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Abstract: We developed a mathematical model to simulate the dynamics of background synaptic
noise in non-neuronal cells. By employing the stochastic Ornstein–Uhlenbeck process, we represented
excitatory synaptic conductance and integrated it into a whole-cell model to generate spontaneous
and evoke cellular electrical activities. This single-cell model encompasses numerous biophysically
detailed ion channels, depicted by a set of ordinary differential equations in Hodgkin–Huxley and
Markov formalisms. Consequently, this approach effectively induced irregular spontaneous depo-
larizations (SDs) and spontaneous action potentials (sAPs), resembling electrical activity observed
in vitro. The input resistance decreased significantly, while the firing rate of spontaneous action
potentials increased. Moreover, alterations in the ability to reach the action potential threshold
were observed. Background synaptic activity can modify the input/output characteristics of non-
neuronal excitatory cells. Hence, suppressing these baseline activities could aid in identifying new
pharmaceutical targets for various clinical diseases.

Keywords: excitable cells; synaptic conductance; stochastics synaptic noise; noise dynamics; action
potential; mathematical modeling

MSC: 37M05

1. Introduction

Electrically excitable cells such as neurons, cardiac cells, skeletal muscle cells, and
smooth muscle cells generate membrane depolarization and action potential (AP) to ini-
tiate various physiological functions and information exchange between cells [1]. Action
potential or spike initiation in excitable cells adheres to the all-or-none principle, which
states that characteristic action potential is generated and sent when the cell is adequately
stimulated, and no spike is triggered if the potential is below the threshold [2]. Specific
ion channels are activated at a particular threshold potential, which is the crucial factor
responsible for generating spikes [3]. The membrane is depolarized till the threshold
potential is reached by several mechanisms, which are illustrated in Figure 1. The elevation
of transient membrane depolarization is denoted by ∆V.

The membrane can depolarize when positive ions accumulate in the intracellular
space as a result of the opening of particular ion channels: nonspecific cation channels
(NSCCs), voltage-dependent calcium channels (VDCCs), and voltage-gated sodium chan-
nels (Navs) [4]. The voltage-gated potassium channel (Kv) repolarizes the membrane
potential by moving positive ions out of the cell [5–7]. Additionally, the transmission of the
electrical potential from one cell to another (from cell 2 to cell 1) through a gap junction can
cause membrane depolarization [8]. Furthermore, certain cells are myogenic, meaning that
they contain interstitial cells of Cajal (ICC) which are pace-making cells that can depolarize
the membrane through self-activation [9]. In another neurogenic process mechanism, the
release of various neurotransmitters with excitatory or inhibitory synaptic conductance
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can either depolarize or hyperpolarize the membrane potential, either through triggered
or spontaneous events [10]. The nervous system innervates most excitable cells, making
this process crucial in various pathophysiological conditions. Neurotransmitter release
from the synapse is orchestrated by the nervous system. Electrical activities involving
stochastic neurotransmitter release occur as background events in the intracellular record-
ings of excitable cells [11]. The primary contributors to the inherent variability observed in
excitable cells within microcircuits and networks stem from the probabilistic nature of ion
channel gating and the initiation of synaptic conductances [12–15]. Research investigations
have utilized diverse approaches, including in vivo, in vitro, and computational modeling
techniques, to analyze the impact of synaptic background activity on neuronal cells. Never-
theless, this research was not adequately explored in non-neuronal excitatory cells, such as
cardiac and smooth muscle cells, where neurotransmitter-based innervation also occurs.
The primary physiological function of the urinary bladder, a component of the urinary
system, is to facilitate the process of micturition, which involves storing and releasing urine.
The parasympathetic nervous system being activated by signals from the brain and spinal
cord triggers the contraction of detrusor smooth muscle (DSM) cells, thereby facilitating
the micturition process. The DSM is highly innervated, linking around 16,000 afferent and
efferent axons from ganglion neurons across different species [16–18]. Research conducted
over the past 50 years has established that DSM cells exhibit spontaneous phasic contrac-
tion activities through spontaneously evoked depolarizations (SDs) and action potentials
(sAPs) [18–20]. Intracellular recordings from mouse DSM cells also show characteristics
of SDs and sAPs [18,21–23]. The neurogenic hypothesis proposes that the elevation of
the resting membrane potential (RMP) due to spontaneous neurotransmitter release and
the interplay of inherent ion channels within the DSM cell membrane play significant
roles in initiating sAPs and SDs [18,24–27]. According to Young et al. (2008) [18], ATP,
acting as a purinergic neurotransmitter, is released sporadically into the DSM cells from
parasympathetic nerve terminals. Varicosities located at these terminals generate ATP,
which subsequently triggers P2X receptors on the DSM cell membrane. This activation facil-
itates the influx of cation X+ through a metabotropic mechanism. At times, the increase in X+

