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Abstract: Asymptotic theories for fractional cointegrations have been extensively studied in the
context of time series data, with numerous empirical studies and tests having been developed.
However, most previously developed testing procedures for fractional cointegration are primarily
designed for time series data. This paper proposes a generalized residual-based test for fractionally
cointegrated panels with fixed effects. The test’s development is based on a bivariate panel series
with the regressor assumed to be fixed across cross-sectional units. The proposed test procedure
accommodates any integration order between [0, 1], and it is asymptotically normal under the null
hypothesis. Monte Carlo experiments demonstrate that the test exhibits better size and power
compared to a similar residual-based test across varying sample sizes.

Keywords: fractional cointegration; residual-based test; panel data model; fixed effects; asymptotic
theory

MSC: 62F15; 62G20; 62G08

1. Introduction

Numerous studies have explored panel data analysis and cointegration either inde-
pendently or in tandem. Various methods, including residual-based and spectral-based
approaches, have been devised to tackle issues like unit roots, cross-sectional dependence,
and heterogeneity. Panel data analysis has garnered considerable attention owing to its
wide-ranging applicability across fields such as epidemiology, demography, finance, and
economics [1–3]. Recently, researchers in engineering and reliability analysis have ex-
panded panel data analysis to encompass count data [4]. These data comprise repeated
observations of discrete events over time for each individual or unit. Overall, discussions
in panel data encompass topics like developing robust statistical models, devising efficient
estimation techniques, and addressing challenges related to data heterogeneity, unit root
problems, and correlation structures [5–7].

Ref. [8] highlighted the increasing attention given to unit root problems in panel
data and the consequent identification of cointegration relationships among variables. The
existing panel cointegration techniques were initially designed for balanced panel data with
moderate time and cross-sectional units. However, in scenarios involving large time and
cross-sectional units with the potential for long memory, conventional panel cointegration
tests are inadequate [9–11]. The presence of long memory often implies fractional mean
reversion, suggesting equilibrium occurs over fractional time periods. Therefore, there is a
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need to explore fractional cointegration or equilibrium mean reversion within the context
of panel data.

There have been numerous fractional cointegration tests developed within the realm
of time-series analysis [12]. These tests are typically grouped into two categories: spectral-
density-based and residual-based. Ref. [13] developed a residual-based test utilizing the
residuals of the multivariate fractional cointegration common-components model with
varying memory parameters. Ref. [14] compared semiparametric tests of fractional coin-
tegration, evaluating nine tests for both spectral-density- and residual-based approaches.
They found that several methods yield significantly different results when correlated short-
run components are present. Moreover, when applied to common-component models
rather than triangular systems, these methods exhibit varied power. Notably, there is a
significant difference in the power of the tests between the two models.

In empirical studies, Ref. [15] investigated the memory of exchange rates, while
ref. [16] explored the dynamics of interest rate futures markets and stock market prices.
Both studies identified evidence of fractional cointegration in stock market prices, achiev-
ing satisfactory results under the assumption that the observations are I(1) processes.
Subsequently, testing for fractional cointegration was extended to fractionally integrated
processes. Ref. [17] proposed a test based on the joint local Whittle estimation of all
parameters, which eliminates the possibility of the two underlying series having equal
integration orders. In [18], the authors developed a Hausman-type test to detect fractional
cointegration, with the additional assumption that the cointegration error is nonstationary.
Ref. [19] proposed a Hausman-type test for time series with equal integration orders and
no cointegration, which involves determining a bandwidth. In panel settings, Ref. [9]
studied a large cross-sectional and time unit heterogeneous panel data model with fixed
effects. Their approach allows for cross-sectional dependency, persistency, and fractionally
integrated errors. In addition, the methodology provides a general treatment for stationary
and nonstationary indicators. Monte Carlo simulation showed that it works effectively in
practice. Ref. [20] proposed an extension of the Generalized Method of Moments (GMM)
for a fixed-effect, fractionally integrated panel model. Both [9]’s and [20]’s studies assumed
that the fixed-effect parameter fizzled out in the long run. The method of [9] is limited in
that fractional cointegration is assumed in a panel system if the estimate of mean reversion
for the series is greater than that of the residuals [9,21]. This approach is expected to inflate
the type I error, as there is an increased possibility of many rejections of mean reversion
when there is none [22,23].

