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Abstract: Leibniz algebras are generalizations of Lie algebras. Similar to Lie algebras, inner deriva-
tions play a crucial role in characterizing complete Leibniz algebras. In this work, we demonstrate
that the algebra of inner derivations of a Leibniz algebra can be decomposed into the sum of the
algebra of left multiplications and a certain ideal. Furthermore, we show that the quotient of the
algebra of derivations of the Leibniz algebra by this ideal yields a complete Lie algebra. Our results
independently establish that any derivation of a semisimple Leibniz algebra can be expressed as a
combination of three derivations. Additionally, we compare the properties of the algebra of inner
derivations of Leibniz algebras with the algebra of central derivations.
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1. Introduction

Leibniz algebras, which generalize Lie algebras, have been a subject of interest since
their introduction in 1965 by Bloh [1] and further development by Loday [2] in 1993. These
algebras are vector spaces equipped with a binary operation which has the property of being
a derivation for the algebra itself. Since Leibniz algebras extend Lie algebras, many research
studies have focused on extending the properties of Lie algebras to Leibniz algebras. Similar
to Lie algebras, the study of inner derivations is fundamental in understanding the structure
of Leibniz algebras and their properties. Ancochea and Campoamor introduced the concept
of inner derivations in 2013 [3], defining them as derivations of a Leibniz algebra A that can
be expressed as La for some a ∈ A, where La(x) = [a, x] for all x ∈ A. However, as noted
in [4], there exists a simple Leibniz algebra containing an outer derivation based on this
definition. Subsequently, Kristen, Misra, and Stitzinger, in 2020 [4], defined a derivation d of
a Leibniz algebra A as inner if im(d − La) ⊆ Leib(A) for some a ∈ A, where Leib(A) is the
Leibniz kernel of A. They showed that under this definition, the semisimple Leibniz algebra
does not contain an outer derivation resulting in its completeness, the same property as
for the semisimple Lie algebra [5]. In our work, we aim to deepen the understanding of
derivations in Leibniz algebras by following the definition of inner derivations as defined
in [4]. Let I be the set of all derivations of a Leibniz algebra A whose image is a subset
of Leib(A). We show that the algebra of inner derivations of a Leibniz algebra can be
decomposed into the sum of the algebra of left multiplications and the ideal I. By using
this result, we independently prove (see [6]) that any derivation of a semisimple Leibniz
algebra can be written as a combination of three derivations.

A Lie algebra is said to be complete [7] if all of its derivations are inner and it has
trivial center. A Leibniz algebra A is said to be complete [4] if all of its derivations are
inner and the center of A/Leib(A), the liezation of A, is trivial. In [5], Meng showed
that the Lie algebra of derivations of any complete Lie algebra is complete. However,
in [8], Kongsomprach et al. showed that this result does not hold for complete Leibniz
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algebras. We focus on a Leibniz algebra with complete liezation and prove that the quotient
of the Lie algebra of derivations of these Leibniz algebras by the ideal I is complete, and
this quotient algebra is isomorphic to the Lie algebra of derivations of the liezation. The
definition of central derivations of Leibniz algebras is the same as that of Lie algebras.
In [9], Tôgô studied the properties of inner derivations of Lie algebras by comparing them
with the set of central derivations. In Section 4, we investigate some analogues of those
properties for Leibniz algebras. Throughout this paper, all algebras are assumed to be finite
dimensional over an algebraically closed field F with characteristic zero.

