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Abstract: This paper aims to derive analytical expressions for solutions of fractional bidimensional
systems of difference equations with higher-order terms under specific parametric conditions. Ad-
ditionally, formulations of solutions for one-dimensional equations derived from these systems are
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1. Introduction

Difference equations and systems constitute a foundational element of mathemati-
cal modeling, exerting significant influence across a spectrum of scientific domains and
practical applications. Over the past decade, this field has witnessed a notable evolution,
characterized by a surge in scholarly interest and activity. This trend underscores an increas-
ingly recognized importance and utility of difference equations and systems in tackling
intricate phenomena and facilitating informed decision-making processes.

In recent years, there has been a growing emphasis on exploring nonlinear systems
of difference equations, driven by a quest for analytical solutions, deeper insights into dy-
namic behaviors, and applications spanning diverse disciplines including biology, physics,
probability theory, environmental science, and engineering. These systems serve as discrete
analogs to differential equations, offering a robust framework for modeling time-series data
such as economic indicators (e.g., Gross Domestic Product, inflation rates, exchange rates)
inherently measured at discrete intervals (see, [1,2]). Existing research has probed various
facets of nonlinear dynamics, encompassing local dynamics, topological classifications,
bifurcation analysis, and chaos control. For example, Khan et al. [3] investigated these
dynamics within the context of a discrete-time COVID-19 epidemic model, while other
studies [4,5] have explored similar phenomena across different domains. However, while
several methods exist for solving linear difference equations, the landscape of nonlinear
systems remains largely uncharted. Despite recent attempts to simplify complex nonlinear
systems into linear forms, there persists a significant gap in analytical approaches for
addressing systems of difference equations, posing a challenge for researchers striving to
deepen their understanding of their behavior and properties (see, [6,7]).

The heightened interest in nonlinear systems of difference equations underscores their
potential to capture intricate dynamics and phenomena that may elude representation
by linear models. Nonlinear systems often exhibit rich behavior, including bifurcations,
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chaos, and complex attractors, rendering them valuable tools for comprehending the
dynamics of real-world phenomena. A particularly active area of research centers on the
pursuit of closed-form solutions to nonlinear systems of difference equations, to enhance
our understanding of dynamic systems and refine predictions with greater precision.
(see, [8–13]). Many researchers have made significant contributions to unraveling the
behavior of solved difference equations and systems, shedding light on their dynamics and
stability properties. For instance, Elsayed and Alshabi [14] delved into the solution forms
and stability properties of second-order systems, while Al-Basyouni and Elsayed [15]
provided formulas for solutions to systems of rational difference equations of various
orders, demonstrating periodicity in certain cases. Okumuş and Soykan [16] extended
this exploration to two-dimensional systems associated with Tribonacci numbers. Our
paper extends beyond these realms by delving into the analysis of higher-order systems
and considering more diverse and complex scenarios. By addressing specific systems
of difference equations and investigating their existence, form, and stability properties,
our paper offers a comprehensive examination of nonlinear dynamics in discrete time.
Furthermore, we can obtain numbers that satisfy some conditions of interest, for example,
Richard and Raoul numbers. Moreover, our paper builds upon the contributions of Ghezal
and Zemmouri [12] and Abo-Zeid et al. [6,7] by synthesizing and advancing existing
knowledge in the field of nonlinear difference equations and systems. By incorporating
recent advancements in theoretical analysis and numerical validation techniques, our
study pushes the boundaries of understanding in this domain and opens up new avenues
for exploration. While Abo-Zeid [17] provides explicit solutions for specific difference
equations, our paper explores the fundamental properties of systems of difference equations
representing different analytical challenges. Our work provides a deeper analysis of the
behavior of bidimensional systems, while Abo-Zeid’s [17] work revolves around studying
the details of explicit solutions and the general behavior of specific models. The study
by Simşek et al. [18] focuses on solving a specific rational difference equation, with a
particular focus on providing explicit solutions and analyzing the behavior of the solutions.
In contrast, our paper delves into the examination of a broader range of rational difference
equations, exploring various forms and complexities.

In comparing our paper to existing research, we identify opportunities to build upon
current knowledge and extend the frontier of understanding in this field. Through rigorous
theoretical analysis and numerical validation, our paper aims to fill critical gaps in the
literature by addressing specific systems of difference equations and investigating their
existence, form, and stability properties. By elucidating the dynamics of nonlinear systems
in discrete time, our work seeks to advance the understanding of complex mathematical
models and their applications across various scientific and engineering domains. Specif-
ically, in this paper, we focus on exploring the existence and form of solutions for the
systems of Difference Equations (1)–(4).

The remainder of this paper is structured as follows: Section 1 offers a detailed review
of the literature, highlighting key developments and identifying gaps that motivate the
current study. In Section 2, we present the theoretical framework and methodologies em-
ployed in our analysis, laying the groundwork for subsequent discussions. Section 3 delves
into the empirical findings, presenting numerical simulations and graphical illustrations
that corroborate the theoretical insights. Finally, Section 4 synthesizes the key findings,
discusses their implications, and outlines avenues for future research.

2. Main Results

In this paper, we delve into the examination of the subsequent systems of rational
difference equations:

∀n ≥ 0, σn+1 =
1

1 + ρn(1 − σn−1ρn−2)
, ρn+1 =

1
1 + σn(1 − ρn−1σn−2)

, (1)
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endowed with initial conditions denoted as σ−2, σ−1, σ0, ρ−2, ρ−1, and ρ0, ensuring that
they are real and non-zero.

∀n ≥ 0, σn+1 =
1

1 + ρn−q
(
1 − σn−2q−1ρn−3q−2

) , (2)

ρn+1 =
1

1 + σn−q
(
1 − ρn−2q−1σn−3q−2

) , q ≥ 0,

endowed with initial conditions denoted as σ−j, and ρ−j, j ∈ {0, 1, . . . , 3q + 2}, ensuring
that they are real and non-zero.