Furthermore, Ref. [24] introduced a new panel cointegration test that is robust to
nonlinearity, structural breaks, and cross-sectional dependency. The proposed method is a
bootstrap panel cointegration test called the Fractional Frequency Flexible Fourier Form for
Panel Cointegration Test, and it was empirically illustrated by testing the Feldstein–Horioka
paradox for 15 Asian countries. It was discovered that Indonesia, Philippines, Bangladesh,
Japan, Thailand, and China are not among the countries that generate cointegration in
the cross-section. The study is limited, however, as it only considered country-specific
cointegration rather than the panel of interest.

In summary, the findings of the finite sample properties of various fractional cointegra-
tion tests for time-series data reviewed by [14] revealed the exemplary applicability of the
residual-based methods of [13,25] for stationary systems under the common component
model assumption. Also, the study showed that the class of tests with low power under
the alternative hypothesis of fractional cointegration are [19,26]. However, the methods
of Ref. [17,27,28] are resistant to short-term correlation and are commonly applied due
to their simplistic framework. Of all the works conducted on fractional integration and
cointegration, none have developed a test particularly for panel data.

Thus, in this paper, a generalized fractional cointegration testing procedure is devel-
oped, where both fractionally and non-fractionally cointegrated models are considered
such that the observed series with cross-sections and cointegrating error are both fractional
and non-fractional processes. In addition, a residual-based testing procedure for general-
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ized fractional cointegration is proposed, and its performance is compared to an existing
fractionally cointegrated test when 0 ≤ d ≤ 1.

The proposed test involves modifying the residual-based test proposed by [25], which
involves two integrated time series yt and xt, where the observed series are I(d) processes,
the regression residual ϵt = yt − βxt is an I(γ), γ, and d can be real-valued. The test
includes traditional cointegration as a special case. Ref. [25] constructed a test statistic
which has an asymptotic standard normal distribution under the null hypothesis of no
cointegration using a consistent estimate of d and γ obtained from xt and the residual ϵt.

2. Wang et al. (2015) [25] Fractional Cointegration Test

Let xt, yt, where t = 1, 2, 3, . . . , T, represent two processes, both characterized by I(d).
Ref. [29] demonstrated that for a given scalar β ̸= 0, the linear combination ϵt = yt − βxt
also exhibits I(d) behavior, potentially with ϵt being I(d − b), where b > 0. Consequently,
given real numbers d and b, the elements of a vector ct are considered to be cointegrated of
order d, b, denoted as ct ∼ CI(d, b), if the following hold:

i. All elements of ct follow I(d).
ii. There exists a non-zero vector α such that st = α′ct ∼ I(γ) = I(d − b), where b > 0.

Here, α and st are termed the cointegration vector and error, respectively [30]. Also,
it is assumed that d ≥ b such that (d − b) ≥ 0. Therefore, a simple bivariate system of
fractionally cointegrated xt and yt processes is defined as follows:

yt = βxt + (1 − L)−γϵ1t

xt = (1 − L)−dϵ2t
(1)

for positive t. The vector ϵt = (ϵ1t, ϵ2t)
′ now represents a bivariate zero-mean covariance

stationary I(0) process, where β ̸= 0 and γ < d. In Equation (1), both xt and yt are I(d),
and ϵ1t = yt − βxt is I(γ). The lag operator L is defined as Lyt = yt−1 and the difference
operator ∆−d is obtained using (1− L)d = ∑∞

j=0 (
d
j)(−1)jLj, where (d

j) =
d!

j!(d−j)! . Unlike the
standard CI(1, 1) cointegration, the memory parameter d remains unknown in fractionally
cointegrated systems and requires estimation. The corresponding hypotheses to assess
whether the two processes exhibit fractional cointegration are as follows:

Hypothesis 0 (H0): xt and yt are not fractionally cointegrated (d = γ),

Hypothesis 1 (H1): xt and yt are fractionally cointegrated (d > γ).

