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Abstract: This study investigates coordinated behaviors and the underlying collective intelligence
in biological groups, particularly those led by informed leaders. By establishing new convergence
condition based on experiments involving real biological groups, this research introduces the concept
of a volitional term and heterogeneous networks, constructing a coupled-force Cucker–Smale model
with informed leaders. Incorporating informed leaders into the leader-follower group model enables
a more accurate representation of biological group behaviors. The paper then extracts the Flock
Leadership Hierarchy Network (FLH), a model reflecting real biological interactions. Employing
time slicing and rolling time windows, the study methodically analyzes group behavior stages, using
volatility and convergence time as metrics to examine the relationship between group consistency
and interactions. Comparative experiments show the FLH network’s superior performance. The
Kolmogorov-Smirnov test demonstrates that the FLH network conforms to a power-law distribution,
a prevalent law in nature. This result further illuminates the crucial role that power-law distribution
plays in the evolutionary processes of biological communities. This study offers new perspectives
on the evolution of biological groups, contributing to our understanding of the behaviors of both
natural and artificial systems, such as animal migration and autonomous drone operations.

Keywords: coordinated behavior; informed leaders; group consistency; biological interaction; power-
law distribution; complex network

MSC: 92C42

1. Introduction

Coordinated consistency in biological groups, a universal phenomenon in nature,
highlights the importance of interaction patterns between individuals alongside their inher-
ent characteristics [1,2]. This phenomenon is evident in the high degree of synchrony and
coordination of individual actions within groups, allowing organisms to adapt effectively
to environmental changes, optimize foraging efficiency, and maintain social structure sta-
bility. For instance, fish schools evade predators through coordinated swimming [3,4], and
migratory bird communities utilize synchronized flights for long-distance migration [5].
Similarly, bee and ant societies maintain their complex social structures through coordi-
nated behaviors [6]. Studying coordinated consistency in biological groups has significant
implications, enhancing our understanding of biology and ecology [7] and contributing to
advancements in engineering [8], physics [9], biology [10,11], and social sciences [12].

A key question in studying coordinated consistency in biological groups is under-
standing the group’s decision-making mechanisms, such as choosing destinations, paths,
and departure times. Current insights into group decision making stem from two primary
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perspectives. The first suggests that decision making is distributed among all group mem-
bers who adhere to the established rules [13]. Typically, individuals modify their decisions
based on interactions with those near them, leading to a collective compromise on routes.
Research indicates [14] that this compromise strategy particularly suits animal groups
with limited information-processing capabilities. However, it can result in inefficiencies,
ambiguous responsibilities, and reduced adaptability. The second perspective posits that
decision making in certain advanced animal groups is concentrated among a few lead-
ers with critical information [13]. For instance, a distinct hierarchy is evident in pigeon
colony flights [15,16]. Once established, these leadership structures are resilient to change,
unless leaders receive misleading external information [17,18]. Therefore, the efficiency
and effectiveness of group decision making are influenced by factors such as information
availability, group structure, and inter-individual interactions, offering significant insights
into biological group behaviors and decision-making processes.

Leadership power within groups can be classified into two main categories [19]: struc-
tured leaders and informed leaders. Informed leaders are established when a subset of the
group possesses crucial information and acts upon it [20,21]. For instance, during caribou
migration, experienced individuals lead the way, while others react to local food availability
and predation threats. Similarly, in elephant herds, typically the older, more experienced
female elephants guide the group to essential resources like water, food, and safe habitats
that are vital for the group’s survival and reproduction. In mathematical models, defining
informed leaders and applying network science to uncover their underlying principles
remains a challenging and active area of research.

Research on modeling group systems in biology dates back to the 1980s. The biol-
ogist Reynolds [1] proposed three fundamental behaviors for natural biological groups:
separation, alignment, and cohesion. Subsequent advancements in this field include Vic-
sek’s renowned multi-particle model, which illustrates the synchronized motion of an
autonomous system comprising multiple particles [22]. This model demonstrated, through
simulations, that particle synchronization is achievable with minimal external interference.
Moreover, Jadbabaie [23] provided a theoretically rigorous proof of the conditions necessary
for velocity synchronization in the Vicsek model. Cucker [24] explored particle swarms
with Newtonian interactions, quantifying the influence between individuals by their dis-
tances and adjusting velocities based on a weighted average of velocity differences. This led
to the development of the influential Cucker–Smale (CS) population model. Recent studies
have delved into more intricate and realistic dynamics, such as molecular physics [25],
local interactions [26], predator–prey [27], and metric distance models [28,29]. Despite
discussions of hierarchical relationships in the literature, most simulations assume an equal
status among individuals. Research from the perspective of informed leadership in group
behaviors remains relatively unexplored.

This study focuses on collective biological behavior involving informed leaders, in-
corporating inter-particle coupling forces into the CS model to realize the heterogeneous
properties of the group. Furthermore, a resource attraction term is introduced for informed
leaders, allowing for a more precise characterization of the group’s dynamic behavior,
thereby enhancing our understanding of biological collectives with informed leadership.
Subsequently, inspired by the topological structure of pigeon flocks, we propose the FLH
interaction model generation algorithm, which accurately extracts the real interaction pat-
terns of pigeon flocks. Statistical tests demonstrate that the degree distribution of the FLH
interaction model follows a power-law distribution. By combining the FLH with other
common interaction models, we employ rolling time windows and time slices to divide
collective behavior into different phases, and evaluate the various interaction models based
on group volatility and convergence time. Comparative experiments indicate that models
using the FLH interaction as input exhibit superior metric performance, indirectly revealing
the wisdom of biological collectives. The article’s framework is illustrated in Figure 1.
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Figure 1. Article framework. a is a certain constant.

2. Materials and Methods
2.1. Group Dynamics Models
2.1.1. Group Dynamics Model with Coupling Forces

In simulating natural group dynamics, developing artificial intelligence systems,
and analyzing social behavior dynamics, the CS group model plays a pivotal role. The
traditional CS model is based on the following assumptions [30]:

(1) Homogeneity: The model presupposes that all individuals within the system exhibit
uniform behavior, adhering to a common set of rules for updating their states. Specif-
ically, each individual adjusts its velocity by calculating the weighted average of
velocity differences with other individuals.

