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Abstract: This work investigates a two-way communication retrial queue with synchronous working
vacation and a constant retrial policy. During the idle time, a server makes an outgoing call after a
random length. The service time of the incoming call and outgoing call obeys exponential distribution
with different rates. If the incoming call finds all servers to be unavailable, it may or may not enter
orbit. All servers immediately go on vacation simultaneously as soon as they find an empty system
after the service finishes. During vacation, the servers can provide a service to those incoming calls,
but this is at a lower-speed rate. The stationary probability distribution and the ergodic condition
are obtained utilizing the matrix geometric technique. Some system characteristics are developed.
Using MATLAB software, the variation in average orbit length, idle ratio, and the average number of
servers in different server states is plotted for different values of the incoming/outgoing call rate and
retrial rate. We further propose a multi-objective optimization model from which the optimal rate of
outgoing calls and optimal vacation rate are explicitly obtained.
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1. Introduction

This paper deals with investigations into retrial queue with two-way communication
and synchronous working vacation. For more information about retrial queues, please refer
to [1–5]. The main reason for this is that retrial queues provide a suitable model for the
performance evaluation of computer networks, communications systems, and call centers.
The characteristic of the retrial queue is that an arriving customer who cannot be serviced
immediately joins an orbit and tries the request again after a period of time. Therefore, the
analysis of a retrial queue is more difficult than that of its counterpart model without retrial.

In most of the literature on retrial queue, servers only serve incoming arrivals. Servers
wait for the next arrival (from outside or orbit) after completing service. However, in some
real-world situations, there is an opportunity for servers to make an outgoing phone call
at their idle state. This is especially true for a business organization, such as a call center,
where agents not only handle incoming calls but can also make calls to sell, advertise, and
promote the business’s products and services. A characteristic of two-way communication
is the fact that unoccupied servers can perform outgoing calls to the source. In such systems,
the server’s utilization is always a critical issue; for an example, see [6–9]. Ayyappan and
Gowthami [10] performed a stationary analysis of a feedback retrial queue with impatient
customers, vacations, and two types of arrivals. Lee et al. [11] analyzed the waiting time
distribution of a two-way communication retrial queue. Sztrik et al. [12] examined the
unreliable operation of a finite-source two-way communication retrial queue and compared
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the different distribution of failure time on performance measures. Tóth and Sztrik [13]
studied a finite-source retrial queue with two-way communication.

Since the vacation queue reflects the situation of servers utilizing this idle time for dif-
ferent purposes like doing supplementary jobs, equipment maintenance, testing, and so on,
it has been extensively studied for modeling and analyzing practical problems, including
communication networks, call centers, service centers, production lines, manufacturing
systems, and more. A special class of vacation queues includes working vacation, in which
the server provides a service at a lower rate rather than stopping working completely. A
work on retrial queue with working vacation and starting failure was conducted by Yang
and Wu [14]. Li et al. [15] analyzed the retrial queue with Bernoulli working vacation inter-
ruption. A retrial queue with general retrial times and single working vacation was studied
by Li et al. [16] by utilizing the supplementary variable method. Gupta and Kumar [17]
studied a retrial queue with a single waiting server subject to breakdown and repair under
working vacation and interruption. In the work of Muthusamy et al. [18], they considered
a working vacation retrial queue with three different classes of customers and optional
reservice during working vacations in the Bernoulli schedule. Pazhani et al. [19] used the
supplementary variable technique to obtain the probability generating function for the
number of customers and the mean number of customers in the invisible waiting area of a
retrial queue with working vacation and a single waiting server. Shanmugam and Sarava-
narajan [20] investigated an unreliable retrial queueing system with working vacation. The
orbit and system lengths were derived through the supplementary variable method. Chen
et al. [21] studied a single server retrial queue incorporating random working vacation and
improved service efficiency during vacation policies and examined its optimal queueing
strategies. Sundararaman et al. [22] examined a new type of queue in two waiting queues
(original queue and orbit queue) with working vacations.

In these articles mentioned above, the authors mostly focus on a single server. How-
ever, real systems such as telecommunications or call centers are often multiserver rather
than single servers. There is limited research on multiserver two-way communication retrial
queues in the literature because the analysis of multiserver two-way communication retrial
queues is more complex than single-server queues. In this paper, we consider a multiserver
retrial queue with two-way communication with working vacation. Our advantages and
contributions are as follows. We carry out an extensive analysis for a multiserver two-way
communication retrial queue with synchronous working vacation. With the support of
the matrix geometric technique, the steady-state probabilities and ergodic condition are
derived. The effect of the parameters on the system characteristics is displayed numerically.
We also construct a multi-objective optimization analysis, from which the optimal rate of
outgoing calls and optimal vacation rate are explicitly obtained.

The paper structure is as follows. The description of the model and the balance equations
governing the system’s behavior are given in Section 2. A detailed system analysis, including
the expressions for the stationary probability distribution and the ergodicity condition, is
presented in Section 3. In Section 4, the system characteristics are demonstrated. Section 5
provides some numerical illustrations followed by a concluding remark.