leads to enough membrane depolarization to trigger voltage-dependent calcium channels
across the membrane. Therefore, an in-depth understanding of membrane biophysics, par-
ticularly the mechanism of neurotransmitter activation, might lead to new pharmacological
innovations for pathological disorders such as overactive bladder and urinary incontinence.
However, due to complexity, studies using in vivo and in vitro methods to investigate the
precise impact of synaptic activity have not adequately addressed non-neuronal excitatory
cells, especially in smooth muscles like those found in the DSM cells.

Mathematical modeling methods are essential for quantitatively studying complicated
biological processes [28]. Modeling intracellular electrophysiological processes creates a
virtual physiological system that can be used to study the impact of different pharmaceuti-
cal targets on excitable cells [29]. Many mathematical models have been used to study the
cellular excitability qualities of neuronal cells influenced by synaptic background noise [30].
These models are restricted to non-neuronal cells such as heart cells and smooth muscle
cells. The present computational study aims to enhance our understanding of the impact of
synaptic background activities on DSM cell excitability. This is achieved by simulating the
spontaneous intracellular electrical properties resulting from the addition of continuous
fluctuating conductances at synapses. Excitable and densely innervated cells are recog-
nized for potentially displaying substantial synaptic conductances due to neurotransmitter
leakage [31]. DSM tissue also falls within this classification, as indicated by Gabella, G.
in 1999 [19] and corroborated by the last paragraph. The Ornstein–Uhlenbeck process is
a stochastic process widely utilized across diverse fields, including finance, physics, and
biology. It also serves as a model where background activity imitates continuous synaptic
conductance activities for modulating neuron firing rates and patterns [32–34]. We have
refined these models, incorporating precise adjustments to simulate the modulatory impact
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of stochastic excitatory synaptic conductance on spontaneous electrical activities within the
previously published biophysically detailed DSM cell models [35–39].
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Figure 1. The schematic diagram illustrates cellular mechanisms for membrane depolarization.
It delineates how membrane depolarization occurs through the release of neurotransmitters, the
activation of ion channels, and the establishment of gap junction connections with adjacent cells.
Further elucidation is provided in the subsequent paragraph.

2. Materials and Methods

A model utilizing point conductance was developed to mimic the background ac-
tivity in DSM cells driven by neurotransmitters. In this model, Equation (1) treated the
neurotransmitter current Int as an independent excitatory conductance:

Int = gex(V − Eex) (1)

where gex(t) is the time-dependent excitatory conductance, V is the membrane potential,
and Eex is the excitatory neurotransmitter reversal potential.

Equation (2) characterizes the excitatory conductance gex(t) as a single-variable stochas-
tic process:

dgex(t)
dt

= − 1
τex

[gex(t)− gex0]+
√

Dexλ1(t)
]

(2)

In the given context, gex0 represents the mean conductance, τex denotes the time
constants, Dex signifies the diffusion coefficients utilized for noise generation, and λ1(t)
represents Gaussian white noise. The numerical integration technique employed for solving
the differential equations is derived from [32–34].