The fractional cointegration test proposed by [25] is based on the second component
xt of the process Xt = (yt, xt) and the associated residuals ϵt = yt − βxt. Ref. [25] devised a
simple t-like test statistic that employs the spectral density of the component xt, denoted as
f̂22 = 1

2πT ∑T
t=1(∆

d̂xt)2, and the fractional cointegration parameter γ of residual ϵ2t. Thus,
the statistic is expressed as follows:

Fw =
∑T

t=1 ∆γ̂xt√
2πT f̂22

H0→ N(0, 1). (2)

The method requires d > 0.5 so that a consistent cointegrating vector β can be estimated
using Ordinary Least Squares (OLS). The first step in the construction of the test is to
estimate the cointegration parameter β using

β̂ols =
∑T

t=1 xtyt

∑T
t=1 x2

t
(3)
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and then obtain the residuals ϵ̂1t = yt − β̂olsxt. The values d̂ and γ̂ are later estimated
from the series xt and ϵ̂1t, respectively, using the method of [31]. Correspondingly, the
differenced series ∆d̂xt and ∆γ̂xt are then calculated.

3. Generalized Residual-Based Fractional Cointegration Test for Fixed-Effect
Panel Model

Suppose we have a balanced fixed-effect panel model with n being the number of
cross-sectional units and T being the time period such that N = n × T is the total sample
size. The model is given as follows:

yit = µi + βxit + (1 − L)−γϵ1it

xit = (1 − L)−dϵ2it.
(4)

where β is the cointegration parameter and is assumed to be constant over i cross-sectional
units, µi is the fixed-effect coefficient for the ith cross-sectional units, xt and yt represent
simple bivariate processes denoting independent and dependent variables in the panel
model, which are fractionally cointegrated if we can establish the following Assumptions:

A1. xt and yt are both I(d) with 0 ≤ d ≤ 1 and ϵ1it = yt − βxt is I(γ);
A2. The vector ϵit = (ϵ1it, ϵ2it)

′ is a bivariate zero mean covariance stationary I(0) process
which is independent across i, β ̸= 0, and γ < d;

A3. The vector µi fizzles out in the long-run such that µi = 0 as N → ∞.

The corresponding hypotheses to assess whether the two processes exhibit fractional
cointegration are as follows:

Hypothesis 0 (H0): xit and yit are not fractionally cointegrated (d = γ).

Hypothesis 1 (H1): xit and yit are fractionally cointegrated (d > γ).

Notice that we can rewrite (4) as follows:

yit − µ̂i = βxit + (1 − L)−γϵ1it

xit = (1 − L)−dϵ2it.
(5)

where µ̂i = ȳi = T−1 ∑T
t=1 yit and denotes zit = yit − µ̂i, such that we have

zit = βxit + (1 − L)−γϵ1it

xit = (1 − L)−dϵ2it.
(6)

It is clear that (6) is the demean transformed version of (1), which is reduced to the
original time series model in (1) with cross-sectional parameter µi factored out. According
to [13], when d ≤ 0.5, a consistent β in (6) can be estimated using the Tapered Narrow Band
Least Square (TNBLS). The TNBLS [13] procedure involves the estimation of a complex-
valued taper qt defined as

qt =
1
2

(
1 − exp−i2π(t−1/2)T−1

)
, t = 1, 2, . . . , T. (7)

The next step involves obtaining the discrete tapered Fourier transform of the series ηt and
the cross-periodogram using

ω′
η,j =

(
2π

T

∑
t=1

|qp−1
t |2

)−0.5 T

∑
t=1

qp−1
t ηt exp−iλjt, (8)

I′ηη̄,j = ω′
η,jω̄

′
η,j (9)
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respectively. The averaged tapered periodogram obtained using m bandwidth is given by

F̂′
ηη̄,j(m) = 2πT−1

m

∑
j=1

ℜI′ηη̄,j, 1 ≤ m ≤ T
2

. (10)

Therefore, the estimate of a consistent long-memory parameter β in (4) when d ≤ 0.5 is

β̂m =
F̂′

xz(m)

F̂′
xx(m)

(11)

where m ≥ 1 is fixed. If instead of keeping m fixed, we substitute m = T/2 and avoid
differencing and tapering, we obtain the ordinary least squares (OLS) estimator [13].

