models. These findings suggest that pre-trained
embeddings are effective for languages with ample coverage, but their applicability should
be examined when dealing with indigenous languages, especially those with different
variants within a family, such as Nahuatl.

https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.es.vec
https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.nah.vec
https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.nah.vec
http://vectors.nlpl.eu/repository/20/68.zip
https://sparknlp.org/2022/03/16/w2v_cc_300d_nah_3_0.html
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6.2. Zero-Shot and Few-Shot Cross-Lingual for Nahuatl Scenarios

Nahuatl is most likely unseen by commonly used pre-trained models like mBERT.
Hence, specific strategies are required to leverage the power of large language models
to work effectively with this language and face the lack of annotated data in Nahuatl.
Motivated by research demonstrating the cross-lingual transfer abilities of multilingual
language models, we explored the use of mBERT to classify intents in Nahuatl in a cross-
lingual setting. The main ideas in this experiment are as follows: (1) evaluating if the
model can generalize well in a zero-shot cross-lingual setting, where no data from the
target language are used in the fine-tuning process, and (2) investigating the performance
of mBERT in cross-lingual few-shot fine-tuning. We adapted an experimental framework
similar to previous research works [85,86]. That is, we defined Spanish and Nahuatl as
source and target languages, respectively. For the zero-shot cross-lingual evaluation, only
data from the Spanish corpus were used in the fine-tuning stage. Finally, we applied
few-shot learning by adding the Nahuatl data (training partition) to the training set. These
cross-lingual experiments were conducted using the pre-trained mBERT Model. The results
are reported in Table 6.

Table 6. Results of the zero-shot and few-shot cross-lingual experiments for classifying intentions
in Nahuatl.

Settings Accuracy F1-Score

zero-shot 0.2597 0.2029
few-shot 0.9350 0.9221

The results show low performance in the cross-lingual zero-shot scenario. Since Nahu-
atl and Spanish are languages belonging to distinct families, this behavior is expected and
consistent with several studies, indicating that the similarity of source-target languages
is an important factor in obtaining the benefits of the transfer [17,59,87]. On the contrary,
when Nahuatl instances were added in the training (few-shot scenarios), the results outper-
formed the counterpart (zero-shot) and even the performance of the models described in
previous experiments (around 1%). It is evident that the introduction of Nahuatl instances
in the training helps to generalize new patterns. In this case, we considered that cultural
connections, some structural similarities between languages [66], the infiltration of Spanish
into Modern Nahuatl, and the use of subword information by mBERT [88] are leveraged to
transfer between models and to augment their generalization capabilities, which lead to
better performance. In general, the results indicate that few-shot learning is an important
strategy for dealing with this downstream task using the Nahuatl language.

Inspired by recent studies [65], we also analyzed the performance in k-shot cross-
lingual classification to explore the impact of varying sizes of training data. Therefore,
k labeled samples of the target language per class were added to the training. We chose
k ∈ {3, 5, 10} to evaluate how the model generalizes to a new target language with limited
labeled data per class. Since the performance may be influenced by the selection of k
examples chosen for training, we present the average performance and standard deviation
based on five distinct sample selections for each k. The idea is to evaluate if the training
supporting other languages helps to reach better results in the target language.

Table 7 shows the results. We obtained insight into the size of the dataset of additional
instances in the target language to enhance the classification process. The more instances in
the target language added, the better the performance achieved. Hence, in the previous
Table 6, the few-shot scenario performs best in this series of experiments utilizing all
available instances belonging to the training partition from the Nahuatl dataset.
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Table 7. Results of distinct sample selections in few-shot cross-lingual experiments for classifying
intentions in Nahuatl.

k Accuracy F1-Score

3 0.5350 ± 0.0372 0.4863 ± 0.0509
5 0.5532 ± 0.0270 0.5144 ± 0.0529
10 0.6961 ± 0.0491 0.6643 ± 0.0654

6.3. Analysis of the Robustness against Noise

Considering the future automatic application of the proposed method, expressions
could contain noise from automatic or manual transcription systems. Therefore, studying
the effect of noisy datasets on the performance of the models used in experiments is im-
portant. In this experiment, we analyzed the robustness of the models against noise. For
simulating transcription errors, we randomly introduced five common types of typographi-
cal errors at the character level in the datasets: insertion, deletion, substitution, duplication,
and transposition of characters. For example, the word “lento” in Spanish (“slow” in
English) could be altered according to the previous type of errors mentioned as “lentoo”,
“lnto”, “lente”, “lentoo” or “lneto”. Then, we applied a random error to i% of words in the
sentence of each instance from the test dataset. We evaluated i ∈ {0, 10, 20, 30, 40, 50}. The
evaluated models are those that achieved the best results in previous experiments for the
Spanish and Nahuatl languages (Section 2.3).

Figure 6 reports the performance of the models in this experiment for the IC and SF
tasks. In the former task, subtle differences in performance were observed in the presence of
noise; however, as the number of errors increased, especially when the percentage was 50%,
the advantage of BETO over the biGRU model became more noticeable. In the slot-filling
task, the performance differences were more evident.

(a) (b)

Figure 6. Results obtained when typographical errors were added to the Spanish dataset. The biGRU
and mBERT models were evaluated in (a) intent classification and (b) slot-filling tasks.

Similar results were found in the Nahuatl scenarios in Figure 7. In general, the pre-
trained mBERT model exhibited remarkable performance stability in the presence of errors
compared to the biGRU model. These results confirm the robustness of the large pre-trained
models for tackling tasks on low-resource domains and their ability to handle situations
with a higher degree of interference.
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(a) (b)

Figure 7. Results obtained when typographical errors were added to the Nahuatl dataset. The biGRU
and mBERT models were evaluated in (a) intent classification and (b) slot-filling tasks.