∀n ≥ 0, σn+1 =
1

−1 + ρn(1 + σn−1(2 + ρn−2))
, (3)

ρn+1 =
1

−1 + σn(1 + ρn−1(2 + σn−2))
,

endowed with initial conditions denoted as σ−2, σ−1, σ0, ρ−2, ρ−1, and ρ0, ensuring that
they are real and non-zero.

∀n ≥ 0, σn+1 =
1

−1 + ρn−q
(
1 + σn−2q−1

(
2 + ρn−3q−2

)) , (4)

ρn+1 =
1

−1 + σn−q
(
1 + ρn−2q−1

(
2 + σn−3q−2

)) , q ≥ 0,

endowed with initial conditions denoted as σ−j, and ρ−j, j ∈ {0, 1, . . . , 3q + 2}, ensuring
that they are real and non-zero. To ensure the robustness and validity of the systems under
consideration, the denominators must remain non-zero to prevent any division by zero
errors. Hence, a critical condition governing these denominators is that the expression
within them should never equate to zero for all n ≥ 0. By imposing this condition, we guar-
antee the stability and solvability of the system, thereby facilitating a comprehensive and
accurate analysis of its behavior and properties. The physical background of the systems of
rational difference equations described in Equations (1)–(4) lies in their representation of
dynamic processes influenced by feedback mechanisms. These systems model scenarios
where quantities or variables interact with each other over discrete time intervals, and their
behavior depends on their past values and certain parameters. System (1) represents a
feedback loop where two variables, σ and ρ, influence each other’s evolution over time.
The evolution of each variable depends on its past values and the other variable’s value
at the previous time step. This system could describe phenomena in various fields such
as population dynamics, economic systems, or chemical reactions in which two entities
interact in a feedback loop. System (2) extends the concept of (1) by introducing a delay
parameter q, indicating that the influence between σ and ρ occurs over multiple time steps.
This delay could represent phenomena in which there is a time lag between the cause and
effect in the system, such as in delayed feedback control systems or systems with transport
delays. System (3) introduces nonlinearities in the feedback loop by incorporating quadratic
terms in the evolution equations of σ and ρ. This nonlinearity can capture more complex
dynamics compared to linear feedback systems. It may be relevant in systems in which
interactions between variables exhibit nonlinear behavior, such as in biological systems
or nonlinear control systems. System (4) extends the nonlinear feedback model of (3) by
introducing a delay parameter q, similar to (2). This combination of nonlinearities and delay
further enriches the dynamics of the system, allowing for the modeling of more intricate
feedback mechanisms with time delays. These systems of rational difference equations
provide mathematical frameworks for understanding the behavior of dynamic systems
subject to feedback interactions and time delays, with applications ranging from natural
and social sciences to engineering and control theory.
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In the context of this study, we thoroughly examine the well-defined solutions of
the previously mentioned systems, elucidating their forms and behaviors. This ana-
lytical scrutiny is carried out through the introduction of specific substitutions to the
phase variables:

∀n, σn =
πn−1

ωn
, ρn =

ωn−1

πn
. (5)

Remark 1. The term ’well-defined solutions’ for Systems (1)–(4) refers to solutions derived from
the sets F = {σ−2, σ−1, σ0, ρ−2, ρ−1, and ρ0}, selected outside the respective singularity sets of
the systems. A set of F that produces a solution {(σn, ρn), n ≥ 1} for (1), wherein at least one
denominator becomes zero at some least index n, leads to an undefined value for σn+1 and/or ρn+1.
This particular set is commonly referred to as the ’forbidden set,’ as discussed further in [19].

2.1. Formulation of Solutions for System (1)

To derive the closed-form solutions for the system represented by (1), we employ the
substitution defined in (5). Following some transformations, we arrive at the subsequent
system of linear difference equations:

∀n ≥ 0,
ωn+1

πn
= 1 +

ωn−1

πn

(
1 − πn−2

ωn−1

ωn−3

πn−2

)
,

πn+1

ωn
= 1 +

πn−1

ωn

(
1 − ωn−2

πn−1

πn−3

ωn−2

)
,

⇕

∀n ≥ 0, ωn+1 = πn + ωn−1 − ωn−3, πn+1 = ωn + πn−1 − πn−3. (6)

By manipulating System (6), we derive the subsequent system

∀n ≥ 0,
{

ωn+1 + πn+1 = (ωn + πn) + (ωn−1 + πn−1)− (ωn−3 + πn−3)
ωn+1 − πn+1 = −(ωn − πn) + (ωn−1 − πn−1)− (ωn−3 − πn−3)

, (7)

which transforms into a system of two independent linear difference equations

∀n ≥ 0, εn+1 = εn + εn−1 − εn−3, τn+1 = −τn + τn−1 − τn−3. (8)

This transformation is achieved through the following change of variables: ∀n, εn = ωn + πn
and τn = ωn − πn. Therefore, the exact closed-form of the general solution for System (8) (resp.
System (6)) is derived, as detailed in the following Lemma 1 (resp. Lemma 2).

Lemma 1. Let {(εn, τn), n ≥ −3} be the solution to System (8), which comprises homogeneous
linear difference equations with constant coefficients along with initial conditions ε−3, ε−2, ε−1, ε0,
τ−3, τ−2, τ−1, and τ0 ∈ R. For all n ≥ 0, the solutions are given by

∀n, εn = αn
1 f1(ε−3, ε−2, ε−1, ε0) + αn

2 f2(ε−3, ε−2, ε−1, ε0)

+ αn
3 f3(ε−3, ε−2, ε−1, ε0) + f4(ε−3, ε−2, ε−1, ε0),

∀n, (−1)nτn = αn
1 g1(τ−3, τ−2, τ−1, τ0) + αn

2 g2(τ−3, τ−2, τ−1, τ0)

+ αn
3 g3(τ−3, τ−2, τ−1, τ0) + g4(τ−3, τ−2, τ−1, τ0).