2. Preliminaries

Following Barnes [10], in this paper, Leibniz algebras always refer to left Leibniz algebras.
A (left) Leibniz algebra [11] A is a vector space over F with a bilinear map [ , ] : A×A →

A satisfying the Leibniz identity

[a, [b, c]] = [[a, b], c] + [b, [a, c]]

for all a, b, c ∈ A.
A Leibniz algebra A is called abelian if [A, A] = {0}. A subspace I of a Leibniz algebra

A is said to be a subalgebra if [I, I] ⊆ I, and a left (resp. right) ideal of A if [A, I] ⊆ I (resp.
[I, A] ⊆ I). If I is both a left ideal and a right ideal, then I is called an ideal of A. A Leibniz
algebra A has an abelian ideal Leib(A) = span{[x, x] | x ∈ A} [11] called the Leibniz kernel
of A. The ideal Leib(A) = {0} if and only if A is a Lie algebra. For any ideal I of A,
we define the quotient Leibniz algebra in the usual way. In fact, Leib(A) is the minimal
ideal such that A/Leib(A) is a Lie algebra [11]. For a Leibniz algebra A, we define the
ideals A(1) = A = A1, A(i) = [A(i−1), A(i−1)], and Ai = [A, Ai−1] for i ∈ Z≥2. The Leibniz
algebra is said to be solvable (resp. nilpotent) if A(m) = {0} (resp. Am = {0}) for some
positive integer m. The maximal solvable (resp. nilpotent) ideal of A is called the radical
(resp. nilradical), denoted by rad(A) (resp. nilrad(A)). A Leibniz algebra A is called simple
if [A, A] ̸= Leib(A) and its ideals are only {0}, Leib(A), and A. A Leibniz algebra A is
semisimple if rad(A) = Leib(A). We recall an analog of Levi’s theorem for Leibniz algebras
which will be used in this paper.

Theorem 1 ([12]). Let A be a Leibniz algebra. Then there exists a subalgebra S (which is a
semisimple Lie algebra) of A such that A = S + rad(A) and S ∩ rad(A) = {0}.

The left center of A is defined by Zl(A) = {x ∈ A |[x, a] = 0 for all a ∈ A}, and
the right center of A is defined by Zr(A) = {x ∈ A |[a, x] = 0 for all a ∈ A}. The center
of A is Z(A) = Zl(A) ∩ Zr(A). It is easy to see that the center Z(A) and the left center
Zl(A) are ideals of A, but the right center Zr(A) does not necessarily have to be an ideal
of A. A linear map d : A → A is called a derivation if d([x, y]) = [d(x), y] + [x, d(y)] for
all x, y ∈ A. Let Der(A) be the Lie algebra of all derivations of A under the commutator
bracket [d1, d2] := d1d2 − d2d1 for all d1, d2 ∈ Der(A). For a ∈ A, the left multiplication
operator La : A → A is defined by La(x) = [a, x] for all x ∈ A. Clearly, La ∈ Der(A) for all
a ∈ A.

3. On Inner Derivations

Let A be a Leibniz algebra. An ideal I of A is a characteristic ideal if d(I) ⊆ I for
all d ∈ Der(A). It is known that Leib(A) is a characteristic ideal of A (e.g., see [4]). Let
IA = {x ∈ A | im(Lx) ⊆ Leib(A)}. It is clear that Leib(A) ⊆ IA. The followings are easy
but important observations.

Proposition 1. IA is a characteristic ideal of A.
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Proof. To show that IA is an ideal of A, let x ∈ IA and a ∈ A. Then for all y ∈ A,
L[x,a](y) = [[x, a], y] ∈ Leib(A) and L[a,x](y) = [[a, x], y] ∈ Leib(A), hence, [x, a], [a, x] ∈ IA.
To show that IA is a characteristic ideal, let x ∈ IA and d ∈ Der(A). Then for all y ∈ A,
Ld(x)(y) = [d(x), y] = d([x, y]) − [x, d(y)] = d(Lx(y)) − Lx(d(y)) ∈ Leib(A), and so,
d(x) ∈ IA. This proves that IA is a characteristic ideal of A.

Proposition 2. Zl(A/Leib(A)) ∼= IA/Leib(A).

Proof. Clearly, Leib(A) is an ideal of IA. Then Zl(A/Leib(A)) = {x + Leib(A) | [x +
Leib(A), y + Leib(A)] = Leib(A) for all y ∈ A} = {x + Leib(A) | [x, y] ∈ Leib(A) for all
y ∈ A}. According to the trivial isomorphism φ defined by φ(x + Leib(A)) = x + Leib(A)
for all x + Leib(A) ∈ Zl(A/Leib(A)), we have Zl(A/Leib(A)) ∼= IA/Leib(A).

