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Abstract: Currently, self-supervised learning has shown effectiveness in solving data labeling issues.
Its success mainly depends on having access to large, high-quality datasets with diverse features. It
also relies on utilizing the spatial, temporal, and semantic structures present in the data. However,
domains such as finance, healthcare, and insurance primarily utilize tabular data formats. This
presents challenges for traditional data augmentation methods aimed at improving data quality.
Furthermore, the privacy-sensitive nature of these domains complicates the acquisition of the ex-
tensive, high-quality datasets necessary for training effective self-supervised models. To tackle
these challenges, our proposal introduces a novel framework that combines self-supervised learning
with Federated Learning (FL). This approach aims to solve the problem of data-distributed training
while ensuring training quality. Our framework improves upon the conventional self-supervised
learning data augmentation paradigm by incorporating data labeling through the segmentation of
data into subsets. Our framework adds noise by splitting subsets of data and can achieve the same
level of centralized learning in a distributed environment. Moreover, we conduct experiments on
various public tabular datasets to evaluate our approach. The experimental results showcase the
effectiveness and generalizability of our proposed method in scenarios involving unlabeled data and
distributed settings.

Keywords: Federated Learning; self-supervised learning; tabular data; deep learning

MSC: 68T07

1. Introduction

Self-supervised learning has demonstrated its ability to yield meaningful results
when applied to high-quality, extensive datasets characterized by distributed features [1–6].
Simultaneously, significant strides have been made in natural language processing, audio anal-
ysis, and image recognition through the employment of data augmentation techniques [7–16].
Notably, self-supervised learning exhibits enhanced robustness compared with supervised
learning in addressing the class imbalance problem within data, both in in-domain and
out-of-domain evaluation scenarios [5]. These advancements are facilitated by methods
such as data augmentation [9] and predefined task generation strategies [11]. However,
in several scenarios such as finance, healthcare, and insurance, tabular data predominate.
This data type lacks spatial, temporal, and semantic structures, rendering efficient aug-
mentation challenging and potentially compromising training efficacy. Moreover, given
the heightened importance of preserving user confidentiality in these domains, acquiring
high-quality data to enhance training outcomes becomes increasingly challenging. The
limited presence of tabular data in self-supervised FL can be attributed to the complexity
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of designing effective enhancement methods tailored for such data types and the inherent
challenges in sourcing high-quality data in these domains.

The predominant approach to enhancing tabular data involves disrupting their struc-
ture and introducing noise to augment the dataset [17]. However, uniformly treating
all tabular data with noise addition may yield disparate enhancement outcomes, thus
sub-optimizing the efficacy of data augmentation. Moreover, addressing estimation and
measurement errors poses challenges as determining the trade-off between bias and effi-
ciency in managing various specifications of masking and measurement errors remains
elusive [18]. Consequently, self-supervised learning offers a promising avenue by trans-
forming the single-view problem into a multi-view framework, generating reconstructed
data through feature subsets. This approach effectively ameliorates issues relating to data
quality and quantity. Nonetheless, self-supervised learning relies on high-quality features
to yield improved data outcomes, and co-aggregating data for training is often impractical
in high-privacy contexts. FL emerges as a viable solution, facilitating distributed learning
in privacy-constrained environments. FL effectively addresses data silos by securely ag-
gregating data for distributed training, aligning well with stringent requirements across
diverse environments [19]. By integrating FL with self-supervised learning, we harness the
potential to leverage high-quality data for training superior models in data labeling tasks.

In this study, we extend the paradigm of training efficient models using a single
data source to encompass multiple data sources for simultaneous model training within a
FL framework, akin to secure training with an enhanced data volume across distributed
environments. Concurrently, by leveraging self-supervised learning on clients’ unlabeled
data, we ensure the high quality of our models. Our experimental results demonstrate that
TabFedSL achieves comparable performance to SubTab under the Mnist, UCI Adult Income,
and UCI BlogFeedback datasets in the tabular setting. This validates the efficacy of our FL
approach in scenarios characterized by non-independent and non-identically distributed
(Non-IID) data, underscoring the robustness of our FL framework. Additionally, the robust-
ness of TabFedSL’s framework is further substantiated through federal hyperparameter
adjustment experiments.

(1) Our proposition introduces self-supervised learning within a FL framework, offering a
solution tailored to address the challenge of tabular data labeling in sensitive contexts.

(2) We enhance the conventional data augmentation scheme for self-supervised learning
by incorporating a novel approach of partitioning the dataset and applying noise to
augment the subset data.