Proof. In solving the first (respectively, second) linear difference equation of System (8),
we typically utilize the characteristic polynomial:

λ4 − λ3 − λ2 + 1 = (λ − 1)(λ − α̃1)(λ − α̃2)(λ − α̃3) = 0,

(respectively,

λ4 + λ3 − λ2 + 1 = (λ + 1)(λ + α̃1)(λ + α̃2)(λ + α̃3) = 0).
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The roots of this equation are

λ1 = 1, λ2 = α̃1, λ3 = α̃2, λ4 = α̃3,

(respectively,
λ1 = −1, λ2 = −α̃1, λ3 = −α̃2, λ4 = −α̃3),

where α̃1 and α̃2 are a pair of complex conjugate roots, and α̃3 is a real root satisfying the
following conditions:

1 −
3

∏
t=1

α̃t = 0,
3
∑

t=1
α̃t = 0, 1 + ∏

1≤t1<t2≤3
α̃t1 α̃t2 = 0. (9)

Hence, the closed form of the general solution for the first (respectively, second) linear
difference equation of system (8) is given by:

∀n ≥ −3, εn = β1αn
1 + β2αn

2 + β3αn
3 + β4,

where α1, α2 and α3 are real roots satisfying: 2α1 = α̃1 + α̃2, 2iα2 = α̃1 − α̃2, α3 = α̃3 and i is
a complex number satisfying: i2 = −1 (respectively,

∀n ≥ −3, τn = (−1)n(β1αn
1 + β2αn

2 + β3αn
3 + β4

)
).

Here, ε−3, ε−2, ε−1, ε0, τ−3, τ−2, τ−1, and τ0 are initial conditions such that:

ε0 = β1 + β2 + β3 + β4

ε−1 =
β1

α1
+

β2

α2
+

β3

α3
+ β4

ε−2 =
β1

α2
1

+
β2

α2
2
+

β3

α2
3
+ β4

ε−3 =
β1

α3
1

+
β2

α3
2
+

β3

α3
3
+ β4

,

(respectively, 

τ0 = β1 + β2 + β3 + β4

τ−1 = −
β1

α1
− β2

α2
−

β3
α3

+ β4

τ−2 =
β1

α2
1

+
β2
α2

2
+

β3
α2

3
+ β4

τ−3 = −
β1

α3
1

− β2
α3

2
−

β3

α3
3
+ β4

),

and we have

β j = f j(ε−3, ε−2, ε−1, ε0), βj = gj(τ−3, τ−2, τ−1, τ0), j = 1, 2, 3, 4,

where the sequences
(

f j, j = 1, 2, 3, 4
)
,
(

gj, j = 1, 2, 3, 4
)

are solutions of the latter systems.
After some calculations, we obtain:

∀n, εn = αn
1 f1(ε−3, ε−2, ε−1, ε0) + αn

2 f2(ε−3, ε−2, ε−1, ε0)

+ αn
3 f3(ε−3, ε−2, ε−1, ε0) + f4(ε−3, ε−2, ε−1, ε0),

∀n, (−1)nτn = αn
1 g1(τ−3, τ−2, τ−1, τ0) + αn

2 g2(τ−3, τ−2, τ−1, τ0)

+ αn
3 g3(τ−3, τ−2, τ−1, τ0) + g4(τ−3, τ−2, τ−1, τ0).
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The lemma is proven.

Lemma 2. Let {(ωn, πn), n ≥ −3} be the solution to System (6), with initial conditions ω−3,
ω−2, ω−1, ω0, π−3, π−2, π−1, and π0 ∈ R. For all n ≥ 0, the solutions are given by

∀n, 2ωn = αn
1 h1,n(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

+ αn
2 h2,n(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

+ αn
3 h3,n(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

+ h4,n(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0),

∀n, 2πn = αn
1 h1,n+1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

+ αn
2 h2,n+1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

+ αn
3 h3,n+1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

+ h4,n+1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0),

where, for j = 1, 2, 3, 4,

∀n, hj,n(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

=


f j(ω−3 + π−3, ω−2 + π−2, ω−1 + π−1, ω0 + π0)
+gj(ω−3 − π−3, ω−2 − π−2, ω−1 − π−1, ω0 − π0) if n is even
f j(ω−3 + π−3, ω−2 + π−2, ω−1 + π−1, ω0 + π0)
−gj(ω−3 − π−3, ω−2 − π−2, ω−1 − π−1, ω0 − π0) if n is odd

.

Proof. From the equivalent System (7), and employing the deduced change of variables
2ωn = εn + τn and 2πn = εn − τn, along with Lemma 1, the explicit closed-form expression
for the general solution of the system described in (6) is provided as follows: (ωn, πn), for
all n ≥ 0. The lemma is proven.

Through the above discussion and leveraging Lemma 2, we readily derive the closed
form of the general solution for System (1), as presented in the following theorem:

Theorem 1. Consider {(σn, ρn), n ≥ 0} as a solution to System (1). Then, for all n,

σ2n =

1 +
3
∑

j=1
α2n−1

j k j,2n(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

1 +
3
∑

j=1
α2n

j k j,2n(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

,

σ2n+1 =

1 +
3
∑

j=1
α2n

j k j,2n+1(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

1 +
3
∑

j=1
α2n+1

j k j,2n+1(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

,

ρ2n =

1 +
3
∑

j=1
α2n−1

j k j,2n−1(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

1 +
3
∑

j=1
α2n

j k j,2n+1(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

,

ρ2n+1 =

1 +
3
∑

j=1
α2n

j k j,2n(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

1 +
3
∑

j=1
α2n+1

j k j,2n+2(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

,



Mathematics 2024, 12, 1159 7 of 20

where, for j = 1, 2, 3,

∀n, k j,n(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0) =
hj,n(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

h4,n(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)
,

with
σ−j =

π−j−1

ω−j
, ρ−j =

ω−j−1

π−j
, j = 0, 1, 2.

Proof. Utilizing the change of variables (5), the relationships are established as follows:

∀n, σ2n =
π2n−1

ω2n
, σ2n+1 =

π2n

ω2n+1
,

∀n, ρ2n =
ω2n−1

π2n
, ρ2n+1 =

ω2n

π2n+1
.

By Lemma 2, the remaining steps are straightforward and, therefore, omitted.