2. System Description and Mathematical Model

This section lists the assumptions made in this paper. This allows for the formulation
of a set of balance equations that gives a starting point for the system analysis.

2.1. System Description

We consider a multiserver retrial queue in which incoming calls follow a Poisson ar-
rival process with rate λ. The service times of an incoming call are exponentially distributed
with rate µ1. If an incoming call finds that the server is fully occupied, it may or may not
enter orbit, and if it does, it retries to seek service after an exponentially distributed time at
rate σ. Within the orbit, we apply a constant retrial policy, i.e., only the call at the head of
orbit can request service. Suppose that an incoming call goes into orbit with probability b.
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Otherwise, the incoming call starts service immediately. During server’s idle time, it makes
an outgoing call with rate α and provides the service for an exponentially distributed time
with rate µ2. We denote s as the number of servers in the system. All the servers take
the vacation simultaneously when they find the system empty, and vacation duration is
also exponentially distributed with parameter θ. During the vacation period, the servers
can serve incoming calls at a low service rate µ3, but they will not make outgoing calls.
The work flow of the two-way communication retrial queue with synchronous working
vacation is described in Figure 1.
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2.2. Markov Chain and Balance Equations

We denote the number of servers busy serving incoming and outgoing calls at time t
by n1(t) and n2(t), respectively. Also, C(t) and M(t) are the server state and the number of
customers in orbit at time t, respectively, where

C(t) =
{

0, all servers are on vacation at time t,
1, no servers are on vacation at time t.

Thus, the process {(n1(t), n2(t), C(t), M(t)); t ≥ 0} is a continuous time Markov chain
on the state space Ω = {(i, j, k, n) : 0 ≤ i ≤ s, j = 0, k = 0, n ≥ 0} ∪ {(i, j, k, n) : 0 ≤ i + j
≤ s, k = 1, n ≥ 0}.

Let πi,j,k(n) = lim
t→∞

P{(n1(t), n2(t), C(t), M(t))} be the limiting probabilities for the

steady-state distribution. The system of governing steady-state equations is framed as follows:

(λ + θ)π0,0,0(0) = µ3π1,0,0(0) + µ1π1,0,1(0) + µ2π0,1,1(0), (1)

(λ + sα)π0,0,1(0) = θπ0,0,0(0), (2)

(λ + θ + σ)πi,0,1(n) = µ3π1,0,0(n), n ≥ 1, (3)

(λ + sα + σ)πi,0,1(n) = µ1π1,0,1(n) + µ2π0,1,1(n) + θπ0,0,0(n), n ≥ 1, (4)

(λ + iµ3 + θ + (1 − δn,0)σ)πi,0,0(n) =

λπi−1,0,0(n) + (i + 1)µ3πi+1,0,0(n) + σπi−1,0,0(n + 1),

1 ≤ i ≤ s − 1, n ≥ 0,

(5)

(λ + iµ1 + (s − i)α + (1 − δn,0)σ)πi,0,1(n) =

λπi−1,0,1(n) + (i + 1)µ1πi+1,0,1(n) + µ2πi,1,1(n) + θπi,0,0(n) + σπi−1,0,1(n + 1),

1 ≤ i ≤ s − 1, n ≥ 0,

(6)
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(λ + iµ1 + jµ2 + (s − i − j)α + (1 − δn,0)σ)πi,j,1(n) =

(s − i − j + 1)απi,j−1,1(n) + λπi−1,j,1(n) + (i + 1)µ1πi+1,j,1(n)+

(j + 1)µ2πi,j+1,1(n) + σπi−1,j,1(n + 1),

0 ≤ i ≤ s − j − 1, 1 ≤ j ≤ s − 1, n ≥ 0,

(7)

(bλ + sµ3 + θ)πs,0,0(n) =

bλπs,0,0(n − 1) + λπs−1,0,1(n) + σπs−1,0,0(n + 1),

n ≥ 0,

(8)

(bλ + (s − j)µ1 + jµ2)πs−j,j,1(n) =

bλπs−j,j,1(n − 1) + απs−j,j−1,1(n)+

λπs−j−1,j,1(n) + θδj,0πs−j,j,0(n) + σπs−j−1,j,1(n + 1),

0 ≤ j ≤ s, n ≥ 0.

(9)

The normalizing condition is

∑∞
n=0 ∑s

i=0 πi,0,0(n) + ∑∞
n=0 ∑s

i=0 ∑s−i
j=0 πi,j,1(n) = 1, (10)

where δn,0 represents Kronecker’s delta and πi,j,k(n) = 0 if (i, j, k, n) /∈ Ω.

3. System Analysis

This section provides a system analysis. First, a quasi-birth-and-death process formu-
lation is provided to identify all the components of the involved infinitesimal generator
and block matrices. Next, the steady-state probabilities are derived in matrix form, and
ergodic condition is exported.