(3) Our work also utilizes several public tabular datasets, and the experimental results
demonstrate the effectiveness and generalizability of our proposed approach in unla-
beled data and distributed scenarios.

2. Literature Review

In this section, we enumerate recent significant contributions in the fields of FL and self-
supervised learning. We delve into the rationale behind selecting FL and self-supervised
learning as the approach to tackle the challenge of intricate tabular data labeling, consider-
ing the current state-of-the-art advancements in these domains.

2.1. Federated Learning

Issues such as cloud computing capacity limitations, data security concerns, and data
silos are increasingly recognized as barriers to fostering trust, gathering private user data,
and facilitating federated training [20]. Consequently, to mitigate these challenges, there
arises a critical need for effective solutions in privacy-sensitive scenarios. Such solutions
aim to bolster user trust while enhancing the performance of training models. It is within
this context that the concept of FL emerged.

The concept of FL was pioneered by Google’s team in 2016 with the aim of enabling
users to achieve improved local model performance in privacy-sensitive scenarios without
compromising their privacy. Google has since developed FL frameworks suitable for
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deployment in real production environments. These frameworks enable customers to
engage in joint training utilizing algorithms such as FedAvg, all while safeguarding the
confidentiality of their information [21].

As a secure distributed machine learning approach, FL facilitates collaborative model
training across multiple nodes while upholding the privacy of local data [22]. By decentral-
izing data processing to individual local nodes, reliance on a central server is diminished.
Within this framework, the central server’s role is primarily confined to aggregating param-
eter updates, thereby avoiding direct data processing. Consequently, global models can
be trained to exhibit robust performance even in the presence of decentralized data. This
mechanism contrasts with traditional centralized training methods, which typically neces-
sitate processing all information centrally on a server [23]. FL also enables cross-sectoral
data sharing, thereby broadening the sample size and data dimensions to support the de-
velopment of high-precision big data models and applications. Consequently, FL facilitates
the provision of high-quality data services, thereby generating greater societal value.

FL technologies have witnessed significant advancements over time, leading to practi-
cal applications across various domains, including smart healthcare [24], recommendation
systems, smart cities [25], banking, edge training [26], and cybersecurity, among others.
To cater to the requirements of these diverse applications, efficient central aggregation
algorithms are essential to strike an optimal balance between preserving data security and
enhancing computational efficiency. Through connections facilitated by secure platforms,
different organizations have embraced the implementation of FL, thereby fostering the de-
velopment of FL-based data collaboration models aligned with legal compliance standards.

In academia, FL has seen remarkable advancements, with innovative approaches such
as employing graph neural networks within FL frameworks to tackle the time series graph
problems prevalent in various business environments [27]. Furthermore, in the realm of
the Internet of Things (IoT), which targets clients with heterogeneous data, collaborations
between clients are analyzed to derive the most effective model using rating-based feed-
back mechanisms [28]. Additionally, a self-supervised pre-training paradigm has been
introduced in self-supervised FL, leveraging transformers to efficiently address image
processing challenges in the medical field [29]. Moreover, the utilization of self-supervised
FL has been instrumental in addressing standard acoustic event classification [30] and
facilitating the targeted training of video data generated on edge devices [31].

In broad terms, self-supervised FL has demonstrated effectiveness in domains such as
image, audio, and video processing, yet solutions in the realm of tabular data remain scarce.
To address this gap, we propose a self-supervised FL approach tailored to the tabular do-
main. Our solution involves leveraging segmented subsets for feature enhancement to bol-
ster the performance of self-supervised models. By doing so, we aim to mitigate the scarcity
of high-quality data for efficient data annotation within privacy-sensitive environments.

2.2. Self-Supervised Learning

Self-supervised learning has garnered significant attention due to its ability to mitigate
the labeling costs associated with large datasets. This learning paradigm leverages pseudo-
labels as learning cues, and the feature representations learned through this approach are
versatile and applicable across a diverse array of tasks. As a result, self-supervised learning
has emerged as a mainstream method in fields like computer vision and natural language
processing [1,32].

Since the advent of Generative Adversarial Networks (GANs) [33], there has been a
surge in generative modeling, giving rise to various architectures such as CycleGAN [34],
StyleGAN [35], PixelRNN [36], Text2Image [37], and DiscoGAN [38], among others. These
advancements have encouraged researchers to leverage unlabeled data more effectively for
model training in the realm of self-supervised learning. However, despite their achieve-
ments, GAN-based methods have encountered challenges in training. They often struggle
to converge, with parameters oscillating and proving difficult to stabilize. Alternatively,
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the discriminators in these models may perform too well, resulting in generative models
that fail to produce plausible artifacts, thereby hindering the learning process.