Corollary 1. Consider {σn, n ≥ 0} as a solution to the following difference equation,

∀n ≥ 0, σn+1 =
1

1 + σn(1 − σn−1σn−2)
,

with initial conditions σ−2, σ−1, and σ0, ensuring that they are real and non-zero. Then, for all n,

σ2n =

1 +
3
∑

j=1
α2n−1

j k j,2n(σ−2, σ−1, σ0)

1 +
3
∑

j=1
α2n

j k j,2n(σ−2, σ−1, σ0)

, σ2n+1 =

1 +
3
∑

j=1
α2n

j k j,2n+1(σ−2, σ−1, σ0)

1 +
3
∑

j=1
α2n+1

j k j,2n+1(σ−2, σ−1, σ0)

,

where, for j = 1, 2, 3,

∀n, k j,n(σ−2, σ−1, σ0) =
hj,n(ω−3, ω−2, ω−1, ω0)

h4,n(ω−3, ω−2, ω−1, ω0)
,

∀n, hj,n(ω−3, ω−2, ω−1, ω0) =

{
f j(2ω−3, 2ω−2, 2ω−1, 2ω0) + gj(0, 0, 0, 0) if n is even
f j(2ω−3, 2ω−2, 2ω−1, 2ω0)− gj(0, 0, 0, 0) if n is odd

,

with
σ−j =

ω−j−1

ω−j
, for j = 0, 1, 2.

Proof. The proof is deduced from Theorem 1 when σ−j = ρ−j for j = 0, 1, 2 and ω−j = π−j
for j = 0, 1, 2, 3.

2.2. Formulation of Solutions for System (2)

In this subsection, we examine System (2), an extension of System (1). By examining
the relationships within System (2), we deduce the following pattern:

n + 1
−q−1−→ n − q

−q−1−→ n − 2q − 1
−q−1−→ n − 3q − 2
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Consequently, System (2) can be expressed in the following manner:

σ(n+1)(q+1)−u =
1

1 + ρn(q+1)−u

(
1 − σ(n−1)(q+1)−uρ(n−2)(q+1)−u

) ,

ρ(n+1)(q+1)−u =
1

1 + σn(q+1)−u

(
1 − ρ(n−1)(q+1)−uσ(n−2)(q+1)−u

) , q ≥ 0, ∀n ≥ 0,

for u ∈ {0, 1, . . . , q} and n ∈ N. Utilizing the notation,

∀n ≥ 0, σ
(u)
n,q = σn(q+1)−u, ρ

(u)
n,q = ρn(q+1)−u, u ∈ {0, 1, . . . , q},

we can obtain (q + 1)-systems analogous to System (1),

∀n ≥ 0, σ
(u)
n+1,q =

1

1 + ρ
(u)
n,q

(
1 − σ

(u)
n−1,qρ

(u)
n−2,q

) , ρ
(u)
n+1,q =

1

1 + σ
(u)
n,q

(
1 − ρ

(u)
n−1,qσ

(u)
n−2,q

) ,

for u ∈ {0, 1, . . . , q}. Based on the aforementioned discussion, we present the follow-
ing Theorem.

Theorem 2. Let {(σn, ρn), n ≥ 0} as a solution to System (2). Then, for u ∈ {0, 1, . . . , q},

∀n, σ2n(q+1)−u =

(
1 +

3

∑
j=1

α2n−1
j k j,2n

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u,

ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

) )/(
1 +

3

∑
j=1

α2n
j k j,2n

(
σ−2(q+1)−u,

σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

) )
,

∀n, σ(2n+1)(q+1)−u =

(
1 +

3

∑
j=1

α2n
j k j,2n+1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u,

ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

) )/(
1 +

3

∑
j=1

α2n+1
j k j,2n+1

(
σ−2(q+1)−u,

σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

) )
,

∀n, ρ2n(q+1)−u =

(
1 +

3

∑
j=1

α2n−1
j k j,2n−1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u,

ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

) )/(
1 +

3

∑
j=1

α2n
j k j,2n+1

(
σ−2(q+1)−u,

σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

) )
,
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∀n, ρ(2n+1)(q+1)−u =

(
1 +

3

∑
j=1

α2n
j k j,2n

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u,

ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

) )/(
1 +

3

∑
j=1

α2n+1
j k j,2n+2

(
σ−2(q+1)−u,

σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

) )
.

Proof. The proof of Theorem 2 relies on the foundation provided by Theorem 1 applied to
(q + 1)-systems, specifically (1).

Corollary 2. Consider {σn, n ≥ 0} as a solution to the following difference equation,

∀n ≥ 0, σn+1 =
1

1 + σn−q
(
1 − σn−2q−1σn−3q−2

) , q ≥ 0,

with initial conditions σ−j, j ∈ {0, 1, . . . , 3q + 2}, ensuring that they are real and non-zero. Then,
for u ∈ {0, 1, . . . , q},

∀n, σ2n(q+1)−u =

1 +
3
∑

j=1
α2n−1

j k j,2n

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u

)
1 +

3
∑

j=1
α2n

j k j,2n

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u

) ,

∀n, σ(2n+1)(q+1)−u =

1 +
3
∑

j=1
α2n

j k j,2n+1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u

)
1 +

3
∑

j=1
α2n+1

j k j,2n+1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u

) .

Proof. The proof is deduced from Theorem 2 when σ−j = ρ−j for j ∈ {0, 1, . . . , 3q + 2}.

Remark 2. The system (2) exhibits two positive equilibria:

Ξ̂ = (σ̂1, ρ̂1) = (1, 1) and Ξ̃ = (σ̃1, ρ̃1) = δ(1, 1),

where δ ∈ ]0, 1[ satisfies the equation −δ3 − δ2 + 1 = 0.

Now, we introduce a crucial result related to the local stability of System (2).

Theorem 3. The positive equilibrium point Ξ̃ is locally asymptotically stable.