(2) Local Interactions: Updates to an individual’s motion state are contingent upon the
states of its immediate neighbors. This mechanism is consistent with the phenomenon
of information transmission through visual, auditory, or other sensory means among
natural groups such as flocks of birds and schools of fish.

(3) Neglecting Environmental Influences: The model does not directly incorporate the
impact of environmental factors on the motion states of individuals.
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(4) Harmonic Interactions: The interaction force between individuals diminishes with in-
creasing distance, with this force being designed to facilitate cohesive and coordinated
behavior within the group.

The CS model is characterized by its wide applicability, realistic depictions of interac-
tions, and rigorous mathematical analysis, making it a crucial tool for studying complex
group behaviors. The specifics of the model are described as follows [30]:

rij(t) ≜
∥∥xi(t)− xj(t)

∥∥, i, j ∈ N+,

ψ
(
rij(t)

)
≜ 1/

(
1 + r2

ij(t)
)β

,

dxi(t)
dt

= vi(t),

dvi(t)
dt

=
λ

N

N

∑
j=1

ψ
(
rij(t)

)
rij(t)

(
vj(t)− vi(t)

)
,

(1)

where t > 0 denotes time. i, j represent the individuals i and j, respectively. xi, xj ∈ Rn

represent the positions of i and j, respectively. ψ(·) is the communication rate between
individuals, which depends on the square of the Euclidean distance between two individ-
uals i and j, denoted as r2

ij(t) (see Figure 2a). β ≥ 0 signifies the coordination parameter,
which determines whether the communication rate is long-ranged or short-ranged. An
increase in β results in a more rapid diminution of the influence between individuals as the
distance between them increases. The first differential equation in Equation (1) employs
a fundamental form of Newton’s laws of motion, delineating that the rate of change in
the position of individual i, equals its velocity vector vi(t) ∈ Rn. The second differential
equation in Equation (1) reveals how vi(t) evolves over time t. This evolution is determined
by the weighted average influence of all other individuals in the group on individual i.
When the velocity of another individual j exceeds that of individual i, individual i will
attempt to accelerate to match the average velocity of the group, and vice versa. Here, λ is
a positive constant representing the strength of the coupling effect between individuals,
while N denotes the total number of individuals in the group. The interaction mechanism is
weighted by the interaction function ψ

(
rij(t)

)
, ensuring that individuals in closer proximity

exert a more significant influence on i.
We first recall the definition of asymptotic flocking, as described in Definition 1.

Definition 1 ([31]). For the biological group model {(xi(t), vi(t))}N
i=1, certain conditions must

be simultaneously met to guarantee asymptotic flocking, considering all individuals 1 ≤ i, j ≤ N:

(1) Velocity Alignment: The model’s velocity should achieve asymptotic consistency over time.

lim
t→∞

∥∥vi(t)− vj(t)
∥∥ = 0. (2)

(2) Group Formation: At any given moment t, the distances between individuals in the system
remain finite.

sup
0≤t<∞

∥∥xi(t)− xj(t)
∥∥ < ∞. (3)
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Figure 2. (a) illustrates the pairwise acceleration between individuals, denoted as aij(t), which
represents the acceleration of individual i due to the action of individual j. The direction of aij(t)
follows the unit vector (xi(t)− xj(t))/rij(t), showing the interaction between the two entities. In (b),
each individual calculates its acceleration so that rij(t) → 2R and the relative velocity between the
two agents converges to zero when rij(t) = 2R.

Additionally, the literature [30] imposes the following constraints on β and λ. Equation (1)
attains asymptotic flocking under any of the following conditions:

(1) β <
1
2

,

(2) β =
1
2

and
1
2 ∑

1≤i,j≤N

∥∥vi(t)− vj(t)
∥∥2

<

(
λ2

2

)
,

(3) β >
1
2

and λ2

2

(
1
2 ∑

1≤i,j≤N

∥∥vi(t)− vj(t)
∥∥2
)


1
2β−1

(
1

2β

) 1
2β−1

−
(

1
2β

) 2β
2β−1


> 2

(
1
2 ∑

1≤i,j≤N

∥∥xi(t)− xj(t)
∥∥2

+ 1

)
.

(4)

Park [32] introduced the concept of inter-particle coupling forces to the CS model
(IpCf-CS), ensuring collisions are avoided while allowing the system to achieve a more
stringent equilibrium configuration, thereby resulting in a tighter arrangement among
individuals. The system incorporating coupling forces is described as follows:

dxi(t)
dt

= vi(t),

dvi(t)
dt

=
λ

N

N

∑
j=1

ψ
(
rij(t)

)(
vj(t)− vi(t)

)
+

σ

N

N

∑
j=1

K
2rij(t)

(
rij(t)− 2R

)(
xj(t)− xi(t)

)
.

(5)
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The above system has been improved upon based on the foundation of Equation (1).
Herein, the positive constant σ represents the coupling strength of the cohesive force
among individuals, and K is a designated positive gain. R is defined as the maximum
communication radius between individuals (see Figure 2b). This extended CS model
provides a framework capable of describing more complex group dynamics, making it
more suitable for studying and understanding collective behaviors in biological groups,
such as the flight formations of birds and swimming patterns of fish.

2.1.2. Biological Group Model with Informed Leaders

In real biological group systems, the foundational assumptions of the IpCf-CS model
are overly idealized, primarily manifested in three aspects: First, although treating in-
dividuals within a group as homogeneous simplifies the analysis, the reality of internal
differences within biological groups (such as age, gender, health status, etc.) significantly
impacts their behavior. Secondly, under specific environmental conditions, the influence
of environmental factors (e.g., food distribution, predator threats, etc.) on the movement
of biological groups cannot be overlooked. Lastly, while the IpCf-CS model can portray
some basic group behavior patterns, such as alignment and cohesion, biological groups
often exhibit more complex patterns involving leadership-following mechanisms and
decision-making processes. Therefore, this section extends these foundational assumptions
by introducing the concept of informed leaders commonly present in biological group
behavior (see Figure 3).