Ref. [25] established that if d > 0.5, the OLS estimator is consistent, and otherwise, it
is inconsistent. In order to develop a generalized test statistic that is usable for all d’s in the
range of [0, 1], we developed a piecewise estimator for β for the two possible situations, that
is, for d ≤ 0.5 and d > 0.5. Thus, our proposed estimator for the long-memory parameter β
when 0 < d < 1 is denoted by β̂mix, and it can be estimated using

β̂mix =


F̂′

xz(m)

F̂′
xx(m)

0 < d ≤ 0.5

∑N
i,t=1 xitzit

∑N
i,t=1 x2

it
0.5 < d ≤ 1

(12)

Theorem 1. For the fixed-effect fractional cointegrated panel model defined in (4) satisfying A1
and A2, the long-memory parameter can be estimated with (12). Thus, the modified test statistic

Mw =
∑N

i,t=1 ∆γ̂xit√
2πNK̂22

, where K̂22 = 1
2πN ∑N

i,t=1(∆
d̂xit)

2, converges; Mw
d−→ N(0, 1) under H0 and

diverges under H1.

Proof. It is required to show that

Mw =
∑N

i,t=1 ∆γ̂xit√
2πNK̂22

H0→ N(0, 1). (13)

Equation (13) can be rewritten as

Mw =
SN

k̂22
√

N
. (14)

where SN = ∑N
i,t=1 ∆γ̂xit, k̂22 =

√
2πK̂22, since SN is the sum of N independently and

identically distributed random variables. Recall that the moment-generating function
Q(u) = E(eux) of SN and correspondingly Mw can be defined as

QSN (u) =
(
Q(u)

)N ;

QMw(u) =
[

Q
(

u
k̂22

√
N

)]N

.

Now, computing the Taylor’s series expansion of Q(u) around 0 leads to

Q(u) = Q(0) + Q
′
(0)u +

1
2

Q
′′
(0)u2 + rem = 1 +

1
2

K22u2 +O(u3),

since Q(0) = E(e0) = 1, Q
′
(0) = d

du E(eux) = E(x) = 0 (x is assumed to be the differenced xit

whose mean is zero under H0), Q
′′
(0) = d2

du2 E(eux) = Var(x) = Var(∆γ̂xit|H0) = K22. Thus,
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Q
(

u
k̂22

√
N

∣∣∣∣H0

)
= 1 +

1
2

K22

(
u

k22
√

N

)2

+O
[(

u
k22

√
N

)3]
= 1 +

u2

2N
+O

(
1

N3/2

)

QMw(u|H0) =

[
1 +

u2

2N
+O

(
1

N3/2

)]N
N→∞−−−→ eu/2.

The moment-generating function of a Gaussian random variable ς ∼ N(0, 1) with mean 0

and variance 1 is defined as Qς(u) = E(euς) = eu/2. Thus, Mw
d−→ N(0, 1) under H0. On the

other hand, under H1, E(eux) = Var(x) = Var(∆γ̂xit|H1) ̸= K22. Let Var(∆γ̂xit|H1) = G22;
then, we have

Q
(

u
k̂22

√
N

∣∣∣∣H1

)
= 1 +

1
2

G22

(
u

k22
√

N

)2

+O
[(

u
k22

√
N

)3]
= 1 +

u2

2N

(
G22

K̂22

)
+O

[
1

N3/2

(
G33

k̂22

)]
.

QMw(u|H1) =

{
1 +

u2

2N

(
G22

K̂22

)
+O

[
1

N3/2

(
G33

k̂22

)]}N
N→∞−−−→ e

u/2
( G22

K̂22

)
.