Proof. For the proof, we define functions M1, M2 : (0,+∞)2(3q+2) → (0,+∞) as follows:

M1

(
a′0:3q+2, b′0:3q+2

)
=

1
1 + bq

(
1 − a2q+1b3q+2

) ,

M2

(
a′0:3q+2, b′0:3q+2

)
=

1
1 + aq

(
1 − b2q+1a3q+2

) ,

where c′0:q =
(
c0, c1, . . . , cq

)
. Linearizing System (2) around the equilibrium point Ξ̃ is a com-

mon technique to facilitate its study. To achieve this, we introduce vector c′n :=
(
a′n, b′

n
)

where a′n =
(
σn, σn−1, . . . , σn−3q−2

)
and b′

n =
(
ρn, ρn−1, . . . , ρn−3q−2

)
. In light of these

symbols, we acquire the ensuing representation:

cn+1 = Θqcn,
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where

Θq =



O1×(2q+1)
δ2

(1 + δ(1 − δ2))
2 O1×(q+1)

I(3q+2)×(3q+2) O(3q+2)×1

O1×q
δ2 − 1

(1 + δ(1 − δ2))
2 O1×(2q+1)

δ2

(1 + δ(1 − δ2))
2

O(3q+2)×(3q+2) O(3q+2)×1

O1×q
δ2 − 1

(1 + δ(1 − δ2))
2 O1×(2q+1)

δ2

(1 + δ(1 − δ2))
2

O(3q+2)×(3q+2) O(3q+2)×1

O1×(2q+1)
δ2

(1 + δ(1 − δ2))
2 O1×(q+1)

I(3q+2)×(3q+2) O(3q+2)×1


,

with Ok×l is the matrix with zero entries and Im×m represents the identity matrix. Following
some initial computations, the characteristic polynomial of Θq can be expressed as follows:

QΘq(λ) = det
(

Θq − λI6(q+1)×6(q+1)

)
= λ6(q+1) −

2δ2(1 + δ
(
1 − δ2))2

+
(
δ2 − 1

)2

(1 + δ(1 − δ2))
4 λ4(q+1)

−
δ2(δ2 + 2

)
(1 + δ(1 − δ2))

4 λ2(q+1) − δ4

(1 + δ(1 − δ2))
4 ,

By utilizing MATLAB R2021b, it is determined that all solutions to QΘq(λ) = 0, q ≥ 0
reside within the unit disc |λ| < 1. By Rouche’s Theorem, it can be concluded that the
positive equilibrium point Ξ̃ is locally asymptotically stable.

2.3. Formulation of Solutions for System (3)

To derive the closed-form solutions for the system represented by (3), we employ the
substitution defined in (5). Following some transformations, we arrive at the subsequent
system of linear difference equations:

∀n ≥ 0,


ωn+1

πn
= −1 +

ωn−1

πn

(
1 +

πn−2

ωn−1

(
2 +

ωn−3

πn−2

))
,

πn+1

ωn
= −1 +

πn−1

ωn

(
1 +

ωn−2

πn−1

(
2 +

πn−3

ωn−2

))
,

⇕

∀n ≥ 0,
{

ωn+1 = −πn + ωn−1 + 2πn−2 + ωn−3, ,
πn+1 = −ωn + πn−1 + 2ωn−2 + πn−3.

(10)

By manipulating System (10), we derive the subsequent system

∀n ≥ 0,
{

ωn+1 + πn+1 = −(ωn + πn) + (ωn−1 + πn−1) + 2(ωn−2 + πn−2) + (ωn−3 + πn−3)
ωn+1 − πn+1 = (ωn − πn) + (ωn−1 − πn−1)− 2(ωn−2 − πn−2) + (ωn−3 − πn−3)

, (11)

which transforms into a system of two independent linear difference equations

∀n ≥ 0, εn+1 = −εn + εn−1 + 2εn−2 + εn−3, τn+1 = τn + τn−1 − 2τn−2 + τn−3. (12)

Therefore, the exact closed-form of the general solution for System (12) (resp. System (10))
is derived, as detailed in the following Lemma 3 (resp. Lemma 4).
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Lemma 3. Let {(εn, τn), n ≥ −3} be the solution to System (12), which comprises homogeneous
linear difference equations with constant coefficients along with initial conditions ε−3, ε−2, ε−1, ε0,
τ−3, τ−2, τ−1, and τ0 ∈ R. For all n ≥ 0, the solutions are given by

∀n, εn = f̃1(ε−3, ε−2, ε−1, ε0) + αn
1 f̃2(ε−3, ε−2, ε−1, ε0)

+ αn
2 f̃3(ε−3, ε−2, ε−1, ε0) + αn

3 f̃4(ε−3, ε−2, ε−1, ε0),

∀n, τn = ĝ1(τ−3, τ−2, τ−1, τ0) + (−1)nαn
1 ĝ2(τ−3, τ−2, τ−1, τ0)

+ (−1)nαn
2 ĝ3(τ−3, τ−2, τ−1, τ0) + (−1)nαn

3 ĝ4(τ−3, τ−2, τ−1, τ0).

Proof. In solving the first (respectively, second) linear difference equation of System (12),
we typically utilize the characteristic polynomial:

λ4 + λ3 − λ2 − 2λ − 1 = (λ + 1)(λ − α1)(λ − α2)(λ − α3) = 0,

(respectively,

λ4 − λ3 − λ2 + 2λ − 1 = (λ − 1)(λ + α1)(λ + α2)(λ + α3) = 0).

The roots of this equation are

λ1 = −1, λ2 = α1, λ3 = α2, λ4 = α3,

(respectively,
λ1 = 1, λ2 = −α1, λ3 = −α2, λ4 = −α3),

where α1, α2 and α3 satisfy the same conditions as mentioned in (9). Subsequently, the
explicit closed-form expression for the general solution of the first (respectively, second)
linear difference equation of System (8) is given by:

∀n ≥ −3, εn = β̃1(−1)n + β̃2αn
1 + β̃3αn

2 + β̃4αn
3 ,

(respectively,

∀n ≥ −3, τn = β̂1 + β̂2(−1)nαn
1 + β̂3(−1)nαn

2 + β̂4(−1)nαn
3 ).