To tackle these challenges, recent studies have identified effective strategies through
innovations in both data augmentation and pre-training tasks. In the realm of data augmen-
tation, novel approaches such as self-distillation with masked input views and transformer-
based architectures have been proposed. These methods aim to predict the hidden repre-
sentations of complete input data [7]. Additionally, stochastic data augmentation modules
have been introduced, which generate multiple correlated views of the data and apply ran-
dom cropping, resizing, color distortion, and Gaussian blurring [9]. Regarding pre-training
task generation, advancements such as BERT (Bidirectional Encoder Representations from
Transformers) have emerged. Unlike traditional one-way language models, BERT employs
a masked language model to pre-train deep bidirectional representations, enabling adapta-
tion to a broader range of scenarios without the need for specific modifications for each
situation [11].

The aforementioned methods have proven effective in natural language, audio, and
image domains under certain conditions. However, in the domain of tabular data, training
outcomes may be suboptimal due to the absence of the spatial, temporal, and semantic
structures inherent in tables. This limitation makes it challenging to efficiently augment
the data and generate pre-training tasks. To address this challenge, recent approaches
have proposed utilizing flow blending for data augmentation in tabular data. Additionally,
schemes such as noise injection and averaging error loss have been employed to enhance the
performance of self-supervised models [39]. VIME extends the success of self-supervised
and semi-supervised learning to the domain of tables [40]. Furthermore, an alternative
approach involves leveraging unimproved self-supervised representation learning tech-
niques, which utilize stochastic regularization methods independent of negative pairs. This
strategy aims to capture the highly heterogeneous and unstructured information present in
tabular data [41]. However, it is important to note that such reconstruction strategies may
overlook specific errors within individual datasets, thereby diminishing the effectiveness
of self-supervision.

Henceforth, we propose a novel framework utilizing FL to address privacy concerns
while enabling joint model training, thereby enhancing data security and the efficacy of
model utilization. Through FL, customers’ data privacy is safeguarded, allowing for collab-
orative model training, which shifts the focus toward improving the model’s performance.
This approach effectively reframes the privacy challenge into a data labeling opportunity,
thereby ameliorating the issue. Departing from traditional data augmentation schemes in
self-supervised learning, our framework involves segmenting data using noise to augment
data subsets. Simultaneously, we leverage data with uniform feature distributions to gener-
ate high-quality data, thereby augmenting the dataset and enhancing the labeling effect.
This approach aims to bolster the effectiveness of data labeling efforts.

3. Overall Framework

In our approach, we simulate joint training involving multiple clients, all of whom
are presumed to be honest and trustworthy, and share common data features. Each client
trains its own self-supervised model using its labeled data. During the model learning
process, the local model of each client is uploaded to the server. The server aggregates and
optimizes the local models uploaded by all clients to create a global model, which is then
sent back to the clients for the further training of their local models. This iterative process
continues until the best model is trained. Through this learning method, we effectively
mitigate the learning bottleneck associated with small data volumes, ensuring that each
client obtains an improved model.

Figure 1 gives the framework, in which we designed multiple clients (Client) and a
server (Server) in a single client in the enterprise (Data Enterprise) according to the data
processing, divided into labeled data (Labeled Data) and unlabeled data (Unlabeled Data).
It also includes the Encoder and Decoder in the process of self-supervision learning. The
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global model download and local model upload between the Client and Server are used to
communicate the training process to achieve knowledge sharing, and the local model in
Client can generate labels for Unlabeled Data to become Labeled Data.

Figure 1. An overall introduction to the TabFedSL framework, including Data Enterprise, Self-
Supervision, Encoder and Decoder, Unlabeled Data, Labeled Data, Local Model, Global Model,
Server, Client.

In addition, we also simulate the case of non-IID data in real scenarios, where the
bottleneck of the individual client training is greatly suppressed in the case of extremely
unbalanced data, but in the case of only one type of data or two types of data in our design,
our approach can fully validate the effectiveness of FL.

We use a self-supervised learning method for each client’s unlabeled data, as shown in
Figure 2, to divide the tabular data into multiple subsets, while using the same encoder for
each subset to ensure that each subset receives the same parameter sharing and, at the same
time, reconstructing all the features from the subset of the features to generate the complete
data table. We selectively generate losses suitable for the target additions by combining the
projection pairs in their own way, and we reduce the distance between projection pairs via
the mean squared error (MSE).