3.1. Infinitesimal Generator and Matrices

According to the matrix geometric method, the infinitesimal generator of the contin-
uous time Markov process {(n1(t), n2(t), C(t), M(t)); t ≥ 0}} is written in the form of a
block matrix Q as

Q =


G0 Gu

Gl G Gu

. . .
. . . . . .
. . . . . .

, (11)

where G0, Gu, Gl, and G are square matrices of order (s + 1)(s + 4)/2.
For the concerned model, we can represent the block structures of these matrices as

Gu =


Gu

0
Gu

1
. . .

Gu
s

,

Gl =


Gl

0
Gl

1
. . .

Gl
s

,
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G =



B0 B1
A0 A+

0
A−

1 A1 A+
1

. . .
. . . . . .

A−
s−1 As−1 A+

s−1
A−

s AS


,

where Gu
j (0 ≤ j ≤ s), Gl

j (0 ≤ j ≤ s), B0, B1, Aj (0 ≤ j ≤ s), A+
j (0 ≤ j ≤ s − 1), and

A−
j (1 ≤ j ≤ s) are (s − j + 1) × (s − j + 1), (s − j + 1) × (s − j + 1), (s + 1) × (s + 1),

(s + 1) × (s + 1), (s − j + 1) × (s − j + 1), (s − j + 1) × (s − j), and (s − j + 1) × (s − j + 2)
matrices, respectively, with entries given by

Gu
j [k, k′] =

{
bλ, k′ = k = s − j + 1,
0, in other cases;

Gl
j[k, k′] =

{
σ, k′ = k + 1, 1 ≤ k ≤ s − j,
0, in other cases;

B0
[
k, k′

]
=


λ, k′ = k + 1, 1 ≤ k ≤ s,
(k − 1)µ3, k′ = k − 1, 2 ≤ k ≤ s + 1,
−(λ + (k − 1)µ3 + θ + σ), k′ = k, 1 ≤ k ≤ s,
−(bλ + sµ3 + θ), k′ = k = s + 1,
0, in other cases;

B1[k, k′] =
{

θ, k′ = k, 1 ≤ k ≤ s + 1,
0, in other cases;

A+
j [k, k′] =

{
(s − j + 1 − k)α, k′ = k, 1 ≤ k ≤ s − j,
0, in other cases;

Aj[k, k′] =


λ, k′ = k + 1, 1 ≤ k ≤ s − j,
kµ1, k′ = k − 1, 2 ≤ k ≤ s − j + 1,

−(λ + (k − 1)µ1 + jµ2 + (s − j + 1 − k)α + σ), k′ = k, 1 ≤ k ≤ s,
−(bλ + (s − j)µ1 + jµ2), k′ = k = s + 1,

0, in other cases;

A−
j [k, k′] =

{
jµ2, k′ = k, 1 ≤ k ≤ s − j + 1,

0, in other cases.

The matrix G0 is the same as G, but the element of G0[s + 3, s + 2] is shifted to
the position of G0[s + 3, 1], the element of G0[2s + 3, s + 2] is shifted to the position of
G0[2s + 3, 1], and the retrial rate σ is ignored.

3.2. Stationary Distribution

Assume that Π =
[
Π(0), Π(1), · · ·

]
represents the steady-state probability vec-

tor of Q. Also, Π(n) =
[
π0,0,0(n) · · · πs,0,0(n) π0(n) · · · πs(n)

]
and πj(n) =[

π0,j,1(n) · · · πs−j,j,1(n)
]

for 0 ≤ j ≤ s.
We can rewrite Equations (1)–(10) in the matrix form as ΠQ = 0 and ∑∞

n=0 Π(n)e = 1,
where 0 and e represent a row and a column vector with an appropriate size with all zero
and all one entries, respectively.

Note that from Neuts [23], there is a matrix R, such that Π(n) = Π(n − 1)R. This
implies that Π(n) = Π(0)Rn. Here, R is the minimal non-negative solution of

Gu + RG + R2Gl = 0, (12)

with a spectral radius less than one. Since it is difficult for R to obtain the explicit expression
by solving Equation (12), researchers could use different methods such as a successive
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substitution approach to evaluate R. In the numerical illustration, the following procedure
will be implemented to approximate R.

We can define I as an identity matrix. The first equation of ΠQ = 0 can be written as
the following by replacing Π(1) with Π(1) = Π(0)R:

Π(0)G0 + Π(0)RGl = 0. (13)

And ∑∞
n=0 Π(n)e = 1 can be re-written as

∑∞
n=0 Π(n)e = Π(0)(I − R)−1e = 1, (14)

where I is an identity matrix. These two equations can be used to determine Π(0).