The DSM cell model integrates the point conductance within a solitary cylindrical
compartment [35,37]. Active ion channels are represented using the Hodgkin–Huxley
formulation [40]. The DSM cell membrane is conceptualized as a model based on conduc-
tance, incorporating various ion channel conductances that can change over time, along
with a membrane capacitance Cm. Figure 2 depicts the schematic overview of ion channel
mechanisms in individual DSM cells (a) and illustrates a schematic overview of the parallel
conductance model for the ionic current (b).

In the single DSM cell model (Figure 2a), PMCA, ICaT, ICaL, IKCa, IKv, ILeak, and Ih are
known as the Ca2+ pump, T-type Ca2+ channel, L-type Ca2+ channel, Ca2+-dependent K+

channel, voltage-dependent K+ channel, leakage channel, and hyperpolarization-activated
cation current, respectively. The parallel conductance model (Figure 2b) illustrates the flow
of ion ‘X+’ under the influence of an electrochemical driving force. The series connection
of ion channel conductance gion and the ion channel’s Nernst potential Eion are connected
parallelly to the membrane capacitance Cm. The dimensions of the single cylindrical
compartment are specified as 200 µm in length and 6 µm in diameter. To model the
passive electrical properties, values for membrane capacitance (Cm), membrane resistance
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(Rm), and axial resistance are utilized, set at 1 µF/cm2, 138 MΩ-cm2, and 181 Ω-cm [41],
respectively.
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Figure 2. (a) Schematic overview of ion channel mechanisms (PMCA, ICaT, ICaL, IKCa, IKv, ILeak, and
Ih) in the isolated DSM model. (b) A diagram illustrating the parallel conductance model for the ionic
current is presented schematically. It represents the flow of ion X using gion, Cm, and Rm. Further
elucidation is provided in the subsequent paragraph.

The time dependence characteristics of the membrane potential (Vm) are represented
in Equation (1).

dVm(t)

dt
= −

[ Iion (t) + Istim (t)

Cm

]
(3)

where Cm is the membrane capacitance.
If we apply a stimulus current Istim and Kirchhoff’s current law, the differential equa-

tion in Equation (4) will be formed to describe the changes in transmembrane potential Vm:

(
dVm

dt
) = −(

1
Cm

(ICa + IK + Ih + Ileak + Istim)) (4)

Most of the ion channel currents are built according to the most conventional Hodgkin–
Huxley (HH) formulation:

I = g[m(Vm, t, [Ca2+]i)]
xh[(Vm, t, [Ca2+]i)]

y(Vm − Erev ) (5)

where g and Erev are the maximum conductance and Nernst potential of the particular
ion channel, respectively; Erev is the ion’s reversal potential; and ‘m’ and ‘h’ are the di-
mensionless gating variables to denote the time/voltage/Ca2+-dependent activation and
time/voltage/Ca2+-dependent inactivation of the channel conductance. The ‘x’ and ‘y’ values
are power levels corresponding to the functions.

The change in each gating variable (m or h) can be described by a first-order differential
equation, as indicated by Equations (6) and (7):

dm(Vm, t)
dt

=
m∞ (Vm)− m(Vm, t)

τm
(6)

dh(Vm, t)
dt

=
h∞ (Vm)− h(Vm, t)

τh
(7)

In this context, m∞ and h∞ represent the steady-state values, while τm, and τh de-
note the time constants, which vary depending on the voltage and/or intracellular Ca2+

ionic concentrations.
The relationship between the state parameters and the membrane potential (Vm) for

ion channels is elucidated by the Boltzmann equation:

m∞(Vm, t) =
1
/

(1 + exp

(
Vm + Vm 1

2

Sm

)
)

(8)
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h∞(Vm, t) =
1
/

(1 + exp

(
Vm + Vh 1

2

Sh

)
)