Figure 3. Schematic illustration of the extension of assumptions about biological group behaviors.

Acknowledging the impracticality of individuals s being infinitely distant and still in-
teracting with each other in realistic biological motion, we refine Section 2.1.1 in
Definition 1. An anti-collision upper limit, denoted as ∆max, is introduced. For inter-
action and subsequent asymptotic flocking to occur, the distance between individuals in
the system must be less than ∆max at any given moment t.

sup
0≤t<∞

∥∥xi(t)− xj(t)
∥∥ < ∆max. (6)
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Dong [33] considered a group {0, 1, ..., k} with a leader, where leader agent 0 possesses
a free-will acceleration f(t). For followers 1 ≤ i ≤ k with a set of leaders Λ(i), the behavior
of a flock with a free-will leader is described by the following model:

dx0(t)
dt

= v0(t),

dv0(t)
dt

= f(t),

dxi(t)
dt

= vi(t),

dvi(t)
dt

= ∑
j∈Λ(i)

qij
(
vj(t)− vi(t)

)
,

(7)

where Q =
(
qij
)

N×N represents the adjacency matrix for individual interactions, with
qij = 1 indicating an interaction between i and j, and qij = 0 indicating no interaction
between i and j.

Within the framework of Equation (7), the leader is depicted as being entirely uninflu-
enced by the followers, a concept that is mathematically plausible. However, in the realm
of actual biological behaviors, the leader-follower structure is not always unidirectional.
That is, leaders not only influence followers, but followers can also impact leaders. For
instance, when an elder matriarch elephant leads the herd in search of water or food,
should a calf fall behind due to fatigue or other reasons, the entire group may slow down or
change direction to protect the calf. Similarly, in avian flock flight, other birds in the group
adjust their positions and flight speeds in response to changes initiated by the lead bird
and surrounding environmental shifts. This feedback loop ensures that the entire group
migrates efficiently.

Given this, improvements have been made under the framework of Equation (7) to
make the model more closely mirror authentic collective biological behaviors. Moreover,
within this enhanced framework, informed leaders are introduced into Equation (8):

dxi(t)
dt

= vi(t), i ∈ L, L = {1, ......, l},

dvi(t)
dt

=
λ

N

N

∑
m=1

qimψ(rim(t))(vm(t)− vi(t))

+
σ

N

N

∑
m=1

qim
K

2rim(t)
(rim(t)− 2R)(xm(t)− xi(t))

+
(

e|D−xi(t)| − 1
) D − xi(t)
|D − xi(t)|

,

dxj(t)
dt

= vj(t), j ∈ F, F = {l + 1, ......, N},

dvj(t)
dt

=
λ

N

N

∑
m=1

qjmψ
(
rjm(t)

)(
vm(t)− vj(t)

)
+

σ

N

N

∑
m=1

qjm
K

2rjm(t)
(
rjm(t)− 2R

)(
xm(t)− xj(t)

)
,

∥vi(t)∥,
∥∥vj(t)

∥∥, ∥vm(t)∥ ≤ vmax,
∥∥∥∥dvi(t)

dt

∥∥∥∥,
∥∥∥∥dvj(t)

dt

∥∥∥∥ ≤ amax, rij ∈ [∆min, ∆max],

(8)

where i denotes the informed leader, with L representing the set of informed leaders. The
scalar form of the position of node i is denoted by xi(t). j is a follower, with F denoting the
set of followers. Concurrently, we have added a unique volitional term for the informed
leaders, indicating that the informed leaders are aware of the target point D location and
will formulate corresponding action routes, implying an attraction to D. This attraction is
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modulated by an exponential function, enhancing the attraction as the distance between the
individual and the target point increases. This design aims to simulate the natural response
of individuals attracted by distant targets and how they adjust their movement direction
and speed towards the target. To prevent individuals from breaking away from the flocking
system due to excessive velocity or acceleration, Equation (8) establishes upper limits for the
velocity and acceleration of each individual, denoted as vmax and amax, respectively. Such
constraints better reflect the behavior of a realistic biological population, where individual
speed and acceleration are not infinite. Additionally, an anti-collision range [∆min, ∆max] is
set to minimize collisions between individuals.

The enhancement allows for more effective information flow control within the group,
improves overall system performance, and facilitates more accurate simulations of in-
telligent group behavior. To distinctly compare the IpCf-CS model without informed
leaders (Equation (5)) and the IpCf-CS model with informed leaders (Equation (8)), Figure 4
illustrates the positional changes in the group model before and after its improvement.

Figure 4 demonstrates the effects of introducing an informed leader into the group
dynamics. This addition not only directs the group towards a specific objective but also
enables the group to halt upon reaching the target location. The enhanced model offers
significant insights into the dynamics of group behavior, highlighting the influential role of
an informed leader.

Figure 4. Model comparison figure. Using the same model parameters, (a) displays the behavioral
trajectories of all individuals strictly following the rules outlined in Equation (5). Different colors
represent different individuals. However, when the model is modified to include at least one informed
leader, that is, when some individuals as introduced as informed leaders (following the rules of
Equation (8)) while the rest of the individuals continue to move dynamically according to the rules
of Equation (5), the corresponding behavioral trajectories are depicted in (b). In both cases, the
horizontal and vertical axes of (a,b) represent the X- and Y-positional coordinates of each individual,
respectively. A detailed examination of (a) near the origin (0, 0) shows that the velocities, directions,
and positions of the individuals are initially random, indicating the unpredictability of their starting
states. Over time, this randomness gives way to a gradual stabilization of the group, leading to
consistent behavior. In the absence of an informed leader, the group exhibits a uniform motion
pattern, maintaining almost constant speed and direction. Conversely, (b), with the informed leader’s
destination set at (100, 100), presents a different scenario. A closer look reveals that the group ceases
movement as it approaches the set destination, in contrast to the continuous motion observed in (a).