Example 1. Consider the Leibniz algebra A = span{w, x, y, z} with non-zero multiplications
defined by [w, w] = z, [w, x] = y, [x, w] = −y, and [x, x] = z. We determine that Leib(A) =
span{z} and IA = span{y, z}. Thus, IA/Leib(A) = span{y + Leib(A)} = Zl(A/Leib(A)).

We denote using L(A) the vector space of left multiplication operators {La | a ∈ A}.
It is known that L(A) forms a Lie algebra under the commutator bracket. The following
result is easily derived.

Theorem 2. A/Zl(A) ∼= L(A).

Proof. Define φ : A → L(A) using φ(x) = Lx for all x ∈ A. Then for any x, y, z ∈ A,
we have φ([x, y])(z) = L[x,y](z) = [[x, y], z] and [φ(x), φ(y)](z) = [Lx, Ly](z) = LxLy(z)−
LyLx(z) = [x, [y, z]] − [y, [x, z]] = [[x, y], z] + [y, [x, z]] − [y, [x, z]] = [[x, y], z]. Therefore,
φ([x, y]) = [φ(x), φ(y)]. Clearly, φ is onto and ker(φ) = {x ∈ A | Lx = 0} = {x ∈
A | [x, y] = 0 for all y ∈ A} = Zl(A). Hence, A/Zl(A) ∼= L(A).

The following is immediately obtained from Proposition 2 and Theorem 2.

Corollary 1. A/IA ∼= L(A/Leib(A)).

Remark 1. For a Lie algebra L, a derivation d : L → L is inner if there exists x ∈ L such that
d = adx, where adx : L → L is defined by adx(y) = [x, y] for all y ∈ L. Several authors have
adopted the same definition for inner derivations of Leibniz algebras. It is known that all derivations
of simple Lie algebras are inner. However, as shown in [4] with this definition, there is a simple
Leibniz algebra that contains an outer derivation. Moreover, Tôgô [13] proved that a derivation d of
a Lie algebra L is inner if and only if there exists x ∈ L such that d|rad(L) = adx|rad(L). Hence, we
use the analogous definition to this well-known result for the inner derivations in Lie algebras for
Leibniz algebras given in [4].

Definition 1 ([4]). Let A be a Leibniz algebra. A derivation d : A → A is said to be inner if there
exists x ∈ A such that im(d − Lx) ⊆ Leib(A).

We denote using IDer(A) the set of all inner derivations of a Leibniz algebra A and
I = {d ∈ Der(A) | im(d) ⊆ Leib(A)}. Clearly, L(A) ⊆ IDer(A) ⊆ Der(A) and IDer(A) is
a subspace of Der(A). It is known that L(A) is an ideal of Der(A). Then it is also an ideal
of IDer(A). Since Leib(A) is a characteristic ideal of A, I is an ideal of Der(A), and hence,
an ideal of IDer(A).

Theorem 3. Let A be a Leibniz algebra. Then IDer(A) is an ideal of Der(A) and
IDer(A) = L(A) + I. Moreover, if Z(A/Leib(A)) is trivial, then L(A) ∩ I = {0}.
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Proof. Let d ∈ IDer(A). Then there exists x ∈ A such that im(d − Lx) ⊆ Leib(A). Then
d − Lx ∈ I, and hence, d ∈ L(A) + I. This implies that IDer(A) ⊆ L(A) + I. Since the
reverse inclusion is clear, we have IDer(A) = L(A) + I. Consequently, IDer(A) is an ideal
of Der(A). Note that L(Leib(A)) = {La | a ∈ Leib(A)} = {0} because Leib(A) ⊆ Zl(A).
Suppose that Z(A/Leib(A)) is trivial. Let Lx ∈ L(A) ∩ I. Then [x, a] ∈ Leib(A) for all
a ∈ A. Thus, x + Leib(A) ∈ Z(A/Leib(A)), which implies that x ∈ Leib(A). Therefore,
L(A) ∩ I ⊆ L(Leib(A)) = {0}.