(9)

where V1/2 represents the half-activation potential and S denotes the slope factor.
The kinetics of large conductance Ca2+-activated K+ (BK) channels are characterized

by a detailed multiple-state Markov model (MM), enhancing precision in modeling the
channel’s Ca2+ dependency. Our single-cell model integrates a 10-state MM, as depicted
in Figure 3, to accurately simulate the BK channel current. This model comprises five
closed “horizontal” conformation states (C0–C4) and five open-oriented “horizontal” states
(O0–O4), each corresponding to its respective closed state. Notably, the open-state O4 en-
ables the passage of K+ ions through BK channels due to the instantaneous electrochemical
driving force (EDF).
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Figure 3. The schematic diagram illustrates a 10-state Markov model for the BK channel. It includes
five closed “horizontal” conformation states labeled as C0, C1, C2, C3, and C4, and five open-oriented
“horizontal” conformation states labeled as O0, O1, O2, O3, and O4, with each corresponding to the
respective closed state. Further details on this model are elaborated in the following paragraph.

Equation (10) is utilized to compute the BK current (IBK):

IBK = gBK ∗ O ∗ (V − EK) (10)

where gBK is referred to as the maximal conductance, and ‘O’ represents the sum of ‘O1’,
‘O2’, ‘O3’, and ‘O4’

The common rate equations are as follows:

Kon = 345, Kcoff = 25, Kooff = 25, O = O1 + O2 + O3 + O4 (11)

The rate equations for voltage-dependent transitions are as follows:

KC0O0 = 0.02162 * a, KC1O1 = 0.000869 * a, KC2O2 = 0.0000281 * a, KC3O3 = 0.000781 * a, KC4O4 = 0.044324 * a,
KO0C0 = 318.1084 * b, KO1C1 = 144. 1736 * b, KO2C2 = 32.6594 * b, KO3C3 = 0.095312 * b, KO4C4 = 0.000106 * b * cai

(12)

The state equations for calcium-dependent transitions are as follows:

KC0C1 = 4 * Kon * cai, KC1C2 = 3 * Kon * cai, KC2C3 = 2 * Kon * cai, KC3C4 = Kon * cai
KC4C3 = 4 * Kcoff * cai, KC3C2 = 3 * Kcoff * cai, KC2C1 = 2 * Kcoff * cai, KC1C0 = Kcoff * cai

KO0O1 = 4 * Kon * cai, KO1O2 = 3 * Kon * cai, KO2O3 = 2 * Kon * cai, KO3O4 = Kon * cai
KO4O3 = 4 * Kooff * cai, KO3O2 = 3 * Kooff * cai, KO2O1 = 2 * Kooff * cai, KO1O0 = Kooff * cai

(13)

The numbers associated with the state equations are selected to achieve precise BK
current measurements during voltage-clamp protocols.
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The calcium-dependent intermediate potassium current in (IIK) in [35] is modified
with the following equations.

IIK = gIK ∗ l2 ∗ k ∗ (V − EK) (14)

l∞ =
0.37

1 + exp
(
(li−v)

16

) (15)

li = −180 + (38 ∗ exp(ci∗60)) + (86 ∗ exp(−27∗ci)) (16)

τl = 17 ∗ ((
30

1 + exp
(
(V+20.52)

36

) )) (17)

k∞ =
0.36

1 + exp
(
(67+v)

9

) (18)

τk = 55 ∗ (1 − 1

(1 + exp
(
(v+13.9629)

45.3782

)
) ∗ (1 + exp −(v+9.49866)

3.3945 )
) (19)

In our DSM cell model, action potentials were initiated through the external stimulus
current (Ist) or the synaptic input-derived current (Isyn). Ist was administered as a brief
rectangular pulse for single action potentials or prolonged rectangular pulses for multiple
action potentials. Simulations utilized a fixed time step of 0.04 ms via the Euler method
on a PC with an Intel Core i7 CPU operating at 3.80 GHz with a dual-core processor. The
model utilizes the NEURON [42] simulation environment, known for its widespread usage
in the realistic modeling of excitable cells. The Euler method is a basic numerical approach
used to solve ordinary differential equations (ODEs). NEURON software 8.2.3 version
offers stability and flexibility in simulating neuron dynamics, and the Euler method is used
for solving ODEs due to its simplicity and efficiency [42]. NEURON primarily employs
implicit integration methods (such as backward Euler) and a Crank–Nicolson variants
for stability purposes [42], but it also allows the use of Euler’s method when appropriate,
especially for its low memory requirements and ease of implementation [42].