Figure 2. Self-supervised training process where p and z are the feature projections, including Feature
Space, Encoder, Decoder, Projection, Latent Variable, Subsets of Features, Model, Data, Data Subsets.

4. Methods

A great deal of recent success in machine learning has been based on optimization by
means of stochastic gradient descent (SGD). Many of these optimizations can be under-
stood as adjustments to the structure of the model as well as the loss function to achieve
optimization. At the same time, by dividing the features of the dataset into multiple subsets
of features, the table data representation learning task is transformed into a multi-view
representation learning task, and the features of the data are redefined. Subsetting the
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features of tabular data and solving the problem of treating all features equally as well as
solving the problem of tabular data not being applicable in high-latitude scenarios [42], we
are inspired by this and naturally propose a method of self-supervised FL of tabular data in
combination with high-latitude hidden scenarios such as banks, insurance, and hospitals.

4.1. Add Noise Strategy

Our approach is to perform data augmentation on tabular data, so we try to augment
the data by adding one of three types of noise: (i) Gaussian noise, (ii) swap noise, with
features randomly selected from the same column method swapped with features of other
entries, and (iii) randomly selected entries with their feature size set to 0 to become zero-out.

We create a binomial mask m and a noise matrix sc with the same shape as the subset s,
where ◦ is the Hadamard product. After data augmentation, the subset s is corrupted and
a new subset s1e is generated as follows:

s1e = (1−m) ◦ s1 + m ◦ sc . (1)

4.2. Training Strategies

Our overall objective function is

l fi
(w) : Lt = Lr + Lc + Ld . (2)

where Lt, Lr, Lc and Ld are the total loss, reconstruction loss, contrast loss, and distance
loss, respectively. The total loss of FL is taken as the loss of each client and the average
l fi
(w).

4.2.1. Reconstruction Loss

For each defined subset, we can reconstruct the new subset. By comparing the original
subset and the new subset, the computational MSE of the reconstructed new subset can be
calculated. The reconstruction loss formula is shown below:

Lr =
1
K

K

∑
k=1

lk, where lk =
1
N

N

∑
i=1

(
S(i) − Ŝ(i)

k

)2
. (3)

where K is the total number of subsets, N is the batch size, lk is the reconstruction loss
of the kth subset, Lr is the average of the reconstruction loss of all subsets, and S is the
overall dataset.

4.2.2. Contrastive Loss

When the dataset has many categories, the chance of randomly selecting negative
samples is high, and we can use the projection network to get the projection z. If the subsets
of z1 and z2 samples are more effective for the training result, then the remaining samples
can be negative for the training result. For the 3 feature subsets {s1, s2, s3}, we can compute
the loss between any 2 subsets to form the set T = {z1, z3}, {z1, z3}, {z2, z3}, for a total of
3 pairs of contrast losses. The overall contrastive loss is

Ld =
1
J ∑
{za ,zb}∈T

p(za, zb), where p(za, zb) =
1

2N

N

∑
i=1

[
l(z(i)a , z(i)b ) + l(z(i)b , z(i)a )

]
. (4)

l(z(i)a , z(i)b ) = − log
exp(sim(z(i)a , z(i)b )/τ)

∑N
k=1 1k ̸=i exp(sim(z(i)a , z(k)b )/τ)

.

where J is the total number of pairs in the set T, p(za, zb) is the total contrast loss of a pair
of projections, l(za, zb) are the loss functions of the positive pairs of examples {za(i), zb(i)}
in the corresponding subset, and Lc is the average of the contrast losses of all pairs.
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4.2.3. Distance Loss

In order to make the paired samples in the dataset more closely matched, we can
introduce the MSE as part of the loss as a measure of the similarity between samples within
a subset. Accordingly, we were able to estimate a composite MSE loss, which improves the
fit of the model to the data:

Ld =
1
J ∑
{za ,zb}∈T

p(za, zb), where p(za, zb) =
1
N

N

∑
i=1

(
z(i)a − z(i)b

)2
. (5)

4.2.4. FedAvg

Above is the formula representation of the relevant loss function that we use in the
client side in FL, while in the server side we refer to FedAvg for the summation and
averaging algorithm of the parameter list uploaded by all the clients, which is again sent
down to the clients for training to complete the gradient convergence.