Here, ε−3, ε−2, ε−1, ε0, τ−3, τ−2, τ−1, and τ0 are initial conditions such that:

ε0 = β̃1 + β̃2 + β̃3 + β̃4

ε−1 = −β̃1 +
β̃2

α1
+

β̃3

α2
+

β̃4

α3

ε−2 = β̃1 +
β̃2

α2
1

+
β̃3

α2
2
+

β̃4

α2
3

ε−3 = −β̃1 +
β̃2

α3
1

+
β̃3

α3
2
+

β̃4

α3
3

,

(respectively, 

τ0 = β̂1 + β̂2 + β̂3 + β̂4

τ−1 = β̂1 −
β̂2

α1
− β̂3

α2
− β̂4

α3

τ−2 = β̂1 +
β̂2

α2
1

+
β̂3

α2
2
+

β̂4

α2
3

τ−3 = β̂1 −
β̂2

α3
1

− β̂3

α3
2
− β̂4

α3
3

),
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and we have

β̃ j = f̃ j(ε−3, ε−2, ε−1, ε0), β̂ j = ĝj(τ−3, τ−2, τ−1, τ0), j = 1, 2, 3, 4,

where the sequences
(

f̃ j, j = 1, 2, 3, 4
)

,
(

ĝj, j = 1, 2, 3, 4
)

are solutions of the latter systems.
After some calculations, we obtain:

∀n, εn = f̃1(ε−3, ε−2, ε−1, ε0) + αn
1 f̃2(ε−3, ε−2, ε−1, ε0)

+ αn
2 f̃3(ε−3, ε−2, ε−1, ε0) + αn

3 f̃4(ε−3, ε−2, ε−1, ε0),

∀n, τn = ĝ1(τ−3, τ−2, τ−1, τ0) + (−1)nαn
1 ĝ2(τ−3, τ−2, τ−1, τ0)

+ (−1)nαn
2 ĝ3(τ−3, τ−2, τ−1, τ0) + (−1)nαn

3 ĝ4(τ−3, τ−2, τ−1, τ0).

The lemma is proven.

Lemma 4. Let {(ωn, πn), n ≥ −3} be the solution to System (10), with initial conditions ω−3,
ω−2, ω−1, ω0, π−3, π−2, π−1, and π0 ∈ R. For all n ≥ 0, the solutions are given by

∀n, 2ωn = h̃1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

+ αn
1 h̃2,n(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

+ αn
2 h̃3,n(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

+ αn
3 h̃4,n(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0),

∀n, 2πn = ĥ1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

+ αn
1 h̃2,n+1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

+ αn
2 h̃3,n+1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

+ αn
3 h̃4,n+1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0),

where, for j = 1, 2, 3, 4,

∀n, h̃j,n(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

=


f̃ j(ω−3 + π−3, ω−2 + π−2, ω−1 + π−1, ω0 + π0)
+ĝj(ω−3 − π−3, ω−2 − π−2, ω−1 − π−1, ω0 − π0) if n is even
f̃ j(ω−3 + π−3, ω−2 + π−2, ω−1 + π−1, ω0 + π0)
−ĝj(ω−3 − π−3, ω−2 − π−2, ω−1 − π−1, ω0 − π0) if n is odd

,

h̃1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

= f̃1(ω−3 + π−3, ω−2 + π−2, ω−1 + π−1, ω0 + π0)

+ ĝ1(ω−3 − π−3, ω−2 − π−2, ω−1 − π−1, ω0 − π0),

ĥ1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

= f̃1(ω−3 + π−3, ω−2 + π−2, ω−1 + π−1, ω0 + π0)

− ĝ1(ω−3 − π−3, ω−2 − π−2, ω−1 − π−1, ω0 − π0).

Proof. From the equivalent System (11), and employing the deduced change of variables
2ωn = εn + τn and 2πn = εn − τn, along with Lemma 3, the explicit closed-form expression
for the general solution of the system described in (10) is provided as follows: (ωn, πn), for
all n ≥ 0. The lemma is proven.

Through the aforementioned discussion and leveraging Lemma 4, we readily derive
the closed form of the general solution for System (3), as presented in the following theorem:
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Theorem 4. Consider {(σn, ρn), n ≥ 0} as a solution to System (3). Then, for all n,

σ2n = k̃1(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

1 +
3
∑

j=1
α2n−1

j k̂ j+1,2n(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

1 +
3
∑

j=1
α2n

j k̃ j+1,2n(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

,

σ2n+1 = k̃1(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

1 +
3
∑

j=1
α2n

j k̂ j+1,2n+1(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

1 +
3
∑

j=1
α2n+1

j k̃ j+1,2n+1(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

,

ρ2n = k̃−1
1 (σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

1 +
3
∑

j=1
α2n−1

j k̃ j+1,2n−1(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

1 +
3
∑

j=1
α2n

j k̂ j+1,2n+1(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

,

ρ2n+1 = k̃−1
1 (σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

1 +
3
∑

j=1
α2n

j k̃ j+1,2n(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

1 +
3
∑

j=1
α2n+1

j k̂ j+1,2n+2(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0)

,

where, for j = 1, 2, 3,

∀n, k̂ j+1,n(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0) =
h̃j+1,n(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

ĥ1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)
,

∀n, k̃ j+1,n(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0) =
h̃j+1,n(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

h̃1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)
,

k̃1(σ−2, σ−1, σ0, ρ−2, ρ−1, ρ0) =
ĥ1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)

h̃1(ω−3, ω−2, ω−1, ω0, π−3, π−2, π−1, π0)
,

with
σ−j =

π−j−1

ω−j
, ρ−j =

ω−j−1

π−j
, j = 0, 1, 2.

Proof. Utilizing the change of variables (5), the relationships are established as follows:

∀n, σ2n =
π2n−1

ω2n
, σ2n+1 =

π2n

ω2n+1
,

∀n, ρ2n =
ω2n−1

π2n
, ρ2n+1 =

ω2n

π2n+1
.

By Lemma 4, the remaining steps are straightforward and therefore omitted.