2.2. Individual Interaction Mode

Individual interaction modes are pivotal in shaping group behavior. Within interaction
networks, individuals are typically represented as nodes, and the relational roles between
them are depicted through connecting edges. Currently, modeling the interaction relation-
ships within biological groups is commonly carried out using several models, including
Regularly Connected Networks, Random Graph Networks, Small-World Networks, and
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Scale-Free Networks [34]. This section introduces four widely recognized interactive mode
generation models [35]. Concurrently, the Flock Leadership Hierarchy Network, inspired by
pigeon flocking interaction patterns, aims to model and analyze group behaviors in biology.
This approach is particularly relevant to scenarios involving bird groups or other animals
led by a hierarchically structured leader. Figure 5 presents a schematic representation of
the topology based on five interactive mode generation rules.

Figure 5. Network Topology and Heterogeneous Networks. (a) illustrates the interaction patterns
generated from six nodes and nine connected edges using various network generation models.
Notably, in SF model representation, dashed lines signify connections to nodes external to the six
depicted in the figure. (b) presents a schematic of a heterogeneous network, where nodes of different
types are indicated by distinct colors. (c) serves as an example of modeling a pigeon flock through a
heterogeneous network. In this model, nodes at different hierarchical levels exhibit different dynamic
behaviors and are thus represented as distinct node types.

2.2.1. Regular Connected Networks (RC)

RC networks are widely observed and easily identifiable in both human society and
the natural world. For instance, in the field of physics, various crystal structures serve as ex-
emplary cases of regular networks [36], where atoms or molecules are arranged in a highly
ordered manner within three-dimensional space. Similarly, in biological structures, such
as the hexagonal arrangement of honeycombs [37], can be considered as two-dimensional
regular networks. Such arrangements not only maximize the efficiency of space utiliza-
tion but also enhance structural stability. Hence, despite their highly ordered structure,
RC networks are crucial to our understanding of the inherent properties and behavioral
patterns of specific systems. Nodes in regular networks exhibit specific patterns, with a
common example being networks where each node has an identical degree, signifying an
equal number of outward connections for every node. The generation of an RC network
involves the following steps:
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(1) Initialization: Begin with N isolated nodes.
(2) Connection Process: For each node i (where i = 1, 2, ..., N), establish sequential

connections to a set j of E target nodes. To maintain the network’s regularity and
ensure that connections loop back as they reach the end of the j list, the target nodes
are determined using the modulo operation j = mod(i + k − 1, N) + 1 (where k =
1, 2, ..., E). The resulting network contains a total of N × E edges.

2.2.2. Random Graph Networks (RG)

RG networks have seen extensive application in both social and natural realms. For
instance, in social networks, the relationships and interactions among individuals often
exhibit characteristics of random connections, appearing to be randomly established [38].
Similarly, in ecosystems, the interaction networks among species demonstrate random-
ness [39]. RG networks, due to their capacity to capture the randomness and complexity
within systems, have become an indispensable tool in researching issues within social and
natural sciences. By analyzing the structure and dynamics of random networks, scientists
are better equipped to understand the behaviors and patterns of complex systems, thus
providing a solid scientific foundation for predicting and managing these systems. In an
RG network, edges are established randomly, without adherence to any specific rule or
pattern. Such networks are commonly employed as benchmarks in real-world network
analyses, serving as an exemplar of an idealized network structure. The generation of an
RG network proceeds as follows:

(1) Initialization: Begin with N isolated nodes.
(2) Connection Process: Consider all distinct node pairs, denoted by i and j(i ̸= j), exactly

once from the given N nodes. Connect each node pair with an edge at a probability
pRG ∈ [0, 1]. The expected number of edges in the RG network is statistically calculated
as follows: E(M) = (pRG · N(N − 1))/2.

2.2.3. Newman–Watts–Strogatz Small-World Networks (NW)

Small-world properties are commonly observed in social and ecological networks,
characterized by rapid information transfer and significant performance shifts due to minor
modifications in a few connections. In ecosystems, food webs exhibit characteristics of
small-world networks, where species can influence each other through a few intermediary
species [40]. This aspect is crucial for the stability of ecosystems and their resistance to
external disturbances. Similarly, in gene regulatory networks, the regulatory relationships
between genes within cells also form networks with small-world properties [41]. Such
networks facilitate cells’ rapid response to environmental changes and the regulation of
biological processes. The generation of an NW small-world network proceeds as follows:

(1) Initial Structure: The process begins with a regular graph of N nodes. This graph
forms a one-dimensional cyclic lattice, where each node connects to its nearest k
neighbors, with k/2 on each side.

(2) Edge Addition: For each node pair i and j in the graph, a new edge is added between
them at a fixed reconnection probability p. The process prohibits the creation of
multiple edges between two nodes (heavy edges) and self-loops. The resulting NW
network is distinguished by short characteristic path lengths between nodes and a
high clustering coefficient.

2.2.4. Scale-Free Networks (SF)

SF networks are prevalent in various domains, including physics, biology, sociology,
and economics. In the domain of social networks, social media platforms such as Twitter
and Facebook exhibit the characteristics of scale-free networks, where a subset of users has
a vast number of followers, while the vast majority possess relatively few followers [42].
Regarding neural networks, the connections between neurons within the brain also demon-
strate scale-free network traits, with a minority of neurons possessing an exceptionally
high number of connections, playing a crucial role in the transmission of neural signals
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and the brain’s information processing capabilities [43]. The attributes of SF networks not
only facilitate our understanding of complex interactions and phenomena within social
and natural systems but also provide a significant theoretical foundation and practical
value in designing systems resistant to interference, formulating propagation strategies,
and controlling diseases. In these networks, the number of connections per node often
adheres to a power-law distribution, where most nodes have few connections, but a few
nodes have a significantly higher number. The process for generating an SF network is
as follows:

(1) Initialization: Begin with N isolated nodes.
(2) Weight Assignment: Assign a weight wi = (i + θ)−σ to each node i, where σ ∈ [0, 1)

and θ << N.
(3) Edge Formation: Randomly select two distinct nodes i and j(i ̸= j, i, j = 1, 2, . . . , N)

based on probabilities proportional to their respective weights wi and wj. Add an
edge Aij from i to j (if they are not already connected).

(4) Iteration: Repeat Step (3) until M edges have been established. The resulting network
exhibits a power-law degree distribution k−γ, where k is the degree variable and
γ = 1 + 1

σ , independent of θ.