Client local update: In each iteration t, the server sends the current global model
parameters wt to a selected set of clients. Each client k updates the model using its local
data Sk.

wi
t+1 = wt − η∇L fi

(wt).

where∇L fi
(wt) is the gradient of the model parameter wt computed by client k on its data,

and η is the learning rate.
Global model update: The server computes a weighted average of the updates sent

back by all clients to update the global model.

wt+1 =
∑K

k=1 nkwk
t+1

n
.

where nk is the number of data points for client k, and n is the total number of data points
for all clients.

4.3. Pseudocode

The algorithm orchestrates interactions between a central server and multiple client
nodes to facilitate the training of a global model while preserving the privacy of raw
data stored on the clients. The server-side procedure, delineated in Algorithm 1, entails
selecting clients, transmitting the current model weights to these selected clients, receiving
their updated weights after local training, and subsequently aggregating these weights
to update the global model through weighted averaging. This iterative process persists
until convergence of the global model is achieved. Conversely, the client-side algorithm, as
depicted in Algorithm 2, is executed locally on each client node. Here, the client receives
the current global model weights from the server, conducts local training using these
weights, and forwards the updated weights back to the server. Within each local training
epoch, the client partitions its data into small batches, computes the gradient based on the
loss function, and iteratively updates the model weights accordingly. By employing this
approach, Federated Learning enables collaborative model training utilizing distributed
computational resources while safeguarding the confidentiality of individual client data.
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Algorithm 1 Federated Learning Server-Side Algorithm

Input: Number of clients K
1: Initialize server model weights w0
2: Set round t = 0
3: Server executes:
4: while not converged do
5: t← t + 1
6: Initialize an array: client_updates← []
7: for each client k from 1 to K do
8: Send current model weights wt−1 to client k
9: Receive updated weights wtk from client k

10: client_updates[k]← wtk
11: end for
12: wt ← average(client_updates)
13: for each client k from 1 to K do
14: Send global model weights wt to client k
15: end for
16: end while
17: return wt

Algorithm 2 Federated Averaging Client-Side Algorithm

Input: client_data, initial_server_weights, batch_size B, local_epochs E, learning_rate η
1: Initialization: Receive initial weights w0 from server
2: Set weights w to w0
3: Initialize total reconstruction loss Lrecon to 0
4: Initialize total contrastive loss Lcontrast to 0
5: Initialize total distance loss Ldistance to 0
6: Client executes:
7: for each local epoch i from 1 to E do
8: Receive updated weights w from the server
9: Divide client_data into batches of size B

10: for each batch X in client_data do
11: Perform a forward pass to get latent representations z
12: Compute reconstruction loss Lrecon using S and its reconstruction
13: Lbatch = Lrecon
14: if Apply contrastive loss then
15: Compute contrastive loss Lcontrast for all pairs in z
16: Lbatch = Lbatch + Lcontrast
17: end if
18: if Apply distance loss then
19: Compute distance loss Ldistance for all pairs in z
20: Lbatch = Lbatch + Ldistance
21: end if
22: Calculate gradients of Lbatch with respect to w
23: Update weights w = w− η × gradients
24: end for
25: Send updated weights w to the server
26: end for
27: return w

5. Experiments

In our experimental evaluation, we focused on tabular data, utilizing datasets such as
Mnist, UCI Adult Income, and UCI BlogFeedback in tabular format to assess the effective-
ness of the TabFedSL framework. We conducted several comparative experiments within
the TabFedSL framework: (i) We compared the efficacy of the TabFedSL framework in
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training a self-supervised model against training a joint self-supervised model, maintaining
consistency in the number of training rounds, dataset characteristics, noise conditions, etc.;
(ii) We evaluated the robustness of our framework in handling real-world data imbalances,
and we simulated scenarios of data imbalance by assigning different classes to each client
individually. This simulation enabled us to validate the effectiveness of the TabFedSL
framework in addressing data imbalances. (iii) We conducted a hyperparameter analysis
focusing on the number of client aggregation rounds and the number of clients in the
FL setup of TabFedSL. This analysis aimed to showcase the robustness of our approach
across different hyperparameter settings. Through these experiments, we aimed to provide
comprehensive insights into the performance and effectiveness of the TabFedSL framework
in addressing key challenges in tabular data analysis and model training.