3.3. Ergodicity

Consider that the matrix H = Gu + G + Gl=. Let p =
[
p0,0 p0,1 · · · ps,1

]
is the invariant probability vector of H, where p0,0 =

[
p0,0,0 p1,0,0 · · · ps,0,0

]
and

pj,1 =
[

p0,j,1 p1,j,1 · · · ps−j,j,1
]

0 ≤ j ≤ s. Therefore, p satisfies the following
criteria: pH = 0 and pe = 1. The condition for the ergodicity of the Markov chain
{(n1(t), n2(t), C(t)); t ≥ 0} is pGue < pGle. The ergodicity condition can be transformed to

(bλ + σ)Ploss
B < σ, (15)

where Ploss
B = ∑s

j=0 ps−j,j,1 denotes the blocking probability of the corresponding loss system.

The ergodicity condition proposed by pGue < pGle itself is unambiguous because
the number of states for {(n1(t), n2(t), C(t)); t ≥ 0} is finite. However, it does not seem to
be easy to obtain a simple scalar form in terms of the given parameters. Below, a simple
explicitness is obtained from (15) for the special case of s = 1. For the matrices, we have

Gu =


0 0 0
0 bλ 0
0 0 0

0 0
0 0
0 0

0 0 0
0 0 0

bλ 0
0 bλ

,

Gl =


0 σ 0
0 0 0
0 0 0

0 0
0 0
σ 0

0 0 0
0 0 0

0 0
0 0

,

G =


−(λ + θ + σ) λ

µ3 −(bλ + µ3 + θ)
θ 0
0 θ

0
0

0 0
0 0

−(λ + α + σ) λ
µ1 −(bλ + µ1)

α
0

0 0 µ2 0 −(bλ + µ2)

,

H =


−(λ + θ + σ) λ + σ θ 0 0

µ3 −(µ3 + θ) 0 θ 0
0 0 −(λ + α + σ) λ + σ α
0 0 µ1 −µ1 0
0 0 µ2 0 −µ2

.

We have p0,0,0 = 0, p1,0,0 = 0, p0,1,1 = (λ + σ)p0,0,1/µ1, and p1,0,1 = αp0,0,1/µ2. Hence,
the ergodicity condition is

bλ

(
λ + σ

µ1
+

α

µ2

)
< σ.
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If we set b = 1, then the ergodicity condition is consistent with Equation (15) in Phung-
Duc and Rogiest [24].

4. System Characteristics and Cost Function

We compute system characteristics and average operating cost in terms of the steady-
state probabilities in this section.

4.1. System Characteristics

If the system is in stability condition, we can obtain the expressions of the system
characteristics listed below.

The average number of calls in orbit (average orbit length) is

E[N] = ∑∞
n=0 n

(
∑s

i=0 πi,0,0(n)
)
+ ∑∞

n=0 n
(
∑s

j=0 ∑s−j
i=0 πi,j,1(n)

)
.

By Little’s Law, the average waiting time of a call in orbit is

E[W] =
E[N]

bλ
=

1
bλ∑∞

n=0 n
(
∑s

i=0 πi,0,0(n)
)
+ ∑∞

n=0 n
(
∑s

j=0 ∑s−j
i=0 πi,j,1(n)

)
.

The average number of incoming calls during the vacation period is

E[S0] = ∑∞
n=0 ∑s

i=0 i × πi,0,0(n).

The average number of incoming calls during the non-vacation period is

E[S1] = ∑∞
n=0 ∑s

j=0 ∑s−j
i=0 i × πi,j,1(n).

The average number of outgoing calls during the non-vacation period is

E[S2] = ∑∞
n=0 ∑s

j=0 j∑s−j
i=0 πi,j,1(n).

The average number of servers being busy during the non-vacation period is defined as

E[B] = ∑∞
n=0 ∑s

j=0 ∑s−j
i=0 (i + j)πi,j,1(n) = E[S1] + E[S2].

The average number of servers on vacation, whether busy or not, is calculated as

E[V] = ∑∞
n=0 s(∑s

i=0 πi,0,0(n)).

The average number of idle servers is calculated as

E[I] = s − E[B]− E[V].

The server utilization at the steady state is

U =
E[S0] + E[S1] + E[S2]

s
.

4.2. Cost Function

Assume that the structure of the average operating cost is linear cost structure based
on the cost elements associated with different system characteristics. First, define the cost
elements involved in the average operating cost as follows:

r1 ≡ the cost of a retrial customer;
r2 ≡ the cost of an idle server during the non-vacation period;
r3 ≡ the cost of a busy server during the non-vacation period;
r4 ≡ the cost of a vacation server;
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r5 ≡ the cost of providing a vacation.
Then, the average operating cost is

OC = r1E[N] + r2E[I] + r3E[B] + r4E[V] + r5θ.

5. Numerical Illustration

If the ergodicity condition is satisfied, this section presents some numerical results
on the system characteristics and optimization results. We perform sensitivity analysis to
illustrate the effect of system descriptors on the system characteristics.

5.1. Sensitivity Analysis

For the sensitivity analysis, the default parameters are fixed as s = 5, λ = 4, α = 3,
µ1 = 1.5, µ2 = 1.5, µ3 = 0.8, σ = 10, θ = 0.3, and b = 0.8, unless their values are mentioned in
tables and figures.