2.2.5. Flock Leadership Hierarchy Networks (FLH)

Watts [44] conducted extensive experiments that uncovered hierarchical structures and
informed leaders in pigeon group behavior. Motivated by these findings, we introduce the
Flock Leadership Hierarchy Network (FLH), a model based on the topology of biological
groups in nature. The FLH primarily explores hierarchical and leadership dynamics
in group decision making, with a focus on studying complex flight formations during
migration and coordinated responses to feeding and predator evasion. This network offers
a novel lens for examining biological group dynamics, facilitating insights into information
transfer, role allocation, and inter-individual interactions within group behaviors. The
subsequent sections will detail the process of implementing the FLH network and the
network generation algorithm. The complete pseudo-code is presented in Algorithm 1.

(1) Initialization: Begin with the number of isolated nodes. The number of individuals
per layer lc are determined based on the number of pigeons N observed in real pigeon
flock experiments [44].

(2) Node Determination: For each node j in level i, where j spans from the start index of
the current level to the total number of nodes within that level, establish connections.
If i is less than the total number of layers, connect node j to all nodes in higher levels
(i + 1, i + 2, ...).

(3) Iterative Connection: Continue Step (2) until all nodes across the layers are intercon-
nected.

This hierarchical network has applications beyond biology, extending to engineering
and robotics. By leveraging insights from leadership and hierarchical structures in animal
populations, it facilitates the development of more efficient and adaptable artificial systems.
For instance, it can inform the design of autonomous drone swarms or robotic systems that
emulate flocking behavior.

In this study, the strategy for selecting informed leaders involves designating nodes
with higher degree counts as leaders and those with lower degree counts as followers. This
approach is underpinned by the degree distribution characteristics of the network’s nodes,
influencing efficiency in information dissemination. This methodology, as noted in [45],
is prevalent in real-world networks. For instance, on social media platforms, users with
numerous followers (high-degree (hd) nodes) often serve as opinion leaders or influencers.
Their posts rapidly reach a vast audience (comprised of low-degree (ld) nodes), potentially
impacting public opinion or market trends. Similarly, in biological networks such as bird
flocks or schools of fish, certain individuals assume leadership roles (hd) due to their
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location or behavioral traits, guiding others as followers (ld). This dynamic is vital for the
group’s migratory or predator-evading activities.

Algorithm 1 FLH network generation algorithm

Input: number of individuals N, number of individuals per layer lc
Output: FLH network interaction matrix

//Check if the sum of individuals in layers equals N
if sum(lc) is not equal to N then
end if
Error: Sum of individuals in layers must equal total number of individuals

//Create an adjacency matrix
Initialize zeros matrix (N × N)

// Populate the FLH adjacency matrix
Set Current index c = 1
for i from 1 to length(lc) do

for j from Current index to (c + lc(i)− 1) do
//Create connections from individuals in higher layers to those in lower layers

if i is less than length(lc) then
for k from (c + lc(i)) to N do

Set adjmatrix(i, j) = 1
Set adjmatrix(k, j) = 1

end for
end if

end for
Increment c by lc

end for

The increasing recognition of the intricacies within biological group systems has led
a growing number of scholars to employ complex networks for modeling and analyzing
these systems. While most of the current research simplifies group systems into networks of
homogeneous nodes [46,47], treating all nodes as having identical functions and attributes,
this approach often overlooks the varied interactions and unique dynamic behaviors of
different individual types within biological groups. To address this gap, upon establishing a
selection strategy for informed leaders in groups, we introduce a heterogeneous graph [48],
denoted as G = (V, E), comprising a set of objects V and a set of links E. This graph is
further characterized by a node-type mapping function ϕ : V → Vtype and a link-type
mapping function ψ : E → Etype, where Vtype and Etype represent the sets of predefined
object and link types, respectively, with

∣∣Vtype
∣∣+ ∣∣Etype

∣∣ > 2. We categorize individuals in
biological groups into distinct types based on their dynamic behavior and model the group
systems using heterogeneous networks as illustrated in Figure 5. This approach more
effectively captures the heterogeneity of nodes and the diversity of connections, thereby
offering a more comprehensive and precise framework for understanding and analyzing
complex population systems.

3. Model Building
3.1. Stages of Group Behavior and Demonstration

A comprehensive understanding of the various stages of group behavior is crucial for
comprehending the complexities of biological systems. In the realm of biological group
behaviors, such as bird flocking, fish schooling, or collective actions among insects, it is
generally feasible to categorize these behaviors into four distinct phases [49]. Investigating
each phase in detail significantly enhances our understanding of the dynamic characteristics
of group behavior and its adaptive mechanisms. To facilitate a more precise quantitative
analysis of these stages, we have implemented a uniform sampling method with a step size
of h = 0.05 for discretizing the continuous function in Equation (8), as illustrated in part (c) of
Figure 6.
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Figure 6. Stages of group behavior (using the RC interaction model as an example). In (b), the
horizontal axis T signifies the progression of time, and the vertical axis V denotes the velocity of
individuals. The variously colored lines depict the trend of each individual’s velocity over time. We
categorized the group’s movement into four distinct stages, each characterized by unique movement
traits and represented by four different base colors. In (a), the blue circles represent informed leaders.
The yellow circles represent followers. The blue four-pointed star represents the objective/resource
information known to the informed leaders. Finally, the length and orientation of the arrows illustrate
the magnitude and direction of their respective velocities.