5.1. Experimental Platforms

The experimental environment for this study was as follows: an Intel Xeon Silver
4216 CPU @ 2.10 GHz with 16 cores and 32 threads, accompanied by an NVIDIA Tesla T4
GPU produced from H3C Group, Beijing, China. The entire setup was hosted on a server
with the following specifications. CPU: Intel Xeon Silver 4216 @ 2.10 GHz produced from
H3C Group, Beijing, China (16 cores, 32 threads); Memory: 64 GB RAM produced from
H3C Group, Beijing, China; GPU: NVIDIA Tesla T4 with 16 GB of memory; Operating
System: Linux x86_64 ubuntu 22.04 (specific distribution not mentioned); Deep Learning
Framework: PyTorch 1.13.1; CUDA Version: 12.0; Python Version: 3.7.12; NVIDIA Driver
Version: 525.125.06.

The machine used for the experiments was equipped with an extensive 64 GB of RAM
and a total of 16 GB of GPU memory. The system was operated under a Linux environment,
with PyTorch leveraging CUDA 12.0 for GPU-accelerated deep learning tasks.

5.2. Dataset Description

MNIST: In our experimental setup, we employed the flattening technique to convert
each 28 × 28 image into a one-dimensional vector, followed by resizing the images to
255 pixels to normalize the data, as described in [43]. We utilized the entire training dataset
for model training, while the test set was reserved for model evaluation.

UCI Adult Income: Derived from the 1994 U.S. Census database [44], the UCI Adult
Income dataset is renowned for its utility in predicting whether an individual’s annual
income exceeds $50,000. Comprising 6 continuous and 8 categorical variables, the dataset
undergoes one-hot encoding of categorical variables, resulting in an expansion of the
feature space to include 101 distinct features.

UCI BlogFeedback: This data originally came from blog posts and was used to
perform a regression task to predict the number of comments in the next 24 h [45]. Now,
we convert this data into a binary classification task that determines whether an article
has comments or not. These datasets contain 280 integer and real features, and separate
training and test sets are provided.

5.3. Experimental Setup

In the experimental design of this study, we took 20 rounds of training cycles as a
benchmark and set the learning rate (lr) to 0.001. To monitor the performance of the model
during the training process, we computed the validation loss at the end of each epoch round.
In addition, to simulate the regularization effect during the training process, we set the
Dropout rate to 0.2 and set the tau value to 0.1 to control the strength of the regularization.
As the base model for the classification task, we chose the logistic regression model. The
number of clients set in the experiment was 10, while the number of servers was fixed at 1
to construct a distributed learning environment.

For the non-independent identical distribution (Non-IID) property of the data, we
simulated the inhomogeneity of the data distribution in the real world through the skewness
of the label distribution.The MNIST dataset was used for the decimation task, while the
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Income and Blog datasets were used for the bicategorization task, whereby our dataset is
partitioned into 10 and 2 subsets according to the skewness of the label distribution. To
further model the label imbalance, we conducted independent experiments using each
client’s dataset with the inclusion of 2 and 10 clients, respectively.

For the independent identically distributed (IID) nature of the data, we completely
disrupted the dataset to ensure that each client’s training set contains multiple species
in distributed training, as a way to explore the differences in model performance under
different data distribution settings.

5.4. Evaluation Indicators

After training our federated self-supervised model, we proceeded to generate a train-
ing set comprising logistic regression models based on this model. Subsequently, we trained
a logistic regression model to assess the quality of the generated data. We then evaluated
the performance of the trained logistic regression model using the test set. In the case of
TabFedSL, we specifically employed Accuracy as the evaluation metric in logistic regression
to gauge the effectiveness of the model.

Accuracy =
Number of correct predictions

Total number of predictions made
=

TP + TN
TP + TN + FP + FN

. (6)

In the context of classification models, TP (True Positives) represents the number of
instances correctly predicted as positive by the model. TN (True Negatives) indicates the
number of instances correctly predicted as negative by the model. FP (False Positives)
denotes the number of instances incorrectly predicted as positive by the model. FN (False
Negatives) signifies the number of instances incorrectly predicted as negative by the
model. These metrics are fundamental in evaluating the performance and accuracy of
classification models.

6. Results

In the experimental chapters, we categorize our experiments into two main classes
based on the type of data: one is the performance of IID data in our proposed framework;
the other is the performance demonstration of non-IID data in our framework. For each
type of data, we further conduct a comparative study between centralized and distributed
self-supervised learning. In particular, in the distributed learning scenario with non-IID
data, we compare, in detail, the performance difference between client-side training alone
and server-side distributed training.