Table 1 and Figure 2 clearly show that the average orbit length increases whenever
the incoming call rate increases. At the same time, the server idle time is reduced, and the
average number of vacation servers decreases.

Table 1. Effect of incoming call rate.

λ E[N] 1-U E[B] E[V]

3 0.224 0.224 3.720 0.308

3.2 0.494 0.214 3.777 0.283

3.4 0.588 0.204 3.832 0.259

3.6 0.700 0.195 3.887 0.236

3.8 0.833 0.186 3.940 0.214

4 0.991 0.177 3.993 0.193

4.2 1.182 0.168 4.045 0.173

4.4 1.415 0.160 4.097 0.153

4.6 1.704 0.152 4.147 0.135

4.8 2.070 0.144 4.197 0.117

5 2.546 0.136 4.246 0.100

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 14 
 

 

5. Numerical Illustration 
If the ergodicity condition is satisfied, this section presents some numerical results 

on the system characteristics and optimization results. We perform sensitivity analysis to 
illustrate the effect of system descriptors on the system characteristics. 

5.1. Sensitivity Analysis 
For the sensitivity analysis, the default parameters are fixed as s = 5, λ = 4, α = 3, μ1 = 

1.5, μ2 = 1.5, μ3 = 0.8, σ = 10, θ = 0.3, and b = 0.8, unless their values are mentioned in tables 
and figures. 

Table 1 and Figure 2 clearly show that the average orbit length increases whenever 
the incoming call rate increases. At the same time, the server idle time is reduced, and the 
average number of vacation servers decreases. 

Table 1. Effect of incoming call rate. 

λ E[N] 1-U E[B] E[V] 
3 0.224 0.224 3.720 0.308 

3.2 0.494 0.214 3.777 0.283 
3.4 0.588 0.204 3.832 0.259 
3.6 0.700 0.195 3.887 0.236 
3.8 0.833 0.186 3.940 0.214 
4 0.991 0.177 3.993 0.193 

4.2 1.182 0.168 4.045 0.173 
4.4 1.415 0.160 4.097 0.153 
4.6 1.704 0.152 4.147 0.135 
4.8 2.070 0.144 4.197 0.117 
5 2.546 0.136 4.246 0.100 

 
Figure 2. Average orbit length and idle ratio vs. λ. 

Table 2 and Figure 3 demonstrate that the increasing nature of the average orbit 
length first decreases and then increases as the outgoing call rate increases. For the larger 
outgoing call rate, if the server makes outgoing calls more frequently, it will have fewer 
opportunities to service incoming calls, resulting in a longer orbit length. On the other 
hand, the smaller the outgoing call rate, the longer the server takes to make outgoing calls, 

Figure 2. Average orbit length and idle ratio vs. λ.



Mathematics 2024, 12, 1163 9 of 14

Table 2 and Figure 3 demonstrate that the increasing nature of the average orbit length
first decreases and then increases as the outgoing call rate increases. For the larger outgoing
call rate, if the server makes outgoing calls more frequently, it will have fewer opportunities
to service incoming calls, resulting in a longer orbit length. On the other hand, the smaller
the outgoing call rate, the longer the server takes to make outgoing calls, which results in
the fact that the longer the server is idle, the more incoming calls it can serve. This threshold
is related to the arrival rate of incoming calls. And the average number of vacation servers
decreases. Simultaneously, the server idle time is reduced. Table 3 and Figure 4 display
that the server idle time decreases slightly whenever the retrial rate increases. At the same
time, the average number of vacation servers increases, and the average orbit length of
incoming calls decreases.

Table 2. Effect of outgoing call rate.

α E[N] 1-U E[B] E[V]

0 0.659 0.377 1.886 1.947

0.2 0.635 0.361 2.126 1.691

0.4 0.619 0.344 2.359 1.458

0.6 0.613 0.327 2.577 1.249

0.8 0.616 0.310 2.779 1.065

1 0.626 0.293 2.962 0.907

1.2 0.643 0.277 3.127 0.771

1.4 0.667 0.262 3.274 0.656

1.6 0.695 0.248 3.405 0.559

1.8 0.728 0.236 3.521 0.477

2 0.764 0.224 3.624 0.407
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Table 3. Effect of retrial rate.

σ E[N] 1-U E[B] E[V]

3 8.602 0.173 4.107 0.049

4 3.314 0.174 4.065 0.102
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Table 3. Cont.

σ E[N] 1-U E[B] E[V]

5 2.170 0.175 4.041 0.134

6 1.669 0.176 4.025 0.154

7 1.389 0.176 4.013 0.168

8 1.209 0.177 4.005 0.179

9 1.083 0.177 3.998 0.187

10 0.991 0.177 3.993 0.193
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Table 4 and Figure 5 clearly show that the non-balking rate has an increasing trend for
the average orbit length, while the non-balking rate has an increasing tendency for the server
idle time and the average number of vacation servers. This is reasonable since when the
non-balking rate is increasing, this means that there are more incoming calls joining the orbit.