In Figure 6b, the interval 0–T2 corresponds to the initial formation stage of biological
group behavior (Stage I). This phase is marked by groups beginning their movement
towards a destination, exhibiting considerable variations in speed and direction, along
with notable overall fluctuations. Typically, organisms start to aggregate during this
phase for reasons like foraging, defense against predators, migration, etc. Analyzing
Stage I is crucial for understanding the conditions initiating group behavior. The period
T1–T2 represents the stabilization phase of group behavior (Stage II), also referred to as
the first convergence phase. Here, group motion generally fluctuates around v = 1,
indicating a state of consistency akin to the uninformed leader group model. This stage,
characterized by stable structures and patterns, is key to understanding social structures
and information transfer within the group. The interval T2–T3 denotes the decision-making
phase (Stage III), where the group, led by an informed leader, heads towards its destination.
As the destination nears, individual velocities decrease, and the state of motion undergoes
significant changes compared to Stage II. This phase’s analysis is pivotal in uncovering
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group information processing and decision-making dynamics. Finally, T3–∞ marks the
dissolution phase of group behavior (Stage IV), or the second convergence stage. In this
stage, as the group, guided by an informed leader, reaches the vicinity of its destination
(illustrated by a blue four-pointed star in Figure 6a), its position stabilizes, and the velocity
gradually converges to zero. Dissolution in this stage may occur due to various factors,
such as reaching the destination, depletion of food sources, or environmental changes.
Understanding Stage IV sheds light on the ecological and social dynamics underlying
group maintenance and dissolution. To visually depict each stage, we selected specific time
points from Figure 6a for each stage and utilized a time-slicing approach for demonstration.

3.2. Metric Performance
3.2.1. Volatility

Volatility serves as a critical metric in analyzing biological group behavior, quantifying
the extent of instability or variability in group movements [50]. Generally, a lower volatility
indicates a more stable and predictable group behavior, a trait often beneficial for biological
populations. In Section 3.1, we categorize stages I and III as phases of group self-adaptation,
predominantly marked by groups modulating their state via fluctuations. Consequently,
analyzing the volatility in these stages is not substantially relevant. Accordingly, this
paper introduces the volatility indicators D2(I I) and D2(IV) to analyze stages II and IV,
respectively. Due to the minimal directional variance among individuals in Stage II and IV,
the dependent variable of speed in the volatility metric is represented in scalar form.

M =
Ttumbling

h
,

D2 =

N
∑

j=1

M
∑

i=1

∣∣vij(t)− v̄
∣∣

N × M
,

(9)

where Ttumbling refers to the duration of the time window under analysis. M represents
the total number of intervals collected for an individual within Ttumbling. vij(t) denotes
the velocity of the jth individual at the ith time step, and v̄ is the average velocity of all
individuals within Ttumbling. N signifies the total number of individuals.

3.2.2. Convergence Time

Convergence time is a crucial metric for assessing the efficiency with which a group
achieves coherence and is paramount for understanding and evaluating group systems. In
natural biological groups, a reduced convergence time is advantageous, enabling groups to
more effectively escape predators or adapt to environmental changes. In light of this, this
paper introduces the convergence time metrics tstage1 and tstage3 to denote the termination
of Stages I and III, respectively. These metrics indicate the onset of convergence in Stages II
and IV.

Z2(tstage, tstage∗
)
=

M
∑

i=1
|vi(t)− v̄|

M
≤ Zthre,

vi
(
tstage, tstage∗

)
∈ [Vthre − c, Vthre + c],

(10)

where Z2 represents the volatility of each individual within a designated time window. vi(t)
denotes the velocity of an arbitrary individual at the ith time step. The term tstage∗ signifies
the end time of this time window. The volatility threshold for each individual during the
specified period is denoted by Zthre. Furthermore, Vthre and c, respectively, indicate the
velocity threshold and the acceptable range of volatility within the same time window.

3.3. Power-Law Distribution Test

The degree distribution of the FLH network proposed in this paper exhibits a trend
similar to that observed in SF networks. Consequently, we investigate whether the FLH
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network’s degree distribution also adheres to a power-law distribution. This distribution
is defined by P(k) = Ck−α, where P(k) represents the probability of nodes with degree
k appearing in the network. The exponent α, characterizing the power-law distribution,
is typically greater than 1. C is a normalization constant ensuring that the sum of all
probabilities equals 1. The exponential distribution, in contrast, is defined as f (x; λ) =
λe−λx, with λ being the rate parameter. To determine the power-law distribution index α,
we employ maximum likelihood estimation, as detailed in Equation (11).

α̂ = 1 + n
[
∑n

i=1 ln
ki

kmin

]−1
, (11)

where α̂ represents the estimated power-law index. The variable n denotes the number
of nodes with a degree greater than or equal to kmin. Each node’s degree is represented
by ki, and kmin signifies the minimum degree value to which the power-law distribution
is applicable.

Subsequently, we compare the logarithmic values of the likelihood function R for the
two distributions:

R = logLmodel1 − logLmodel2, (12)

where the likelihood functions for the two distributions are denoted as Lmodel1 and Lmodel2,
respectively. A value of R > 0 indicates that the power-law distribution is more appropriate
than the exponential distribution, whereas R < 0 suggests that the exponential distribution
is a better fit. The fit’s accuracy was evaluated using the Kolmogorov–Smirnov test, which
compares the cumulative distribution function of the data with the expected power-law
distribution.

α̂ = arg min Dα,

Dα = max
∣∣Pemp(x)− Pα(x)

∣∣, (13)

where Pemp(x) and Pα(x) represent the empirical and theoretical values of the cumulative
distribution function, respectively. In this study, the determination of α̂ is achieved by
minimizing the discrepancy Dα, where Dα represents the maximum difference between
the empirical probability distribution Pemp(x) and the assumed power-law distribution
probability Pα(x). To facilitate effective comparison, we ensure that both Pemp(x) and
Pα(x) are normalized, thus meeting the standards of probability density functions. These
functions are utilized to calculate a statistic for evaluating the disparity between the two
distributions.

A statistical test is applied to ascertain the significance of this ratio, with the p-value
indicating the strength of evidence against the null hypothesis, which posits that the two
distributions are identical. A p-value less than 0.05 typically signifies a significant difference
between the distributions, lending credibility to R; conversely, a p-value greater than 0.05
suggests that the difference is not significant, thereby questioning the reliability of R.

4. Numerical Simulation
4.1. Experimental Design

The purpose of this experiment is to evaluate the efficacy of the HLF interaction
model in modeling group motion. Subsequently, the parameters within Equation (8) was
configured. At time t = 0, the position xi(0) of individual i is randomly generated near the
point (0, 0), the magnitude of the velocity vi(0) is randomly generated between 0 and 1,
and their initial directions are also random. Additionally, to mitigate the potential influence
of network cost (namely, the number of connected edges) on the experimental outcomes, we
maintained a consistent total of approximately 240 edges across the five interaction modes
described in Section 2.2. The precise values of these parameters and their corresponding
meanings are listed in Table 1.
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Table 1. Model parameter settings.