Example 2. Consider the Leibniz algebra A = span{w, x, y, z} with non-zero multiplications
defined by [w, w] = y and [x, w] = z. Clearly, Leib(A) = span{y, z}. Through direct calculation,
we determine that Der(A) = span{d1, d2, d3, d4, d5, d6, d7}, where

d1(w) = w, d1(x) = 0, d1(y) = 2y, d1(z) = z,

d2(w) = x, d2(x) = 0, d2(y) = z, d2(z) = 0,

d3(w) = y, d3(x) = 0, d3(y) = 0, d3(z) = 0,

d4(w) = z, d4(x) = 0, d4(y) = 0, d4(z) = 0,

d5(w) = 0, d5(x) = x, d5(y) = 0, d5(z) = z,

d6(w) = 0, d6(x) = y, d6(y) = 0, d6(z) = 0,

d7(w) = 0, d7(x) = z, d7(y) = 0, d7(z) = 0.

Then we have L(A) = span{d3 = Lw, d4 = Lx} and I = span{d3, d4, d6, d7}. Hence,
IDer(A) = span{d3, d4, d6, d7} = L(A) + I. Note that Z(A/Leib(A)) = span{w + Leib(A),
x + Leib(A)}, and L(A) ∩ I = span{d3, d4} in this case.

Example 3. Consider the Leibniz algebra A = span{x, y, z} with non-zero multiplications defined
by [x, y] = y, [y, x] = −y and [x, x] = z. In this case, we have Leib(A) = span{z} =
Z(A), and Z(A/Leib(A)) is trivial. Through direct calculation, we determine that Der(A) =
span{d1, d2, d3} = IDer(A), where

d1(x) = y, d1(y) = 0, d1(z) = 0,

d2(x) = z, d2(y) = 0, d2(z) = 0,

d3(x) = 0, d3(y) = y, d3(z) = 0.

Then we have L(A) = span{d1 = L−y, d2 + d3 = Lx} and I = span{d2}. Hence, IDer(A) =
L(A) + I and L(A) ∩ I = {0}.

Example 4. Consider the Leibniz algebra A = span{x, y, z} with non-zero multiplications
defined by [x, y] = y, [y, x] = −y and [x, z] = z. Clearly, Leib(A) = span{z}, Z(A) =
{0}, and Z(A/Leib(A)) is trivial. Through direct calculation, we determine that Der(A) =
span{d1, d2, d3} = IDer(A), where

d1(x) = y, d1(y) = 0, d1(z) = 0,

d2(x) = 0, d2(y) = 0, d2(z) = z,

d3(x) = 0, d3(y) = y, d3(z) = 0.

Then we have L(A) = span{d1 = L−y, d2 + d3 = Lx} and I = span{d2}. Hence, IDer(A) =
L(A) + I and L(A) ∩ I = {0} in this case.

Definition 2 ([4], Definition 3.1). A Leibniz algebra A is said to be complete if

(i) Z(A/Leib(A)) = {0}, and
(ii) all derivations of A are inner.
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In ([6], Theorem 3.2), it is proven that any derivation of a simple Leibniz algebra can
be represented as a combination of three derivations. Here, we present a distinct approach
to this proof specifically tailored to semisimple Leibniz algebras.

Theorem 4. Let A be a semisimple Leibniz algebra. Then any derivation d of A can be written as
d = La + α+ δ, where a ∈ S, α : Leib(A) → Leib(A), δ : S → Leib(A), where S is a semisimple
Lie algebra and α([x, y]) = [x, α(y)] for all x, y ∈ A. Moreover, if A is simple, then α is either zero
or α(Leib(A)) = Leib(A).