Table 4. Effect of non-balking rate.

b E[N] 1-U E[B] E[V]

0.0 0.000 0.225 3.697 0.302

0.1 0.045 0.221 3.725 0.292

0.2 0.101 0.216 3.755 0.281

0.3 0.172 0.210 3.787 0.270

0.4 0.262 0.205 3.822 0.257

0.5 0.376 0.198 3.860 0.243

0.6 0.526 0.192 3.900 0.228

0.7 0.723 0.185 3.945 0.211

0.8 0.991 0.177 3.993 0.193

0.9 1.365 0.169 4.046 0.173

1.0 1.908 0.160 4.104 0.151
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5.2. Optimization

The aim of optimization is to determine the optimal outgoing calls rate and optimal
vacation rate. Except for operating cost consideration, average orbit length and server uti-
lization are also important system characteristics in the modeling of any queue. Therefore,
we will design a tri-objective optimization problem as follows:

Minimize: y1(α, θ) = OC
Minimize: y2(α, θ) = 1-U
Minimize: y3(α, θ) = E[W]
Subject to: pGue < pGle,

α > 0,
θ > 0.

As can be seen from the expressions of the average operating cost and loss function,
the analytical solution is difficult to derive. Computational software is applied to solve
the optimization problem numerically. Here, the computer software MATLAB R2022a
is used to implement a multi-objective genetic algorithm to solve the above tri-objective
optimization problem. Readers can refer to Konak et al. [25] for a detailed overall flow
of the general multi-objective genetic algorithm. The multi-objective genetic algorithm
pseudocode is shown below (Algorithm 1).

Algorithm 1. Multi-Objective Genetic Algorithm

Begin

Initialize population
Evaluate fitness of each individual in the population

While not termination criteria do

Select the best individuals to reproduce
Apply crossover and mutation operations
Evaluate population
Update population

End While

Output the best solution

End
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The optimization analysis has been performed for the default parameters, fixed as follows:

s = 5, λ = 4, µ1 = 1.5, µ2 = 1.5, µ3 = 0.8, σ = 10, b = 0.8, r1 = 20, r2 = 25, r3 = 100, r4 = 50, r5 = 5.

Figure 6 reveals that the higher the average operating cost, the lower the expected loss
is. Table 5 presents the Pareto optimal solution sets. At this time, the operation manager
needs to decide which set of solutions to implement. There is no right or wrong choice; it
depends on the decision maker’s own experience and judgment. To help the decision maker
make decisions based on the Pareto optimal solution sets, Solution #3 and Solution #4 are
selected from Table 5 as reference schemes. Solution #3 is the solution that achieves the
minimum average waiting time in orbit. This is a good solution if the decision maker cares
about service quality. Solution #4 is chosen based on the assigned weight of these three
objectives (0.5, 0.2, 0.3). The steps are as follows:

- Step 1: Normalize the three objective values for each solution.
- Step 2: Multiply their respective weights and add these three values.
- Step 3: Sort the values obtained in step 2, and the first solution is the optimal solution.
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Table 5. Optimal solutions for the multi-objective optimization model.

# α* θ* y2(α*, θ*) y3(α*, θ*) y1(α*, θ*) # α* θ* y2(α*, θ*) y3(α*, θ*) y1(α*, θ*)

1 0.0029 0.1719 0.3303 0.3469 328.0764 21 1.8214 6.1886 0.2302 0.2028 458.0735

2 11.9983 9.3615 0.0607 5.6859 887.9584 22 11.9658 7.9205 0.0608 5.5383 871.2552

3 0.0037 6.9089 0.4770 0.0577 362.5594 23 10.4485 7.6545 0.0682 2.3350 662.1581

4 0.0225 0.1094 0.2909 0.5078 329.4854 24 11.2708 8.7965 0.0639 3.4762 742.4771

5 11.6941 8.1659 0.0620 4.5257 807.2304 25 0.0034 4.6110 0.4753 0.0581 352.2698

6 9.1094 8.1264 0.0764 1.4475 604.6404 26 0.8523 7.8445 0.3177 0.1256 429.1866

7 9.8066 8.6442 0.0718 1.8235 632.9824 27 11.3963 9.2969 0.0634 3.7387 762.0079

8 1.3339 7.3381 0.2670 0.1639 447.7312 28 11.6304 7.6043 0.0623 4.3340 792.0429

9 8.3530 7.7555 0.0819 1.1600 582.2932 29 2.7920 5.0038 0.1808 0.2834 475.5974

10 1.4171 5.0161 0.2608 0.1703 438.9278 30 9.1510 8.3405 0.0761 1.4663 607.0263
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Table 5. Cont.