Corollary 3. Consider {σn, n ≥ 0} as a solution to the following difference equation,

∀n ≥ 0, σn+1 =
1

−1 + σn(1 + σn−1(2 + σn−2))
,
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with initial conditions σ−2, σ−1, and σ0, ensuring that they are real and non-zero. Then, for all n,

σ2n = k̃1(σ−2, σ−1, σ0)

1 +
3
∑

j=1
α2n−1

j k̂ j+1,2n(σ−2, σ−1, σ0)

1 +
3
∑

j=1
α2n

j k̃ j+1,2n(σ−2, σ−1, σ0)

,

σ2n+1 = k̃1(σ−2, σ−1, σ0)

1 +
3
∑

j=1
α2n

j k̂ j+1,2n+1(σ−2, σ−1, σ0)

1 +
3
∑

j=1
α2n+1

j k̃ j+1,2n+1(σ−2, σ−1, σ0)

,

where, for j = 1, 2, 3,

∀n, k̂ j+1,n(σ−2, σ−1, σ0) =
h̃j+1,n(ω−3, ω−2, ω−1, ω0)

ĥ1(ω−3, ω−2, ω−1, ω0)
,

∀n, k̃ j+1,n(σ−2, σ−1, σ0) =
h̃j+1,n(ω−3, ω−2, ω−1, ω0)

h̃1(ω−3, ω−2, ω−1, ω0)
,

k̃1(σ−2, σ−1, σ0) =
ĥ1(ω−3, ω−2, ω−1, ω0)

h̃1(ω−3, ω−2, ω−1, ω0)
,

∀n, h̃j+1,n(ω−3, ω−2, ω−1, ω0) ={
f̃ j+1(2ω−3, 2ω−2, 2ω−1, 2ω0) + ĝj+1(0, 0, 0, 0) if n is even
f̃ j+1(2ω−3, 2ω−2, 2ω−1, 2ω0)− ĝj+1(0, 0, 0, 0) if n is odd

,

h̃1(ω−3, ω−2, ω−1, ω0) = f̃1(2ω−3, 2ω−2, 2ω−1, 2ω0) + ĝ1(0, 0, 0, 0),

ĥ1(ω−3, ω−2, ω−1, ω0) = f̃1(2ω−3, 2ω−2, 2ω−1, 2ω0)− ĝ1(0, 0, 0, 0).

with
σ−j =

ω−j−1

ω−j
, for j = 0, 1, 2.

Proof. The proof is deduced from Theorem 4 when σ−j = ρ−j for j = 0, 1, 2 and ω−j = π−j
for j = 0, 1, 2, 3.

2.4. Formulation of Solutions for System (4)

In this subsection, we examine System (4), an extension of System (3). Hence, Sys-
tem (4) can be expressed as follows:

σ(n+1)(q+1)−u =
1

−1 + ρn(q+1)−u

(
1 + σ(n−1)(q+1)−u

(
2 + ρ(n−2)(q+1)−u

)) ,

ρ(n+1)(q+1)−u =
1

−1 + σn(q+1)−u

(
1 + ρ(n−1)(q+1)−u

(
2 + σ(n−2)(q+1)−u

)) , q ≥ 0, ∀n ≥ 0,

for u ∈ {0, 1, . . . , q} and n ∈ N. Utilizing the same preceding notation, we can obtain
(q + 1)−systems analogous to System (3),

∀n ≥ 0, σ
(u)
n+1,q =

1

1 + ρ
(u)
n,q

(
1 − σ

(u)
n−1,qρ

(u)
n−2,q

) , ρ
(u)
n+1,q =

1

1 + σ
(u)
n,q

(
1 − ρ

(u)
n−1,qσ

(u)
n−2,q

) ,

for t ∈ {0, 1, . . . , q}. Based on the aforementioned discussion, we introduce the follow-
ing Theorem.
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Theorem 5. Let {(σn, ρn), n ≥ 0} as a solution to System (4). Then, for u ∈ {0, 1, . . . , q},

∀n, σ2n(q+1)−u = k̃1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

)

×
1 +

3
∑

j=1
α2n−1

j k̂ j+1,2n

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

)
1 +

3
∑

j=1
α2n

j k̃ j+1,2n

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

) ,

∀n, σ(2n+1)(q+1)−u = k̃1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

)

×
1 +

3
∑

j=1
α2n

j k̂ j+1,2n+1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

)
1 +

3
∑

j=1
α2n+1

j k̃ j+1,2n+1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

) ,

∀n, ρ2n(q+1)−u = k̃−1
1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

)

×
1 +

3
∑

j=1
α2n−1

j k̃ j+1,2n−1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

)
1 +

3
∑

j=1
α2n

j k̂ j+1,2n+1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

) ,

∀n, ρ(2n+1)(q+1)−u = k̃−1
1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

)

×
1 +

3
∑

j=1
α2n

j k̃ j+1,2n

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

)
1 +

3
∑

j=1
α2n+1

j k̂ j+1,2n+2

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u, ρ−2(q+1)−u, ρ−(q+1)−u, ρ−u

) .

Proof. The proof of Theorem 5 relies on the principles established in Theorem 4 applied to
(q + 1)-systems, specifically (3).

Corollary 4. Consider {σn, n ≥ 0} as a solution to the following difference equation,

∀n ≥ 0, σn+1 =
1

−1 + σn−q
(
1 + σn−2q−1

(
2 + σn−3q−2

)) , q ≥ 0,

with initial conditions σ−j, j ∈ {0, 1, . . . , 3q + 2}, ensuring that they are real and non-zero.Then,
for u ∈ {0, 1, . . . , q},

∀n, σ2n(q+1)−u = k̃1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u

)

×
1 +

3
∑

j=1
α2n−1

j k̂ j+1,2n

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u

)
1 +

3
∑

j=1
α2n

j k̃ j+1,2n

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u

) ,

∀n, σ(2n+1)(q+1)−u = k̃1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u

)

×
1 +

3
∑

j=1
α2n

j k̂ j+1,2n+1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u

)
1 +

3
∑

j=1
α2n+1

j k̃ j+1,2n+1

(
σ−2(q+1)−u, σ−(q+1)−u, σ−u

) .