7. Discussion

This research showed the feasibility of guiding robot movements using natural
languages in scenarios with limited linguistic resources, such as those defined by com-
mands expressed in Spanish and Nahuatl. The results revealed a superior performance
of transformer-based models in this specific task compared to traditional deep neural
networks such as GRU and BiLSTM. These models also demonstrated robustness against
introduced errors, simulating their future automatic application.

Particularly, for scenarios in Nahuatl, the experiments showed that pre-trained embed-
dings are useful, but the varieties of Nahuatl make the task more challenging. In addition,
we found that the absence of a large pre-trained language model poses a major obstacle. In
response, this work proposes exploring alternative strategies, such as cross-lingual few-shot
learning, where we observed that the results are mainly impacted by the selection of the
instances added to the training dataset.

We hope that this work motivates the development of methods for integrating tech-
nology across indigenous languages. By prioritizing the development of such resources,
we can help indigenous communities to benefit from technological advancements and
preserve their languages. In this context, we have pointed out the importance of building
pre-trained large language models in indigenous languages.

While the results were promising, our focus now shifts to assessing the ability of
the models to generalize by the use of large datasets in domains defined by indigenous
languages. In addition, it is recognized that the linguistic diversity within indigenous
languages poses a significant challenge in generating automatic models, highlighting the
need for further research in this area.

8. Conclusions

Our presented research evaluated the task of recognizing motion commands emitted
in natural language in domains with limited linguistic resources. Specifically, we addressed
the problem of identifying commands and their parameters for guiding the movements
of service robots in the Spanish and Nahuatl languages. To achieve this goal, we imple-
mented natural language understanding approaches by handling two typical tasks: intent
classification and slot-filling detection (i.e., entity detection). As part of the methodol-
ogy, a parallel dataset, which comprises motion instructions in Spanish and Nahuatl, was
manually constructed, resulting in an additional contribution. Finally, we explored the
capabilities of multilingual Bert for zero and few-shot learning for classifying movement
utterances in Nahuatl.

To conduct the study, we implemented deep neural networks and Transformer-based
models. Overall, we observed that directing the movements of a robot is feasible despite
the limited availability of training data. The pre-trained language models, such as BETO
and mBERT, stood out for their robustness in handling these tasks (intention classification
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and slot filling) using the Spanish and Nahuatl languages. In addition, we noted that deep
learning models fed by word embeddings performed better in Spanish. Particularly, for
Nahuatl, it was important to generate personalized word vectors for the variant language
at hand.

Regarding intent recognition in Nahuatl scenarios, we observed that cross-lingual
few-shot learning strategies achieved good performance (using Spanish and Nahuatl as
source and target languages, respectively), enhancing the process when the number of
Nahuatl examples incorporated during the training increases, despite these languages being
topologically different. This study aligns with a strategy to achieve access to technological
advancements for indigenous communities. We hope that this study motivates further
research into the field of automatic manipulation of service robots in indigenous languages
and different low-resource languages.

For future work, we plan to augment the dataset with additional instances in Spanish
and Nahuatl, aiming to enhance the generalization capability of the models. We are
also interested in building other datasets using different indigenous languages, such as
Otomi and Tepehua. This research will be directed toward classifying new instructions
with parameters for service robots. Additionally, we plan to explore novel approaches to
parameterize and optimize the evaluated models. Our future research directions will also
involve assessing different multilingual transformer models (e.g., XLM-RoBERTa) to assess
their suitability for this task. Finally, for cross-lingual transfer scenarios, we will study the
selection of transfer languages to enhance the performance in Nahuatl scenarios related to
the task.
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Appendix A. Summary of Experiments

In this research, we conducted a series of experiments, which are presented in
Sections 5 and 6. Table A1 provides a summary of the characteristics of each of them.

Table A1. Experimental setup for the intent classification (IC) and slot-filling (SF) tasks. The experi-
ments were conducted using utterances expressed in Spanish (Sp) and Nahuatl (Na) languages.

Section Purpose Language Task Embeddings
(emb.) Evaluated Models

Section 5.2. Exp. 1
Evaluating the intent classifica-
tion task for detecting the inten-
tion of movement instructions

Sp and Na IC Generated,
BERT-based

biLSTM, biGRU
mBERT, BETO

Section 5.3. Exp. 2
Evaluating deep neural architec-
tures to detect action parameters
in commands

Sp and Na SF Generated,
BERT-based

biLSTM,
biLSTM+CRF
biGRU
mBERT, BETO
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Table A1. Cont.

Section Purpose Language Task Embeddings
(emb.) Evaluated Models

Section 5.3. Exp. 3

Evaluating the joint architecture
that combines the components of
intent classification and slot fill-
ing into a single network struc-
ture

Sp and Na IC and SF Generated,
BERT-based

CNN+biLSTM,
biLSTM+CRF
joint mBERT, joint
BETO

Section 6.1 Use of different
word embeddings models

Investigating the impact of the
use of different pre-trained word
embeddings models

Sp and Na IC and SF
Pre-trained
(fastText and
Word2vec)

biLSTM, biGRU

Section 6.2 Zero-shot and
few-shot cross-lingual

Exploring a cross-lingual setting
to classify intents in Nahuatl Na IC BERT-based mBERT

Section 6.3 Robustness
against noise

Exploring the robustness in
noisy conditions that simulate
real scenarios of speech recogni-
tion systems

Sp and Na IC and SF Generated,
BERT-based

biGRU
mBERT, BETO
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