6.1. IID Environment Setting

As shown in Table 1, we have selected the centralized self-supervised learning and
distributed self-supervised learning of VIME as a benchmark for comparison to demon-
strate that our method can effectively improve the training of the model’s performance in
self-supervised learning and distributed self-supervised learning by introducing a noise
strategy in a subset of the segmented data under the condition of IID.

Figure 3 illustrates the comparison of the accuracy of VIME and Ours under focused
learning in the IID case.

Figure 4 illustrates the accuracy comparison between VIME and Ours under dis-
tributed learning in the IID case.

Experimental results show that in both centralized and distributed learning environ-
ments, our framework is able to significantly improve the data quality through the strategy
of segmenting and adding noise to a subset of the data, thus effectively enhancing the
model’s performance.

In our framework, the difference between centralized self-supervised learning and dis-
tributed self-supervised learning under different noise conditions is compared, and the re-
sults are shown in the table below. Table 2 shows that in the IID case, our framework is able
to achieve the performance level of centralized learning training under distributed training.
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Table 1. Comparison of the accuracy of centralized and distributed learning in the IID case.

Dataset Model Training Type Accuracy

MNIST
VIME Centralized 0.9370

Distributed 0.9246

Ours Centralized 0.9749
Distributed 0.9755

Income
VIME Centralized 0.7543

Distributed 0.7542

Ours Centralized 0.8509
Distributed 0.8509

Blog
VIME Centralized 0.7019

Distributed 0.7019

Ours Centralized 0.8424
Distributed 0.8452

Figure 3. Comparison of the accuracy of VIME and Ours centralized learning in the IID case.

Figure 4. Comparison of the accuracy of VIME and Ours distributed learning in the IID case.
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Table 2. Comparison of the accuracy of different noises in centralized and distributed learning in the
IID case.

Dataset Training Type Noise Accuracy

no_noise 0.9749

Centralized gaussian_noise 0.9751
swap_noise 0.9820

MNIST zero_out 0.975
no_noise 0.9755

Distributed gaussian_noise 0.9804
swap_noise 0.9826

zero_out 0.9794

no_noise 0.8509

Centralized gaussian_noise 0.8531
swap_noise 0.8513

Income zero_out 0.8517
no_noise 0.8509

Distributed gaussian_noise 0.8534
swap_noise 0.8533

zero_out 0.8530

no_noise 0.8424

Centralized gaussian_noise 0.8457
swap_noise 0.8429

Blog zero_out 0.8425
no_noise 0.8431

Distributed gaussian_noise 0.8477
swap_noise 0.8440

zero_out 0.8461

Figure 5 shows the performance of centralized and distributed training with no added
noise.

Figure 5. Comparison of the accuracy of no_noise in the IID case for centralized and distributed
learning.

Figure 6 shows the performance of centralized and distributed training after adding
gaussian_noise.
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Figure 6. Comparison of the accuracy of gaussian_noise in the IID case for centralized and distributed
learning.

Figure 7 shows the performance of centralized and distributed training after adding
swap_noise.

Figure 7. Comparison of the accuracy of swap_noise in the IID case for centralized and
distributed learning.

Figure 8 shows the performance of centralized and distributed training after adding
zero_out.

The implementation results show that in the IID case, both with and without added
noise, our distributed learning results reach the performance level of models trained with
centralized learning results.

The following Figures 9 and 10 clearly show the impact of adding noise and not adding
noise on the performance of our framework in both distributed and centralized learning
environments. The results in the figures demonstrate that the model trained by adding
noise outperforms the model without added noise.
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Figure 8. Comparison of the accuracy of zero_out in the IID case for centralized and distributed
learning.

Figure 9. Comparison of the accuracy of centralized learning with additive noise versus no additive
noise in the IID case.

Figure 10. Comparison of the accuracy of distributed learning with additive noise versus no additive
noise in the IID case.
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6.2. Non-IID Environment Setting

As shown in Table 3, we have selected the centralized self-supervised learning and dis-
tributed self-supervised learning of VIME as a benchmark for comparison to demonstrate
that our method can effectively improve the model training performance of self-supervised
learning and distributed self-supervised learning under non-IID conditions by introducing
a noise strategy in the subset of the segmented data.

Table 3. Comparison of the accuracy of different noises in centralized and distributed learning in the
non-IID case.