# α* θ* y2(α*, θ*) y3(α*, θ*) y1(α*, θ*) # α* θ* y2(α*, θ*) y3(α*, θ*) y1(α*, θ*)

11 3.0315 8.2727 0.1712 0.3045 496.8050 31 4.5492 1.8434 0.1310 0.4534 489.1407

12 11.9288 8.7767 0.0610 5.3783 865.2380 32 10.2003 7.3972 0.0695 2.1116 646.0564

13 11.5663 8.1376 0.0626 4.1553 783.1670 33 11.3412 8.5499 0.0636 3.6194 750.5374

14 10.9316 7.1698 0.0656 2.9075 697.3245 34 11.1095 7.7431 0.0647 3.1834 718.1778

15 0.0225 0.1094 0.2909 0.5078 329.4854 35 11.7452 8.9743 0.0618 4.6904 821.8985

16 0.4143 7.1925 0.3845 0.0905 399.4445 36 11.8315 8.6844 0.0614 4.9937 839.9988

17 1.9076 8.6592 0.2241 0.2100 473.0613 37 11.8663 8.8001 0.0612 5.1255 849.0706

18 10.7258 1.9636 0.0667 2.6367 653.5573 38 11.5096 7.4507 0.0628 4.0075 770.1729

19 7.7684 8.3220 0.0869 0.9913 572.4912 39 9.8691 8.6911 0.0715 1.8647 635.9991

20 0.0029 0.1719 0.3303 0.3469 328.0764 40 8.6137 8.1724 0.0799 1.2486 590.8052

6. Conclusions

This work investigated a synchronous working vacation model of a retrial queue, in
which there are two types of arrivals, incoming calls made by customers and outgoing calls
made by idle servers. The servers have no information about how many calls exist in orbit. So
even with many calls in orbit, outgoing call activity is still possible. We utilized the matrix
geometric technique to derive the stationary probabilities, ergodic condition, and system
characteristics. At last, we implemented numerical examples to observe the trends of system
characteristics for different parametric values and proposed a related optimization issue. The
sensitivity analysis in this study can provide useful insights to decision makers to improve
service quality. Through numerical examples, it is found that the server idle time is reduced
with an increase in the incoming/outgoing call rate and retrial rate. The orbit length is found
to decrease with an increase in the incoming/outgoing call rate and retrial rate. The average
number of vacation servers decreases with an increase in the incoming call rate and outgoing
call rate. The graph behavior was found to be consistent with theoretical expectations. Via a
multi-objective genetic algorithm, the entire set of Pareto optimal solutions is determined. We
also provide some reference solutions to illustrate how the decision maker can make decisions
based on the Pareto optimal solution set.

One limitation of this paper is to assume that all the involved random variables in the
model introductions are exponentially distributed. Extending our analysis to consider the
general distribution is a future research direction. Additionally, similar models incorpo-
rating practical concepts such as working breakdown, batch arrival, immediate feedback,
optional type service, negative customers, priority service, and many others can be studied.

Author Contributions: Conceptualization, T.-H.L., K.-C.C., C.-M.C. and F.-M.C.; methodology, T.-H.L.
and K.-C.C.; software, T.-H.L. and C.-M.C.; validation, T.-H.L., K.-C.C. and F.-M.C.; writing—original
draft preparation, T.-H.L. and C.-M.C.; writing—review and editing, K.-C.C.; supervision, F.-M.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by National Science of Technology Council under grants
112-2221-E-324-016-MY2.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kim, J.; Kim, B. A survey of retrial queueing systems. Ann. Oper. Res. 2016, 247, 3–36. [CrossRef]
2. Phung-Duc, T. Retrial Queueing Models: A Survey on Theory and Applications. arXiv 2019, arXiv:1906.09560.

https://doi.org/10.1007/s10479-015-2038-7


Mathematics 2024, 12, 1163 14 of 14

3. Ke, J.C.; Chang, F.M.; Liu, T.H. M/M/c balking retrial queue with vacation. Qual. Technol. Quant. Manag. 2019, 16, 54–66.
[CrossRef]

4. Zhang, Y. Strategic behavior in the constant retrial queue with a single vacation. RAIRO Oper. Res. 2020, 54, 569–583. [CrossRef]
5. Liu, T.H.; Chang, F.M.; Ke, J.C.; Sheu, S.H. Optimization of retrial queue with unreliable servers subject to imperfect coverage and

reboot delay. Qual. Technol. Quant. Manag. 2022, 19, 428–453. [CrossRef]
6. Govindan, A.; Jayaraj, U. Analysis of mixed priority retrial queueing system with two way communication and working

breakdown. J. Math. Model. 2018, 6, 195–212.
7. Nazarov, A.; Phung-Duc, T.; Paul, S. Slow retrial asymptotics for a single server queue with two-way communication and Markov

modulated Poisson Input. J. Syst. Sci. Syst. Eng. 2019, 28, 181–193. [CrossRef]
8. Ayyappan, G.; Udayageetha, J.; Somasundaram, B. Analysis of non-pre-emptive priority retrial queueing system with two-way

communication, Bernoulli vacation, collisions, working breakdown, immediate feedback and reneging. Int. J. Math. Oper. Res.
2020, 16, 480–498. [CrossRef]

9. Kumar, M.S.; Dadlani, A.; Kim, K. Performance analysis of an unreliable M/G/1 retrial queue with two-way communication.
Oper. Res. 2020, 20, 2267–2280.