Proof. Let A be a semisimple Leibniz algebra. According to Theorem 1, A = S + Leib(A),
where S is a semisimple Lie algebra. Then L(A) = L(S). According to ([4], Theorem
3.3), A is complete, and so Der(A) = IDer(A). Let d ∈ Der(A). According to Theorem 3,
d = La + k for some a ∈ S and k ∈ I. Set α = k|Leib(A) and δ = k|S. Then we can extend α to
be a derivation on A by defining α(x + y) = α(y) for any x ∈ S and y ∈ Leib(A). Similarly,
we can extend δ to be a derivation of A by defining δ(x + y) = δ(x) for any x ∈ S and y ∈
Leib(A). Thus, d = La + α + δ, α(Leib(A)) ⊆ Leib(A) and δ(S) ⊆ Leib(A) as Leib(A) is a
characteristic ideal of A. Since Leib(A) ⊆ Zl(A), α([x, y]) = [α(x), y]− [x, α(y)] = [x, α(y)]
for any x, y ∈ A. If A is simple, then α(Leib(A)) is either {0} or Leib(A), which implies
that α is either zero or α(Leib(A)) = Leib(A).

Example 5. Let S = span{e, f , h} ⊕ span{a, b, c} and V = span{x, y}. Define A = S ⊕ V
with the multiplications in A given by [e, f ] = h, [ f , e] = −h, [h, e] = 2e, [e, h] = −2e, [h, f ] =
−2 f , [ f , h] = 2 f , [e, y] = x, [ f , x] = y, [h, x] = x, [h, y] = −y, [a, b] = c, [b, a] = −c, [c, a] =
2a, [a, c] = −2a, [c, b] = −2b, [b, c] = 2b. Then A is a semisimple Leibniz algebra with
Leib(A) = V. Through direct calculation, we determine that Der(A) = span{d1, d2, d3, d4, d5,
d6, d7} = IDer(A), where

d1(e) = e, d1( f ) = − f , d1(h) = 0, d1(x) = x, d1(y) = 0, d1(a) = 0, d1(b) = 0, d1(c) = 0,

d2(e) = −e, d2( f ) = f , d2(h) = 0, d2(x) = 0, d2(y) = y, d2(a) = 0, d2(b) = 0, d2(c) = 0,

d3(e) = 0, d3( f ) = h, d3(h) = −2e, d3(x) = 0, d3(y) = x, d3(a) = 0, d3(b) = 0, d3(c) = 0,

d4(e) = −h, d4( f ) = 0, d4(h) = 2 f , d4(x) = y, d4(y) = 0, d4(a) = 0, d4(b) = 0, d4(c) = 0,

d5(e) = 0, d5( f ) = 0, d5(h) = 0, d5(x) = 0, d5(y) = 0, d5(a) = a, d5(b) = −b, d5(c) = 0,

d6(e) = 0, d6( f ) = 0, d6(h) = 0, d6(x) = 0, d6(y) = 0, d6(a) = 0, d6(b) = c, d6(c) = −2a,

d7(e) = 0, d7( f ) = 0, d7(h) = 0, d7(x) = 0, d7(y) = 0, d7(a) = c, d7(b) = 0, d7(c) = −2b.

Then L(A) = span{d1 − d2, d3, d4, d5, d6, d7} = L(S). Let k = d1 + d2. Then k ∈ I and
d1 = Lh/2 + k|V + k|S and d2 = L−h/2 + k|V + k|S.

Recall that a Lie algebra L is called complete if it has a trivial center and all of its
derivations are inner. In ([5], Theorem 4.3), Meng proved that for a Lie algebra L with
a trivial center, if ad(L) is a characteristic ideal of Der(L), then Der(L) is a complete Lie
algebra. This implies that for a complete Lie algebra L, Der(L) is a complete Lie algebra.
However, as shown in ([8], Example 3.11–3.12), there exists a complete Leibniz algebra A
such that Der(A) is not complete. We examine the Leibniz algebras with complete liezation
and obtain the following results.