4. Simulation Study

We consider the following balanced panel model with fixed effects, where n denotes
the count of cross-sectional units and T represents the total time units, resulting in a total
sample size of N = n × T. The model is as follows:

yit = µi + βxit + (1 − L)−γϵ1it

xit = (1 − L)−dϵ2it.
(15)

where µi = (5, 10, 15, 20, 25) are the panel intercepts across the units i = 1, 2, . . . , 5. Monte
Carlo experiments are conducted to examine the finite sample performance of the tests. Let
(yit, xit)

′ be generated from model (1) with β = 1, ϵit = (ϵ1it, ϵ2it)
′ being a Gaussian white

noise with E(ϵit) = 0, Var(ϵ1it) = Var(ϵ2it) = 1 and Cov(ϵ1it, ϵ2it) = ρ. We consider cases
with ρ = 0.0, 0.5 and sample sizes N = 500, 1250, 2500 corresponding to T = 100, 250, 1000.
Similar approaches were used in [14,22,25,32–39].

The test statistic simulation procedure follows the same three-step approach used
in [25], which is as follows:

Step 1: Estimate d̂ using xit by the method of [31].

Step 2: Compute K̂22 = 1
2πN ∑N

i,t=1(∆
d̂xit)

2.
Step 3: Compute the estimate of the long-memory parameter using β̂mix and use it to
estimate ϵ̂1it = yit − β̂mixxit. Again, estimate γ̂ using ϵ1it by the method used in step 1.
Thus, the test statistic Mw is computed. Each statistic is replicated 5000 times so as to
estimate the empirical type 1 error rates at 1%, 5%, and 10%.

The empirical type 1 error rates and power are reported in Table 1. In Table 1, it
was observed that the original [25] Fw test undersized the nominal size when d < 0.5,
as expected. However, when d > 0.5, its empirical type 1 error rates compete with the
modified test. On the other hand, the modified test’s empirical type 1 error rates are slightly
oversized and converge to the nominal size as N → ∞, irrespective of the d values and the
correlation values ρ. Overall, the empirical type 1 error rates returned by the modified test
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Mw are relatively closer to the nominal size than the original [25] Fw test. This establishes
the validity and applicability of the proposed Mw test for fractionally cointegrated panels.

Table 1. Empirical type I error rate for original [25] test (Fw) and proposed modified [25] test (Mw) at
varying levels of d = γ, ρ, and sample sizes N.

α = 0.01 α = 0.05 α = 0.10

d = γ Method/N 500 1250 2500 500 1250 2500 500 1250 2500

0.3 Fw 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
Mw 0.015 0.014 0.013 0.066 0.055 0.052 0.118 0.115 0.106

ρ = 0.0 0.6 Fw 0.028 0.018 0.015 0.069 0.063 0.048 0.107 0.094 0.091
Mw 0.026 0.016 0.011 0.079 0.069 0.056 0.145 0.120 0.115

0.8 Fw 0.036 0.027 0.018 0.083 0.073 0.065 0.146 0.125 0.116
Mw 0.015 0.013 0.010 0.068 0.064 0.059 0.128 0.112 0.101

1 Fw 0.026 0.023 0.016 0.076 0.070 0.065 0.122 0.117 0.112
Mw 0.008 0.011 0.013 0.059 0.051 0.051 0.114 0.104 0.101

0.3 Fw 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mw 0.012 0.014 0.011 0.059 0.054 0.052 0.123 0.111 0.103

ρ = 0.5 0.6 Fw 0.023 0.017 0.016 0.060 0.054 0.050 0.107 0.091 0.097
Mw 0.020 0.012 0.013 0.084 0.067 0.062 0.148 0.120 0.116

0.8 Fw 0.038 0.022 0.017 0.089 0.070 0.067 0.140 0.126 0.109
Mw 0.014 0.011 0.010 0.060 0.059 0.057 0.127 0.119 0.109

1 Fw 0.030 0.020 0.019 0.076 0.068 0.060 0.123 0.113 0.113
Mw 0.008 0.010 0.010 0.046 0.044 0.043 0.110 0.105 0.102

For the power results in Table 2, we considered γ < d. The powers of the two tests
approach 1 when N increases and when the effect size γ − d is large. Again, the powers
of the Mw are in most cases closer to 1 than Fw. The better performance of Mw observed
in Tables 1 and 2 can be attributed to model adequacy. While Mw was developed using
a panel data model assumption, Fw was developed using a time series model. Since the
model simulated is a panel one, Mw is expected to be better than Fw.