Dataset Model Training Type Accuracy

MNIST
VIME Centralized 0.9224

Distributed 0.9239

Ours Centralized 0.9749
Distributed 0.9767

Income
VIME Centralized 0.7543

Distributed 0.7542

Ours Centralized 0.8509
Distributed 0.852

Blog
VIME Centralized 0.7019

Distributed 0.7018

Ours Centralized 0.8424
Distributed 0.8443

Figure 11 illustrates the accuracy comparison between VIME and Ours under central-
ized learning in the non-IID case.

Figure 11. Comparison of the accuracy of VIME and Ours centralized learning in the non-IID case.

Figure 12 illustrates the accuracy comparison between VIME and Ours under dis-
tributed learning in the non-IID case.

The experimental results show that our proposed framework is able to significantly
improve the quality of data through data subset partitioning and noise addition strategies
in both centralized and distributed learning environments. This improvement in data
quality in turn effectively enhances the performance of the model. This finding highlights
the importance of well-designed data preprocessing strategies for optimizing the model
training process and improving learning efficiency in self-supervised learning and its
distributed variants.
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Figure 12. Comparison of the accuracy of VIME and Ours distributed learning in the non-IID case.

In this study, we selected three different datasets and trained the data used by each
client individually to evaluate the accuracy of the model and compare these results with
the results of our distributed experiments. The aim of this exercise is to simulate the data
label skew problem, which is common in real-world scenarios, as a way to validate the ap-
plicability and effectiveness of our proposed framework in dealing with the specific context
of data imbalance. Through this approach, we are able to deeply analyze the performance
difference between independently trained and centrally trained models across clients in
a distributed learning environment under label skew conditions, thus demonstrating the
advantages and applicability of our framework in dealing with such unbalanced data
distribution scenarios. The results on the MNIST, Income, and Blog datasets are shown
below in Figures 13–15.

Figure 13. Comparison of the accuracy of client data trained alone and through server-side co-training
on the MNIST dataset.



Mathematics 2024, 12, 1158 17 of 20

Figure 14. Comparison of the accuracy of client data trained alone and through server-side co-training
on the Income dataset.

Figure 15. Comparison of the accuracy of client data trained alone and through server-side co-training
on the Blog dataset.

Finally, we performed a comparative analysis, as shown in Figure 16, evaluating the
performance of our proposed distributed training framework under two different data
settings: non-IID and IID.

From the provided graphs of the results, we can clearly observe that the model training
is better in the IID data setting than under the non-IID condition. In addition, the accuracy of
the server-side model suffers a significant loss in the IID setting. It highlights the important
impact of data distribution characteristics on model training performance, especially in
distributed learning environments, where the independent, identically distributed nature
of the data helps to improve the generalization ability and accuracy of the model.

The experimental results show that our framework achieves a level of performance that
matches centralized learning in distributed learning environments, a result that validates
the effectiveness of our approach in coping with limited data annotation and distributed
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learning scenarios. These findings provide new perspectives in the field of distributed
learning, emphasizing the critical role of data augmentation in improving the effectiveness
of distributed learning.

Figure 16. Comparison of the accuracy of non-IID and IID in a distributed environment.

7. Conclusions

In limited data annotation and distributed environments, although existing work can
solve the problems of small data volume and difficult annotation to a certain extent, there
is still a gap with the centralized learning method. Our framework performs data aug-
mentation by adding noise on different subsets, resulting in high-quality data annotations.
The experimental results show that in distributed scenarios, the performance level of our
framework is consistent with that of centralized learning. We demonstrate its effectiveness
across the MNIST, UCI Adult Income, and UCI BlogFeedback datasets, with validation
conducted in a simulated non-IID scenario. Additionally, our current study will provide
a kind of baseline for subsequent applications of self-supervised FL in the field of forms.
Within our framework, model performance enhancement primarily stems from three com-
ponents. (i) Self-Supervised Learning: Our model utilizes self-supervised learning to tackle
challenges relating to data quality and quantity. It accomplishes this by converting the
single-view problem into a multi-view problem. Through the generation of reconstructed
data via feature subsets, self-supervised learning substantially improves both data quality
and quantity. (ii) Refined Data Augmentation: We improve traditional self-supervised
learning data augmentation by partitioning datasets and adding noise to augment subset
data. This process further enhances the model’s performance. (iii) Federated Learning:
FL plays a pivotal role in enhancing model performance by facilitating the sharing of
high-quality data across multiple nodes in real-world non-IID scenarios.

We provide a solution to the tabular data labeling challenge. By augmenting tabular
data, we enhance the self-supervised model’s performance, integrating self-supervised
learning with FL. We intend to employ this framework in handling structured tasks in our
forthcoming endeavors.
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