Theorem 5. Let A be a Leibniz algebra such that A/Leib(A) is a complete Lie algebra. Then

(i) IA = Leib(A),
(ii) Der(A)/I is a complete Lie algebra.
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Proof. (i) Let A be a Leibniz algebra such that A/Leib(A) is a complete Lie algebra.
According to ([4], Proposition 3.2), A is complete. Then according to Corollary 1, A/IA ∼=
ad(A/Leib(A)) ∼= A/Leib(A). Hence, IA = Leib(A). (ii) Let A be a Leibniz algebra such
that A/Leib(A) is a complete Lie algebra. Then Der(A/Leib(A)) is complete. Define a
linear map φ : Der(A) → Der(A/Leib(A)) using φ(d) = d′, where d′(x + Leib(A)) =
d(x) + Leib(A) for all d ∈ Der(A) and x ∈ A. Let d1, d2 ∈ Der(A/Leib(A)). Then
for all x ∈ A, φ([d1, d2])(x + Leib(A)) = d′1(d

′
2(x) + Leib(A))− d′2(d

′
1(x) + Leib(A)) =

[φ(d1), φ(d2)](x + Leib(A)). Hence, φ([d1, d2]) = [φ(d1), φ(d2)]. Clearly, I = {d ∈
Der(A)|im(d) ⊆ Leib(A)} ⊆ ker(φ). Let d ∈ ker(φ). Then d(x) + Leib(A) = Leib(A)
for all x ∈ A, which implies that d ∈ I, and hence, ker(φ) ⊆ I. Thus, ker(φ) = I. To
show that φ is onto, let d′ ∈ Der(A/Leib(A)). Since A/Leib(A) is complete, there ex-
ists a + Leib(A) ∈ A/Leib(A) such that d′ = ada+Leib(A). Thus, for all a + Leib(A) ∈
A/Leib(A), we have La(x) + Leib(A) = [a, x] + Leib(A) = [a + Leib(A), x + Leib(A)] =
ada+Leib(A)(x + Leib(A)). This implies that φ(La) = d′. Hence, φ is onto and im(φ) =
Der(A/Leib(A)). Therefore, Der(A)/I ∼= Der(A/Leib(A)). This proves that Der(A)/I is
complete.

The following is an immediate result from the above theorem.

Corollary 2. Let A be a Leibniz algebra such that A/Leib(A) is a complete Lie algebra. Then
A/IA is a complete Lie algebra and dim(Der(A)) = dim(A)− dim(Leib(A)) + dim(I).

4. On Central Derivations

In [9], Tôgô studied the properties of inner derivations of Lie algebras by comparing
them with the set of central derivations. In this section, we investigate analogous results
for left Leibniz algebras. Note that Shermatova and Khudoyberdiyev, in [14], also studied
central derivations by comparing them with inner derivations. However, their works are
on the right Leibniz algebras, using the definition of inner derivations in [3].

Definition 3. Let A be a Leibniz algebra. A derivation d ∈ Der(A) is called a central derivation if
im(d) ⊆ Z(A).

We denote CDer(A) to be the set of all central derivations of A. It should be noted that
CDer(A) is a subalgebra of Der(A). We start by examining derivations of Leibniz algebras
that are both inner and central. Let A be a Leibniz algebra. According to Theorem 3,
IDer(A) = L(A) + I where I = {d ∈ Der(A) | im(d) ⊆ Leib(A)}. The following proposi-
tion is the Leibniz algebra analogue of the result in ([9], Lemma 2).

Proposition 3. Let A be a Leibniz algebra and J = I ∩CDer(A). Then the following hold.

(i) IDer(A) ∩ CDer(A) = L(Z1) + J, where Z1 = {x ∈ A | [x, A] ⊆ Z(A)}.
(ii) IDer(A) ∩ CDer(A) ⊆ L(Z2) + J, where Z2 = {r ∈ rad(A) | [r, rad(A2)] = 0}.