10. Ayyappan, G.; Gowthami, R. Analysis of MAP, PH2
OA/PH1

I, PH2
O/1 retrial queue with vacation, feedback, two-way communi-

cation and impatient customers. Soft Comput. 2021, 25, 9811–9838. [CrossRef]
11. Lee, S.W.; Kim, B.; Kim, J. Analysis of the waiting time distribution in M/G/1 retrial queues with two way communication. Ann.

Oper. Res. 2022, 310, 505–518. [CrossRef]
12. Sztrik, J.; Tóth, Á.; Pintér, Á. The Effect of Operation Time of the Server on the Performance of Finite-Source Retrial Queues with

Two-Way Communications to the Orbit. J. Math. Sci. 2022, 267, 196–204. [CrossRef]
13. Tóth, Á.; Sztrik, J. Analysis of retrial queueing systems with two-way communication and impatient customers using simulation.

Ann. Math. Et Inform. 2023, 58, 160–169. [CrossRef]
14. Yang, D.Y.; Wu, C.H. Performance analysis and optimization of a retrial queue with working vacations and starting failures. Math.

Comput. Model. Dyn. Syst. 2019, 25, 463–481. [CrossRef]
15. Li, T.; Zhang, L.; Gao, S. An M/G/1 retrial queue with balking customers and Bernoulli working vacation interruption. Qual.

Technol. Quant. Manag. 2019, 16, 511–530. [CrossRef]
16. Li, T.; Zhang, L.; Gao, S. An M/G/1 retrial queue with single working vacation under Bernoulli schedule. RAIRO-Oper. Res. 2020,

54, 471–488. [CrossRef]
17. Gupta, P.; Kumar, N. Performance analysis of retrial queueing Model with working vacation, interruption, waiting server,

breakdown and repair. Int. J. Sci. Res. 2021, 13, 833–844. [CrossRef]
18. Muthusamy, S.; Devadoss, N.; Ammar, S.I. Reliability and optimization measures of retrial queue with different classes of

customers under a working vacation schedule. Discret. Dyn. Nat. Soc. 2022, 2022, 6806104. [CrossRef]
19. Pazhani, S.; Murugan, B.; Keerthana, R. An M/G/1 feedback retrial queue with working vacation and a waiting server. J. Comput.

2023, 31, 61–79.
20. Shanmugam, B.; Saravanarajan, M.C. Unreliable retrial queueing system with working vacation. AIMS Math. 2023, 8, 24196–24224.

[CrossRef]
21. Chen, Z.; Xu, H.; Huo, H. Optimal queuing strategies for an M/G/1 retrial queue system with RWV and ISEV policies. ANZIAM

J. 2024, 1–27. [CrossRef]
22. Sundararaman, M.; Narasimhan, D.; Rajadurai, P. Performance Analysis of Two Different Types of Waiting Queues with Working

Vacations. J. Math. 2024, 2024, 5829171. [CrossRef]
23. Neut, M.F. Matrix-Geometric Solutions in Stochastic Models. Master’s Thesis, John Hopkins University, Baltimore, MD, USA,

1981.
24. Phung-Duc, T.; Rogiest, W. Two Way Communication Retrial Queues with Balanced Call Blending. In Proceedings of the

Analytical and Stochastic Modeling Techniques and Applications. ASMTA 2012, Grenoble, France, 4–6 June 2012.
25. Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006,

91, 992–1007. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/16843703.2017.1365280
https://doi.org/10.1051/ro/2019016
https://doi.org/10.1080/16843703.2021.2020952
https://doi.org/10.1007/s11518-018-5404-6
https://doi.org/10.1504/IJMOR.2020.108420
https://doi.org/10.1007/s00500-020-05318-4
https://doi.org/10.1007/s10479-020-03717-2
https://doi.org/10.1007/s10958-022-06124-z
https://doi.org/10.33039/ami.2023.08.015
https://doi.org/10.1080/13873954.2019.1660378
https://doi.org/10.1080/16843703.2018.1480264
https://doi.org/10.1051/ro/2019008
https://doi.org/10.3329/jsr.v13i3.52546
https://doi.org/10.1155/2022/6806104
https://doi.org/10.3934/math.20231234
https://doi.org/10.1017/S1446181124000014
https://doi.org/10.1155/2024/5829171
https://doi.org/10.1016/j.ress.2005.11.018

	Introduction 
	System Description and Mathematical Model 
	System Description 
	Markov Chain and Balance Equations 

	System Analysis 
	Infinitesimal Generator and Matrices 
	Stationary Distribution 
	Ergodicity 

	System Characteristics and Cost Function 
	System Characteristics 
	Cost Function 

	Numerical Illustration 
	Sensitivity Analysis 
	Optimization 

	Conclusions 
	References