After developing the model, we assessed its stability and reproducibility to variations
in intrinsic parameters. This involved systematically adjusting the maximum conductance
(gmax) of each ionic conductance within a range of +/−30% of its default value. Our
findings revealed that the simulated APs remained stable amidst such changes. While the
AP and depolarization characteristics responded predictably to alterations in conductance
(e.g., increasing the gmax of inward current ion channels resulted in higher AP peak ampli-
tudes), the AP maintained its integrity without experiencing any pathological deviations in
amplitude or waveform parameters.

The model code will be available in GitHub and the repository (https://modeldb.
science/ (accessed on 1 April 2024)) for free code sharing.

3. Results

In the Results section of our simulation, we accurately reproduced all types of electrical
activities in the DSM cell, both with and without noise conductance. Our investigation
focused on the membrane excitability properties resulting from spontaneous purinergic
neurotransmitter release in DSM cells [18]. During the generation of action potentials and
membrane depolarization, we rigorously assessed the stability, robustness, and flexibility of
our mathematical model, following the methods outlined in the Methods section. Further-
more, we validated our model-generated action potentials to evaluate its accuracy against
the limited available experimental data. Upon incorporating all ion channel models, we
aimed to maintain the physiological resting membrane potential (RMP) value at −52 mV.
Our model’s robustness was confirmed by sustaining the RMP at −52 mV for 1000 ms
(see Figure 4). However, at 0 ms, the model required a few milliseconds to stabilize due to

https://modeldb.science/
https://modeldb.science/
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the instability of all ion channels, resulting in some membrane potential fluctuations. As
shown in Figure 4, the time scale (x-axis) starts from 500 ms to exclude these fluctuations.
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Figure 4. Model simulation shows that RMP was maintained at −52 mV.

We applied the current stimuli of various amplitudes for a duration of 10 ms to explore
the evoked depolarization, action potential (AP), and threshold prediction. No spikes
occurred until the stimulus reached 0.55 mA, at which point the AP was generated. Analyz-
ing the AP (depicted by the red solid line in Figure 5) and depolarization (represented by
the black solid line in Figure 5) enabled the prediction of the threshold required to trigger
the AP, estimated at −38.36 mV.
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Figure 5. The model shows the AP (red line) and depolarization (black line) with the current stimulus.

We then introduced the synaptic input of various amplitudes to investigate evoked
depolarization, action potentials (APs), and threshold prediction. No spikes occurred with a
stimulus of 0.0076 µS, whereas an AP was generated with a stimulus of 0.0077 µS. Analyzing
the simulated AP (depicted by the red solid line in Figure 6) and simulated depolarization
(shown as the black solid line in Figure 6) predicted the threshold that needed to be met
to trigger the AP at −38.42 mV. Mahapatra et al. (2018) [35] published an experimental
AP in mouse DSM cells for identifying the synaptic stimulus. By comparing the extracted
data from this experimental AP (illustrated by the blue dashed line in Figure 6) with our
model-simulated AP, we found a good match, supporting the accuracy of our model.



Mathematics 2024, 12, 1149 8 of 13

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 5. The model shows the AP (red line) and depolarization (black line) with the current stimu-
lus. 