Proof. (i) IDer(A) ∩ CDer(A) = L(A) ∩ CDer(A) + I ∩ CDer(A) = {Lx | im(Lx) ⊆
Z(A)} + J = L(Z1) + J, where Z1 = {x ∈ A | [x, A] ⊆ Z(A)}. (ii) Let d ∈ IDer(A) ∩
CDer(A). According to (i), there exist z ∈ Z1 and h ∈ J such that d = Lz + h. Accord-
ing to Theorem 1, there exists a semisimple Lie algebra S such that A = S + rad(A)
and S ∩ rad(A) = {0}. Thus, A2 = S + rad(A2) and there exist s ∈ S and r ∈ rad(A)
such that z = s + r. Since im(h) ⊆ Z(A), we have h(S) = h([S, S]) = 0, and hence,
h(rad(A2)) = h(A2) = 0. Since im(d) ⊆ Z(A), we also have d(S) = 0 and d(A2) = 0,
which implies that d(rad(A2)) = 0. It follows that 0 = Ls+r(S) = [s + r, S] = [s, S] + [r, S].
Hence, [s, S] = 0, and therefore, s = 0. Thus, d = Lr + h and [r, rad(A2)] = 0.
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Example 6. Consider the Leibniz algebra A = span{w, x, y, z} with non-zero multiplications
defined by [w, x] = y, [x, w] = z, [w, y] = z and [x, x] = z. Then we have Leib(A) =
span{y, z}, and Z(A) = span{z}. Through direct calculation, we determine that Der(A) =
span{d1, d2, d3} = IDer(A) = I, where

d1(w) = z, d1(x) = 0, d1(y) = 0, d1(z) = 0,

d2(w) = 0, d2(x) = y, d2(y) = z, d2(z) = 0,

d3(w) = 0, d3(x) = z, d3(y) = 0, d3(z) = 0.

Then CDer(A) = span{d1, d3} = J and Z1 = span{x, y, z}. Thus, IDer(A) ∩ CDer(A) =
L(Z1) + J. Moreover, we determine that A = rad(A) and rad(A2) = span{y, z}. Since
Z2 = span{x, y, z}, IDer(A) ∩ CDer(A) ⊆ L(Z2) + J.

Next, we investigate Leibniz algebras where all central derivations are inner, yielding
the Leibniz algebra analogue of ([9], Lemma 3).

Theorem 6. Let A be a Leibniz algebra satisfying CDer(A) ⊆ IDer(A). If rad(A) is abelian,
then either Z(A) = {0} or A = A2.

Proof. Let A be a Leibniz algebra satisfying CDer(A) ⊆ IDer(A). According to Theorem
1, there exists a semisimple Lie algebra S such that A = S + rad(A) and S ∩ rad(A) = {0}.
Suppose that Z(A) ̸= {0} and A ̸= A2. Since A2 = S + [S, rad(A)] + [rad(A), S], we have
[S, rad(A)] + [rad(A), S] ⊊ rad(A). Choose a subspace U of rad(A) such that rad(A) =
U + [S, rad(A)] + [rad(A), S] and U ∩ ([S, rad(A)] + [rad(A), S]) = {0}. Define a nonzero
linear map d : A → A such that d(U) ⊆ Z(A) and d(S + [S, rad(A)] + [rad(A), S]) = 0.
Then d is a central derivation of A. Since CDer(A) ⊆ IDer(A) = L(A) + I and A =
S + rad(A), there exist s ∈ S, r ∈ rad(A) and h ∈ I such that d = Ls+r + h. Since
d(S) = 0 and [r, S] + h(S) ⊆ rad(A), we have [s, S] = 0, and hence, s = 0. Therefore,
d(U) = [r, U] + h(U) ⊆ Leib(A) as [r, U] ⊆ [rad(A), rad(A)] = {0}. Let 0 ̸= u ∈ U. Then
d(u) = α[x, x] for some α ∈ F and x ∈ A. Since S is a subalgebra, x /∈ S, which implies
that x ∈ rad(A). Thus, d(u) = α[x, x] ∈ [rad(A), rad(A)] = {0}, which contradicts our
definition of d. Hence, we have either Z(A) = {0} or A = A2.

Corollary 3. Let A be a Leibniz algebra satisfying CDer(A) ⊆ IDer(A). If Z(A) ̸= {0} and
CDer(A) ̸= {0}, then rad(A) is not abelian.