Symbol Meaning Value Symbol Meaning Value

N Number of
individuals 30 β

Coordination
parameter 0.2/0.5/1

λ Coupling strength 10 σ
Collision

coefficient 10

∆max
Anti-collision

upper boundary 100 ∆min
Anti-collision

lower boundary 3

vmax
Velocity upper

bound 5 amax
Acceleration upper

bound 1

R Maximum radius
of communication 50 t Time 360

D Target position (100,100) Dinitial Initial position near (0,0)

Number of leaders 5 h Discretized step
size 0.05

Vthre Velocity threshold 10−3 c Acceptable range
of volatility 0.2/10−3

Zthre Volatility threshold 10−6

The variable K fluctuates based on the initial velocity of the individuals [32]. The parameter β is set to correspond
to different convergence scenarios, as outlined in Equation (4). Additionally, c represents specific values assigned
for Stage II and Stage IV, respectively.

4.2. Discussion

In this study, we performed a range of simulation experiments using the enhanced
group model outlined in Section 2.1 along with the five interaction modes. To guarantee the
reliability and precision of our experimental findings, we compiled the average results from
multiple experiments. Moreover, we executed several group experiments under various
convergence conditions, as specified in Equation (4). Pertaining specifically to convergence
condition (3) in Equation (4), the experimental outcomes are displayed in Figure 7 and
Table 2.

The experimental findings indicate that in the first stage, the biological group em-
ploying the FLH interaction mode achieves the shortest convergence time, recorded at
tstage1 = 467. This is followed by the NW, SF, RG, and RC modes, in that order. Notably,
the FLH structure demonstrates a substantial advantage in the initial convergence time,
being nearly three times shorter than that of the RC mode. Regarding the convergence time
tstage3 in Stage III, the FLH mode continues to outperform, clocking in at tstage3 = 3672,
with the SF, RC, and RG modes trailing behind. The NW mode shows the least effective
performance, as evidenced in Figure 7 (NW) at T = 7200, where the population system
still fails to meet the consistency condition of Stage IV. The individual speeds and their
variances remain substantial, suggesting that the population system has not yet reached
convergence. Furthermore, the experimental findings reveal that solely the SF and FLH
modes conform to the power-law distribution. In conclusion, the FLH model emerges as
the most advantageous approach.
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Figure 7. Velocity figures of five group movements. The experimental results are presented in
a series of graphs, each illustrating the velocity dynamics of population motion across the five
interaction modes: RC, RG, NM, SF, and FLH. Different colors represent different individuals. In
these graphs, the horizontal axis T depicts the progression of time, whereas the vertical axis represents
the individual velocities V within the population. Accompanying subplots in each graph detail the
degree distribution within the respective networks for each interaction mode. Within these subfigures,
the horizontal axis denotes the degree values of the nodes, and the vertical axis shows the frequency
of each degree value’s occurrence in the network. A black curve in each subplot highlights the
statistical characteristics of the degree distribution.

Table 2. The experimental results of Equation (4) (3) are obtained under the condition of consistency.

Network
Topology tstage1 D2(I I) D2(IV) tstage3

Power Law
Distribution

RC 1370 3.5 × 10−3 2.566 × 10−5 5271 ——
RG 871 3.3800 × 10−4 1.9227 × 10−6 5720 ——
NW 640 2.7018 × 10−4 —— —— ——
SF 802 4.1115 × 10−4 5.0066 × 10−6 3821 Obey

FLH 467 2.3574 × 10−4 3.5375 × 10−7 3672 Obey

For the volatility metric D2(I I), the FLH network, with D2(I I) = 2.3574 × 10−4, ex-
hibits the lowest volatility among the five interaction modes. In contrast, the RC network
records the highest volatility in Stage II, with D2(I I) = 3.5× 10−3, markedly differing from
the other networks by several orders of magnitude, as highlighted in the grey-shaded area
of Figure 5 (referenced). In the case of D2(IV), the FLH network maintains its superior
performance in Stage IV, registering a value of D2(IV) = 3.5375 × 10−7. Since the NW
network does not reach Stage IV within T = 7200, its D2(IV) value remains uncalculated.
The degree distribution curves of the SF and FLH networks display similar patterns, and
hypothesis testing confirms that the FLH model also adheres to a power-law distribution.
These two networks rank as the top performers in the group system, thereby underscoring
the efficacy of power-law distributions in group behavior from both mathematical and
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modeling perspectives. Power-law distributions are not only prevalent in biological popula-
tions [51] but also in artificial systems such as social and Internet networks, urban systems,
and natural phenomena like earthquake intensity, river lengths, and watershed areas.

The experimental outcomes for convergence conditions (2) and (1), as specified in
Equation (4), are presented in Tables 3 and 4. The data unequivocally demonstrate that the
FLH interaction mode holds significant advantages over the other four interaction modes,
irrespective of the settings incorporating diverse convergence parameters.

Table 3. The experimental results of Equation (4) (2) are obtained under the condition of consistency.

Network Topology tstage1 D2(I I) D2(IV) tstage3

RC 2154 1.1 × 10−3 1.7765 × 10−6 7061
RG 726 2.9066 × 10−4 9.1801 × 10−6 5160
NW 881 2.6883 × 10−4 —— ——
SF 292 3.1261 × 10−4 1.0387 × 10−6 4261

FLH 253 2.227 × 10−4 4.8176 × 10−9 4157

Table 4. The experimental results of Equation (4) (1) are obtained under the condition of consistency.