We then introduced the synaptic input of various amplitudes to investigate evoked 
depolarization, action potentials (APs), and threshold prediction. No spikes occurred with 
a stimulus of 0.0076 µS, whereas an AP was generated with a stimulus of 0.0077 µS. Ana-
lyzing the simulated AP (depicted by the red solid line in Figure 6) and simulated depo-
larization (shown as the black solid line in Figure 6) predicted the threshold that needed 
to be met to trigger the AP at −38.42 mV. Mahapatra et al. (2018) [35] published an exper-
imental AP in mouse DSM cells for identifying the synaptic stimulus. By comparing the 
extracted data from this experimental AP (illustrated by the blue dashed line in Figure 6) 
with our model-simulated AP, we found a good match, supporting the accuracy of our 
model. 

 
Figure 6. The model shows the simulated AP (red line), experimental AP (blue line), and simulated 
depolarization (black line) with synaptic input stimulus. 

We then repeated our model to generate Figures 4–6 with the addition of stochastic 
synaptic background conductance noise. The value of gex(t) in Equation (1) was varied to 

Figure 6. The model shows the simulated AP (red line), experimental AP (blue line), and simulated
depolarization (black line) with synaptic input stimulus.

We then repeated our model to generate Figures 4–6 with the addition of stochastic
synaptic background conductance noise. The value of gex(t) in Equation (1) was varied to
investigate fluctuations in the RMP with synaptic background conductance noise. Figure 7
shows the membrane potential with a value of 0.012 mho. The RMP fluctuated between
−51.43 mV and −60.26 mV.
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Figure 7. Model-generated RMP fluctuated with synaptic background conductance noise.

We applied the current stimulus of various amplitudes for a 10 ms duration to in-
vestigate the current evoked depolarization, AP, and threshold prediction with stochastic
synaptic background conductance noise. When a stimulus of 1.9 mA was reached, there
were no spikes, and, with 2 mA, the AP was generated. Based on the AP (red solid line in
Figure 8) and depolarization (black solid line in Figure 8), the threshold to trigger the AP
was predicted at −34.68 mV.
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Figure 8. The model shows the AP (red line) and depolarization (black line) with current stimulus
and synaptic background conductance noise.

We then introduced the synaptic input of various amplitudes to investigate the evoked
depolarization, AP, and threshold prediction with stochastic synaptic background conduc-
tance noise. Figure 9 shows that with the stimuli of 0.05 µS (black solid line), 0.09 µS (blue
solid line), and 0.5 µS (red solid line), there were no spikes. There were no methods to
predict the threshold potential due to the absence of action potentials. The input resistance
was altered significantly, and the model failed to generate any APs. The active components
of the biophysical system were disabled, resulting in the system only exhibiting passive
properties.
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Figure 9. The model shows the evoked response for synaptic inputs with synaptic background
conductance noise.

When we increased the value of gex(t) in Equation (1) to more positive values, the
model started to generate spontaneous depolarizations and spontaneous APs (red solid
lines in Figure 10) without any current or synaptic stimulus. To explore the active properties
of all ion channels, we set the conductances of both L-type and T-type calcium channels to
zero. As anticipated, this manipulation resulted in a reduction in the active component of
the membrane potential, as depicted by the black solid lines in Figure 10.
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Figure 10. The model demonstrates spontaneous action potential generation under conditions of
increased noise, along with the application of blockers for L-type and T-type calcium channels.

4. Discussion

Electrically excitable cells trigger membrane depolarization, initiating the generation
of action potentials that initiate numerous physiological processes and facilitate intercellu-
lar communication. Neurotransmitters are released in response to stimuli or spontaneously,
increasing excitatory synaptic conductance and leading to membrane depolarization. The
nervous system extensively innervates excitable cells, and these mechanisms play criti-
cal roles in various pathological conditions. Neurotransmitters are released sporadically,
generating electrical activity observed as background events in excitable cell recordings.
Studies have investigated synaptic background activity using in vivo, in vitro, and in silico
approaches. However, non-neuronal excitatory cells, such as smooth muscle cells, which
also receive neurotransmitter-based innervation, have not been thoroughly investigated.
To address this gap, we developed the first mathematical model of detrusor smooth mus-
cle cells to examine noise in the membrane potential associated with excitatory synaptic
conductance in the context of urinary incontinence. Mathematical modeling approaches
are crucial for quantitatively assessing intricate biological systems, allowing for the sim-
ulation of intracellular electrophysiological activity. Our model reproduces spontaneous
depolarization and action potential generation observed in experimental recordings by
emphasizing the electrophysiological characteristics of detrusor smooth muscle cells.