Table 2. Empirical power for original [25] test (Fw) and proposed modified [25] test (Mw) at varying
levels of d, γ, ρ = 0.0, and sample sizes N.

α = 0.01 α = 0.05 α = 0.10

γ Method/N 500 1250 2500 500 1250 2500 500 1250 2500

d = 1.0 0.9 Fw 0.146 0.169 0.175 0.256 0.258 0.307 0.332 0.362 0.369
Mw 0.169 0.186 0.197 0.286 0.310 0.352 0.390 0.410 0.434

0.6 Fw 0.765 0.815 0.877 0.851 0.890 0.919 0.856 0.900 0.910
Mw 0.837 0.860 0.899 0.889 0.907 0.937 0.906 0.919 0.929

0.3 Fw 0.913 0.959 0.967 0.944 0.952 0.980 0.949 0.966 0.981
Mw 0.969 0.983 0.984 0.974 0.994 0.994 0.982 0.992 0.990

0.0 Fw 0.935 0.961 0.968 0.957 0.969 0.976 0.950 0.971 0.979
Mw 0.993 0.997 1.000 0.995 0.998 1.000 0.999 0.997 1.000

d = 0.9 0.6 Fw 0.638 0.694 0.759 0.721 0.747 0.826 0.721 0.747 0.826
Mw 0.737 0.743 0.803 0.795 0.796 0.850 0.795 0.796 0.850

0.3 Fw 0.856 0.887 0.939 0.887 0.924 0.952 0.887 0.924 0.952
Mw 0.950 0.971 0.980 0.961 0.977 0.986 0.961 0.977 0.986

d = 0.6 0.3 Fw 0.264 0.335 0.421 0.392 0.457 0.530 0.392 0.457 0.530
Mw 0.728 0.739 0.813 0.788 0.793 0.847 0.788 0.793 0.847

0.0 Fw 0.389 0.446 0.503 0.518 0.569 0.625 0.518 0.569 0.625
Mw 0.966 0.973 0.977 0.978 0.978 0.979 0.978 0.978 0.979

d = 0.4 0.1 Fw 0.005 0.006 0.012 0.011 0.021 0.033 0.055 0.070 0.082
Mw 0.712 0.735 0.803 0.815 0.819 0.868 0.817 0.820 0.870
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5. A Fractional Cointegration Panel Model for Realized Industry and Market Volatilities
in the U.S. Economy

The data used here were drawn from Yahoo Finance and Kenneth French’s Data
Library. Five industry portfolios (Cnsmr: Consumer Durables, Nondurables, Wholesale,
Retail, and Some Services; Manuf: Manufacturing, Energy, and Utilities; HiTec: Business
Equipment, Telephone and Television Transmission; Hlth: Healthcare, Medical Equipment,
and Drugs; and Other: Mines, Construction, Building Materials, Transport, Hotels, Bus
Services, Entertainment, Finance) in the U.S. economy spanning the time period from 2000
to 2019 (Nt = 240 months) were extracted from Kenneth French’s Data Library. This dataset
was employed to calculate the realized volatility within the industry. The market volatility
data were sourced from Yahoo Finance for three composite portfolios (NYSE, NASDAQ,
and AMEX). These market portfolios were consolidated to serve as constant input for the
realized industry portfolios. The computation of returns followed the method outlined
in [9].

We denote IVit for i = 1, 2, 3, 4, 5 and t = 1, . . . , 240 as industry volatility, and MVit as
market volatility. The corresponding fractional cointegrated panel model is formulated
as follows:

IVit = µi + βMVit + ∆−γϵ1it

MVit = ∆−dϵ2it.
(16)

We conducted estimation for the fractional cointegration parameters d and γ using a
bandwidth of ηm = 0.75, corresponding to m = 2400.75 = 61 for each industry as well as
the pooled industries (panel). It is crucial to examine the equality of d across portfolios to
ensure the validity of the pooling. We applied the tests proposed by [19] as cited in [40],
yielding estimated results of (Tstat = 0.38, p = 0.353). These findings indicate that the null
hypothesis of the equality of d across different portfolios remains valid.