Proof. Let A be a Leibniz algebra satisfying CDer(A) ⊆ IDer(A). Suppose that Z(A) ̸=
{0} and CDer(A) ̸= {0}. If rad(A) is abelian, then according to Theorem 6, A = A2.
Hence for all d ∈ CDer(A), d(A) = d([A, A]) = {0}, which implies that d = 0. It follows
that CDer(A) = {0}, a contradiction. Therefore, rad(A) is not abelian.

Finally, we explore Leibniz algebras where all inner derivations are central, establish-
ing the Leibniz algebra analogue of ([9], Theorem 3).

Theorem 7. Let A be a Leibniz algebra. Then the following hold.

(i) IDer(A) ⊆ CDer(A) if and only if A2 ⊆ Z(A) if and only if A3 = {0}.
(ii) If Z(A) ̸= {0} and IDer(A) = CDer(A), then A2 = Z(A).

Proof. (i) Assume that IDer(A) ⊆ CDer(A). Then for all x, y ∈ A, Lx ∈ IDer(A) ⊆
CDer(A) and [x, y] = Lx(y) ∈ Z(A). Conversely, assume that A2 ⊆ Z(A). Let d ∈
IDer(A). Then there exists a ∈ A such that d(x) − La(x) ∈ Leib(A) for any x ∈ A.
Thus, d(x) ∈ A2 ⊆ Z(A), hence, d ∈ CDer(A). Clearly, A2 ⊆ Z(A) if and only if
A3 = [A, [A, A]] = 0. (ii) Suppose Z(A) ̸= {0} and IDer(A) = CDer(A). According to (i),
A2 ⊆ Z(A). If A2 ̸= Z(A), then according to ([15], Theorem 3.6), A has an outer central
derivation which contradicts our assumption. Hence, A2 = Z(A).
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Observe that ([9], Theorem 3 (iii)) is also valid in our case. In ([9], Theorem 3 (ii)), Tôgô
proved that for a Lie algebra L, if Z(L) ̸= 0, then IDer(L) = CDer(L) if and only if L2 = Z(L)
and dim(Z(L)) = 1. However, as the following example demonstrates, there exists a Leibniz
algebra A where Z(A) ̸= {0} and IDer(A) = CDer(A), but dim(Z(A)) > 1.

Example 7. Consider the Leibniz algebra A = span{w, x, y, z} with non-zero multiplications
defined by [w, w] = z, [w, x] = y, and [x, w] = −y. We can see that Z(A) = A2 = span{y, z},
Leib(A) = span{z}, and Der(A) = span{d1, d2, d3, d4, d5, d6, d7}, where

d1(w) = w, d1(x) = 0, d1(y) = y, d1(z) = 2z,

d2(w) = 0, d2(x) = x, d2(y) = y, d2(z) = 0,

d3(w) = x, d3(x) = 0, d3(y) = 0, d3(z) = 0,

d4(w) = y, d4(x) = 0, d4(y) = 0, d4(z) = 0,

d5(w) = z, d5(x) = 0, d5(y) = 0, d5(z) = 0,

d6(w) = 0, d6(x) = y, d6(y) = 0, d6(z) = 0,

d7(w) = 0, d7(x) = z, d7(y) = 0, d7(z) = 0.

Then IDer(A) = span{d4, d5, d6, d7} = CDer(A).

5. Conclusions

In this paper, we utilize the recent definition of inner derivations for Leibniz algebras
as given in [4] to describe the Lie algebras of inner derivations of Leibniz algebras. We
also extend the result regarding the Lie algebra of derivations from [5] to Leibniz algebras
with complete liezations. Using our result, we derive a similar description of derivations
for semisimple Leibniz algebras in [6] through a different approach and establish rela-
tions between the inner derivation algebras of Leibniz algebras and the algebra of central
derivations, analogous to the case in Lie algebras in [9]. Several open problems remain in
understanding various aspects of inner derivations of Leibniz algebras and their relation
with the structure of Leibniz algebras, mirroring the exploration of properties of inner
derivations in Lie algebras.
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