Network Topology tstage1 D2(I I) D2(IV) tstage3

RC 1387 6.1364 × 10−4 5.1653 × 10−7 6206
RG 226 1.7334 × 10−4 1.4045 × 10−6 6250
NW 241 1.833 × 10−4 —— ——
SF 230 1.7241 × 10−4 6.2245 × 10−7 4541

FLH 177 1.59 × 10−4 3.187 × 10−8 3999

In the aforementioned experiments, based on the three convergence conditions pro-
posed in Equation (4), different values of λ and β were selected for further experimentation.
These experiments confirmed that the FLH interaction mode has a significant advantage in
the CS model with informed leaders. Since the FLH model is derived from real biological
group interaction experiments, it further illustrates the collective intelligence exhibited by
biological groups during the evolutionary process. Subsequently, to further validate the
effectiveness of the model across a wide parameter range and enhance its applicability and
generalizability, we fixed the parameters (β = 1, λ = 10) as specified in Table 1 as conver-
gence conditions and conducted multiple controlled variable experiments on the collision
coefficient σ, the maximum radius of communication R, and the number of individuals N.

For the controlled variable experiment regarding σ, the collision coefficient σ̃ was
randomly set to σ̃ = σ ± 50% in each experiment. The experimental results for the σ
parameter are shown in Figure 8, with specific data provided in Table 5. From Figure 8, it
is evident that in the experiments using multiple random settings for σ̃, the FLH network
interaction mode exhibits significant advantages over the other four networks in terms of
the four metrics measuring group behavior capabilities, as demonstrated by the shorter
convergence times and reduced velocity fluctuations among individuals during stable
stages. Therefore, the experiment indicates that within a certain range of fluctuations, any
value of the collision coefficient σ does not affect the superior position of the FLH network
interaction mode in the biological group model. This confirms the universal role of this
structure in reflecting the collective intelligence of biological groups.



Mathematics 2024, 12, 1160 19 of 23

Figure 8. Controlled variable experiment for the collision coefficient σ. The figures display the
average results of network interaction modes’ performance metrics under multiple variations of the
collision coefficient σ. In all four graphs, the y-axis represents the individual interaction modes, while
the x-axis corresponds to tstage1, D2(I I), tstage3, and D2(IV), respectively. The pink bars represent the
results of the FLH network interaction mode, orange bars represent the results of other interaction
modes, and the red lines indicate instances of non-convergence in multiple experiments under that
network interaction mode. Notably, in the fourth graph, due to the magnitude of the FLH mode’s
advantage in volatility over other interaction modes, it is only observable through a zoomed-in
view. From these graphs, it is evident that the FLH network interaction mode exhibits significant
superiority across all four biological group metrics.

Table 5. Results for the controlled variable experiment on the collision coefficient σ.

Network Topology tstage1 D2(I I) D2(IV) tstage3

RC —— —— 9.74 × 10−7 6613
RG 769 3.83 × 10−4 9.4 × 10−8 6010
NW 990 3.14 × 10−4 —— ——
SF 884 4.32 × 10−4 1.36 × 10−6 5258

FLH 499 2.22 × 10−4 9.93 × 10−11 4140

Similarly, for the randomly varying maximum radius of communication R, we set
R = R ± 50%, with the experimental results presented in Table 6. According to the
performance in D2(I I) within Table 6, the NW network performed best, followed by the
FLH network. However, considering all four metrics, the FLH network still demonstrates a
clear advantage.

Given the correspondence between the number of individuals and informed leaders
in real biological groups, with other parameters held constant, we defined the range of the
randomly varying number of individuals Ñ as Ñ = N ± 20%, Ñ ∈ N+, and conducted
experiments under five types of interactions. The results are shown in Table 7.
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Table 6. Results for the controlled variable experiments on the maximum radius of communication R.

Network Topology tstage1 D2(I I) D2(IV) tstage3

RC 1671 3.7 × 10−3 8.45 × 10−10 5036
RG 1098 5.28 × 10−4 9.99 × 10−10 4084
NW 986 4.55 × 10−4 —— ——
SF 861 6.79 × 10−4 9.26 × 10−8 3984

FLH 489 5.45 × 10−4 2.22 × 10−10 3658

Table 7. Results for the controlled variable experiments on the number of individuals N.

Network Topology tstage1 D2(I I) D2(IV) tstage3

RC 1532 2.06 × 10−4 1.63 × 10−9 4494
RG 1674 1.5 × 10−4 6.69 × 10−8 5216
NW —— —— 6.687 × 10−8 5284
SF 1144 2.41 × 10−4 8.73 × 10−9 4819

FLH 857 2.55 × 10−5 5.44 × 10−10 4574

5. Conclusions

In this study, we improve the CS model by integrating coupling forces to better
capture the behaviors of biological groups with informed leaders, achieving a more com-
prehensive portrayal of group dynamics. Additionally, we introduce the FLH network
generation algorithm, inspired by the interaction patterns observed in the behaviors of
pigeon flocks. The group dynamics are then segmented into four distinct phases: formation,
stabilization, decision making, and dissolution. This paper also employs heterogeneous
networks to model and analyze biological groups, acknowledging the diversity in nodes
and their connections. We utilize two key metrics, volatility and convergence time, to
assess population performance. Comparative analyses between the FLH network and four
common network models reveal that the FLH-based group model excels in performance
metrics and adheres to the power-law distribution, underscoring the strategic evolution of
biological populations.

6. Future Research

Looking forward, the enhanced population model and network interaction patterns
proposed here hold significant implications not only in biological research but also in the
realms of engineering and computer science. For instance, the theoretical framework pre-
sented in this paper is highly applicable to the design of autonomous robotic behaviors and
the exploration of artificial intelligence algorithms. Finally, the comprehensive description
of biological group behavior stages presented in this study has substantial relevance and
potential applications in developing biologically inspired algorithms and techniques. It
deepens our understanding of complex biological group interactions and may foster novel
approaches to modeling group behavior in natural settings. Meanwhile, as our under-
standing and applications of this model continue to deepen and expand, future research
will focus on integrating the model with real biological group data to further validate its
accuracy and practicality. By analyzing and applying a vast array of real-world data, we
aim to significantly enhance the model’s predictive and generalization capabilities, making
it more adaptable to real-life scenarios.
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Abbreviations
The following abbreviations are used in this manuscript:

CS Cucker–Smale model
RC Regular Connected Network
RG Random Graph Network
NW Newman–Watts–Strogatz Small-World Network
SF Scale-Free Network
FLH Flock Leadership Hierarchy Network
hd high-degree nodes
ld low-degree nodes
IpCf-CS inter-particle coupling forces to the CS model
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