Proof. The proof is deduced from Theorem 5 when σ−j = ρ−j for j ∈ {0, 1, . . . , 3q + 2}.

Remark 3. In System (4), Ξ̃ constitutes unique positive equilibrium.
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Now, we introduce a crucial result related to the local stability of System (4).

Theorem 6. The positive equilibrium point Ξ̃ is locally asymptotically stable.

Proof. For the proof, we define functions M̂1, M̂2 : (0,+∞)2(3q+2) → (0,+∞) as follows:

M̂1

(
a′0:3q+2, b′0:3q+2

)
=

1
−1 + bq

(
1 + a2q+1

(
2 + b3q+2

)) ,

M̂2

(
a′0:3q+2, b′0:3q+2

)
=

1
−1 + aq

(
1 + b2q+1

(
2 + a3q+2

)) .

Linearizing System (4) around the equilibrium point Ξ̃ is a common technique to facilitate
its study. To achieve this, we acquire the ensuing representation:

cn+1 = Θ̂qcn,

where

Θ̂q =



O1×(2q+1)
−δ(2 + δ)

(δ − 1 + δ2(2 + δ))
2 O1×(q+1)

I(3q+2)×(3q+2) O(3q+2)×1

O1×q
−1 − δ(2 + δ)

(δ − 1 + δ2(2 + δ))
2 O1×(2q+1)

−δ2

(δ − 1 + δ2(2 + δ))
2

O(3q+2)×(3q+2) O(3q+2)×1

O1×q
−1 − δ(2 + δ)

(δ − 1 + δ2(2 + δ))
2 O1×(2q+1)

−δ2

(δ − 1 + δ2(2 + δ))
2

O(3q+2)×(3q+2) O(3q+2)×1

O1×(2q+1)
−δ(2 + δ)

(δ − 1 + δ2(2 + δ))
2 O1×(q+1)

I(3q+2)×(3q+2) O(3q+2)×1


.

Following some initial computations, the characteristic polynomial of Θ̂q can be expressed
as follows:

Q̂Θ̂q
(λ) = det

(
Θ̂q − λI6(q+1)×6(q+1)

)
= λ6(q+1) − 1 + δ2(2 + δ)(−2δ(2 + δ)(1 − 2δ(δ + 1)) + 6 − δ)

(δ − 1 + δ2(2 + δ))
4 λ4(q+1)

+
δ2(2 − δ2)

(δ − 1 + δ2(2 + δ))
4 λ2(q+1) − δ4

(δ − 1 + δ2(2 + δ))
4 ,

By utilizing MATLAB R2021b, it is determined that all solutions to Q̂Θ̂q
(λ) = 0, q ≥ 0

reside within the unit disc |λ| < 1. By Rouche’s Theorem, it can be concluded that the
positive equilibrium point Ξ̃ is locally asymptotically stable.

3. Illustrative Numerical Simulations

To clarify and corroborate the theoretical findings from the previous section, we delve
into several compelling illustrative numerical simulations in this section.

Example 1. Figure 1 provides a visual representation of the sustained dynamics within System
(1). The system is initialized with the conditions σ−2 = −0.5, σ−1 = −0.2, σ0 = −1.32, ρ−2 = 6,
ρ−1 = −4.6, and ρ0 = 0.16.
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Figure 1. Dynamics exhibited by a specific solution of System (1).

Example 2. Figure 2 provides a visual representation of the sustained dynamics within System

(2) for the case of q = 1. The system is initialized with the conditions σ−j =
1 + j

10
, (−1)jρ−j =

σ−j + 1 for j ∈ {0, 1, 2, 3, 4, 5}.
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Figure 2. Dynamics exhibited by a specific solution of System (2).
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Example 3. Figure 3 provides a visual representation of the sustained dynamics within system
(3). The system is initialized with the conditions σ−2 = 0.1, σ−1 = 0.2, σ0 = 0.3, ρ−2 = −1.1,
ρ−1 = −1.2, and ρ0 = −1.3.
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0
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4

n
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n
n

n

Figure 3. Dynamics exhibited by a specific solution of System (3).

Example 4. Figure 4 provides a visual representation of the sustained dynamics within System

(4) for the case of q = 1. The system is initialized with the conditions σ−j =
1 + j

10
, and ρ−j =

−σ−j − 1 for j ∈ {0, 1, 2, 3, 4, 5}.
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Figure 4. Dynamics exhibited by a specific solution of System (4).
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Example 5. Figure 5 provides a visual representation of the sustained dynamics within System (4)
for the case of q = 2. The system is initialized with the conditions

j 0 1 2 3 4 5 6 7 8
σ−j 111/3 125/31 19/2 127/34 153/15 139/36 332/7 341/28 56/17
ρ−j −11 −12 13 −14 15 −16 31 0.24 0.23

0 20 40 60

n

-20

-10

0

10

20

30

40

50
n
, 

n

n

n

Figure 5. Dynamics exhibited by a specific solution of System (4).

4. Conclusions

This paper presents a comprehensive investigation into fractional bidimensional
systems of difference equations with higher-order terms, aiming to derive analytical expres-
sions for their solutions under specific parametric conditions. Additionally, formulations of
solutions for one-dimensional equations derived from these systems are explored. Rigorous
proofs are provided for the local stability of the unique positive equilibrium point of the
proposed systems. The theoretical framework established in this study is supported by
extensive stability analyses and numerical simulations, which offer valuable insights into
the behavior of nonlinear systems of difference equations. Notably, investigating positive
equilibrium points and establishing local asymptotic stability for specific systems demon-
strate the depth of our understanding. Furthermore, numerical examples using MATLAB
are employed to validate the theoretical findings. Graphical illustrations of the results
showcase the practical implications of the theoretical insights, reaffirming the stability of
the studied systems. However, challenges persist, particularly regarding systems dynamics
in unexplored scenarios. This highlights the need for continued research and exploration in
this area. This paper lays a robust foundation for future investigations into more complex
models, particularly those addressing dynamic systems with non-constant or periodic
coefficients. Moreover, it offers avenues for broader applications and potential extensions
to various scientific and engineering disciplines.
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