The validation of a biophysically detailed computational model against experimental
data is crucial for several reasons. Firstly, it ensures that the model accurately represents the
underlying biological processes and mechanisms. Secondly, validation provides confidence
in the predictive capability of the model, indicating its reliability for making predictions
in real-world scenarios. This iterative process of validation and refinement enhances the
model’s accuracy and relevance, making it a valuable tool for understanding complex
biological systems and informing experimental design and interpretation. However, vali-
dating all outputs from a computational model can be challenging due to a lack of sufficient
experimental data. Without comprehensive experimental datasets for comparison, it is
difficult to assess the accuracy of every aspect of the model’s outputs. This limitation
may lead to uncertainties in certain predictions or outputs, particularly in areas where
experimental validation is lacking or impractical. In our model, we aimed to validate its
numerical stability, robustness, reproducibility, and accuracy predictions by comparing
them with the limited available experimental data. Although the simulated action potential
and depolarization characteristics responded predictably to alterations in ion channel con-
ductances in the physiological ranges, the action potential maintained its integrity without
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experiencing any pathological deviations in amplitude or waveform parameters, thereby
avoiding model breakdown. This supports the notion that our model is robust and suitable
for future enhancements, including the incorporation of additional cellular and subcellular
mechanisms. Figure 4 supports the claim that our model can indefinitely maintain the rest-
ing membrane potential within the physiological range observed in experiments, provided
that the cell is not stimulated by any external stimulus. Figures 5 and 6 illustrate that our
model can trigger an action potential when stimulated by either a strong current or synaptic
input, raising the membrane potential above the threshold value. This indicates that our
model has the potential to be utilized as an in silico experimental platform for further
biophysical inquiries. In addition, Figure 6 provides further confirmation of the accuracy of
our model, as it generates an action potential that closely aligns with the experimental data.

The central aim of computational modeling is also to forecast new biological and
pharmacological insights inaccessible through experiments due to their intricate nature.
Figures 7–10 derived from our model simulation depict new biological insights regarding
the electrical excitability of smooth muscle cells. This finding further reinforces the idea
that inhibitors of synaptic inputs, including ATP and acetylcholine, could act as new
pharmacological targets for preventing urinary incontinence. The simulation presented
in Figure 10 illustrates that random depolarization initiates the activation sequence of
T-type Ca2+ channels, succeeded by L-type Ca2+ channels, ultimately leading to action
potential generation. Afterward, various potassium channels activate to repolarize the
membrane potential to its resting-state post-action potential. Consequently, the model
accurately reproduces the impacts of T-type and L-type Ca2+ channel blockers, resulting
in membrane voltage fluctuations of roughly a few millivolts. The evidence suggests that
T-type and L-type Ca2+ channel blockers may serve as innovative pharmacological targets
for mitigating urinary incontinence.

The inhibitory spontaneous synaptic background noise affects cellular excitability in
neuronal cells. Spontaneous hyperpolarizations are observed in detrusor smooth muscle
cells, likely due to this synaptic noise [43]. However, our current model cannot explore
these phenomena. Stochastic ion channel activations contribute to membrane potential
fluctuations and cellular excitability modulation, but our model cannot elucidate their mech-
anisms. Nonetheless, upgrading the model with additional mechanisms could facilitate
such investigations.

In conclusion, we successfully established a computational model to analyze the dy-
namics of stochastic synaptic background noise in non-neuronal cells (like detrusor smooth
muscle cells). This initial model will aid in comprehending additional electrophysiological
traits through future enhancements. Furthermore, it will pave the way for exploring novel
pharmacological interventions for urinary incontinence.
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