Table 3 presents the estimates of d̂, γ̂, β̂mix, and Fw, Mw tests of no fractional coin-
tegration for the five industry portfolios and market average. The β̂mix = β̂ols since
dmarket = 0.55 > 0.5, thus the TNBLS approach was not employed here. All the estimates
of d’s for both market and industry portfolios are all less than 1 indicating the validity
of fractional integration for the U.S. volatilities. Furthermore, the Fw test showed that
of the five industry portfolio volatilities, only HiTec is not fractionally cointegrated with
market-realized volatility. Also, the Fw fractional panel cointegration test obtained by
pooling all industries showed that there is no fractional panel cointegration (p > 0.05) for
the combined industries against the market. On the other hand, the Mw test showed that
all five industry portfolio volatilities are not fractionally cointegrated with market-realized
volatility. In addition, the fractional panel cointegration test obtained by adjusting for the
fixed effect showed that there is also no fractional panel cointegration for the combined
industries against the market. The results of Mw are more reliable compared to Fw, as all
the individual fractional cointegration tests agree with the overall results obtained for the
panel of industries.

Table 3. Estimates of d̂, γ̂, β̂mix, and Fw and Mw tests of no fractional cointegration for the five
industry portfolios and market average.

Market Cnsmr Manuf HiTec Hlth Other Panel

d̂ 0.55 0.55 0.52 0.61 0.46 0.74 0.54
γ̂ 0.20 0.42 0.87 0.32 0.34 0.52

β̂mix 0.75 0.98 1.11 0.68 1.26 0.96
SE(β̂mix) 0.016 0.022 0.043 0.028 0.029 0.014

Fw 7.54 2.16 0.79 2.80 12.69 1.28
p(> |Fw|) 0.000 0.031 0.432 0.005 0.000 0.201

Mw 0.38 0.25 0.23 0.21 0.49 0.12
p(> |Mw|) 0.705 0.799 0.821 0.832 0.626 0.903
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6. Conclusions

This paper introduces a generalized residual-based test for a fractionally cointegrated
panel model with fixed effects. The test’s development is centered on bivariate panel series
yit and xit, where xit is assumed to remain fixed across cross-sectional units. Similar to
other fractional cointegration tests, both yit and xit are I(d) and the residual ϵit = yit − βxit
is I(γ). The proposed test procedure accommodates any values of d and γ between [0, 1].
The modified test, denoted as Mw, converges to an asymptotically normal distribution
under the null hypothesis and diverges under the alternative. Compared to the test by [25],
Mw demonstrates superior size and power across varying sample sizes and simulation
conditions. Furthermore, its real-life application to realized industry and market volatilities
for the U.S. economy showcases the practicality of the test. However, it is worth noting
that the proposed method has limitations; it has not been tested for imbalanced panel data,
and it assumes normal distribution of the model’s error.
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Nomenclature

n Total number of cross-sectional units.
i A cross-sectional unit.
t A unit of time.
T Total time units in a time series.
N Total sample size in panel data.
m Time series bandwidth size.
xt Time series process xt.
yt Time series process yt.
ηt : Time series process ηt.
d Fractional integration order of the series.
γ : Fractional integration order of the residuals.
I(0) Integration at level.
I(1) Integration at first difference.
I(d) Integration at fractional order d.
I(γ) Integration at fractional order γ.
I(d, b) Cointegration order d, b.
β Cointegration parameter.
ρ Correlation between residuals.
f̂22 The spectral density of the component xt.
L Lag operator.
∆ Differencing operator.
Γ(.) Gamma function.
ℜ Set of real numbers.
qt Complex-valued taper.
ω′

η,j Discrete tapered Fourier transform of the series ηt and cross-periodogram.
F̂′

ηη̄,j(m) The averaged tapered periodogram of the series ηt using m bandwidth.
Fw Wang et al.’s (2015) [25] fractional cointegration test for time series data.
Mw The proposed fractional cointegration test for panel data with fixed effects.
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