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Abstract: This paper presents an approach for the study of probabilistic outcomes in experiments with
multiple possible results. An approach to obtain confidence ellipsoids for the vector of probabilities,
which represents the likelihood of specific results, for both discrete and continuous discriminant
analysis, is presented. The obtention of optimal allocation rules, in order to reduce the allocation costs
is investigated. In the context of discrete discriminant analysis, the approach focuses on assigning
elements to specific groups in an optimal way. Whereas in the continuous case, the approach involves
determining the regions where each action is the optimal choice. The effectiveness of the proposed
approach is examined with two numerical applications. One of them uses real data, while the other
one uses simulated data.
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1. Introduction

The process of allocating mixed data with several possible outcomes begins with
the identification of the data. This includes identifying the type of data, the source of
the data, and any relevant characteristics. Once the data have been identified, the next
step is to determine the type of allocation that will be used. There are several different
types of allocation, including random, manual, and automated allocation. Moreover,
there are multiple methods for examining data with categorical outcomes. These methods
include descriptive statistics, bivariate analyses, log-linear regression, multinomial logistic
regression, discriminant analyses and quadratic discriminant analysis.

Descriptive statistics are used to summarize the characteristics of a data set.
Bivariate analysis is used to examine the relationship between two variables. In

the case of categorical data, bivariate analysis consists of calculating the frequency or
percentage of one variable for each category of the other variable.

The purpose of log-linear models is to study the relationship between an outcome
variable and one or more explanatory variables, where the outcome variable is expressed as
the logarithm of a linear combination of the explanatory variables. The log-linear model is
a frequently used and simple structure for a contingency table, see Hand and Christen [1].
It is based on the same principle as the analysis of variance models, as outlined in Birch [2],
Fienberg and Rinaldo [3] or Goodman [4], and is formed by calculating the logarithms of
the cell probabilities. Examples of log-linear models with frequency tables can be found in
Haberman [5].

On the other hand, Multinomial logistic regression is a generalized linear model that
models the log-odds of the categorical response being true as a linear combination of
predictor variables. It is a significant tool in statistical modelling and prediction, extend-
ing the capabilities of the binary logistic regression model to situations with more than
two outcomes.
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The goal of discriminant analysis is to classify individuals into distinct groups, maxi-
mizing the difference between groups and minimizing the variation within groups. Dis-
criminant analysis has many advantages over the other mentioned methods. For example,
it is able to identify and measure the effects of one or more independent variables on
a dependent variable, making it a more powerful tool for predicting the outcome of a
certain event. This method was first introduced by Sir Ronald Fisher in 1936, in Fisher [6],
and is a popular research topic. Just to give a few examples over time, Rao [7] applied
discriminant analysis to two types of problems confronted in biological research, while
Friedman [8] proposed alternatives to the usual maximum likelihood estimates for the
covariance matrices in linear and quadratic discriminant analysis, in small sample high-
dimensional settings. McFarland et al. [9] used the theory of Bessel functions to derive
stochastic representations for the exact distributions of the “plug-in” quadratic discriminant
functions for classifying a newly obtained observation. Discriminant analysis was used
in Perriere and Thioulouse [10] to separate Gram negative bacteria proteins according to
their subcellular location. The problem of classifying an individual into one of several
populations based on mixed nominal, continuous, and ordinal data was studied in Flury,
Bourkai and Flury [11]. Modern research continues to find discriminant analysis helpful
in problem-solving. For example, using dynamic feature extraction along with quadratic
discriminant analysis classifier can significantly enhance fault classification and diagnosis
in dynamic nonlinear processes, as demonstrated by Li, Jia, and Mao [12]. Furthermore,
Tong et al. [13] demonstrated the effectiveness of discriminant analysis in their work on
bearing fault diagnosis, representing a crucial development in fault diagnosis for dynamic
nonlinear processes. For more information on discriminant analysis, see McLachlan [14].

Discriminant analysis can be divided into two categories: continuous and discrete. In
the continuous case, the predictor variables are continuous and the output of the analysis
is a continuous function. In the discrete case, the predictor variables are discrete and the
output of the analysis is a classification. In both cases, discriminant analysis is used to
find the optimal allocation rules. In the continuous case, the optimal allocation rule is
determined by finding the optimal separating hyperplane which maximizes the difference
between the groups. In the discrete case, the optimal allocation rule is determined by
finding the optimal decision tree, which maximizes the accuracy of the classification.

A unified approach, providing optimal allocation rules to minimize expected costs for
both continuous and mixed cases, is presented in Ferreira et al. [15]. We will follow this
last approach.

Our goal is to obtain confidence ellipsoids for the vector of probabilities, ppp, of getting
particular results in an experiment with m possible outcomes. Through duality, we will
also test hypotheses. In addition, we will use support planes for ellipsoids, see Schott [16],
to obtain simultaneous confidence intervals for these probabilities. Moreover, we will
generalize these results to vectors

ΨΨΨ = GGGppp, (1)

where GGG is a known matrix. Furthermore, we will show how to obtain optimal allocation
rules, in order to reduce the allocation costs, first for the discrete case and then for the
continuous case.

The rest of this paper is organized as follows. The next section, for preliminary
results, is divided in two subsections. In the first one, we provide a simplified form of the
continuous mapping theorem, CMT, based on Kallenberg [17]. This theorem will grant us
the ability to derive confidence ellipsoids from the N(|000, W(ppp)) distribution in the second
subsection, where we will follow the approach of Scheffé [18]. Section 3 begins with the
study of individual samples, followed by the study of pairs and structured families of
independent samples. These samples refer to the treatments of a fixed effects experiment.
The optimal allocation rules will be obtained in Section 4. Section 5 contains two numerical
applications. The first, referring to the discrete case and using real data; the second, referring
to the continuous case and using simulated data. We end the paper with some conclusions.
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2. Preliminary Results
2.1. Asymptotic Distributions

The Central Limit Theorem, CLT, serves as a fundamental result in probability theory
and statistics, providing insights into the behavior of sample averages. Let YYYn be a sequence
of random variables that converges in distribution to a limiting random variable YYY, denoted

as YYYn
d−→ YYY. Additionally, consider continuous functions g(YYYn) and g(YYY). The CLT, as

established by Kallenberg [17], asserts that under these conditions, g(YYYn) converges in

distribution to g(YYY), i.e., g(YYYn)
d−→ g(YYY).

Moreover, if the convergence in distribution of YYYn to YYY, given by FYYYn(yyy) → FYYY(yyy), is
uniform on a compact set L, then the convergence in distribution of g(YYYn) to g(YYY) is also
uniform on the same set L. This uniform convergence property is valuable in understanding
the stability of the distributional characteristics of the transformed random variables.

Further insights can be gained by considering the continuity of the function g. If g is a
continuous function, then for any given ϵ > 0, there exists a compact set K(ϵ) such that the
probability measure associated with FYYYn(yyy), denoted as ϕn(.), satisfies ϕn(K(ϵ)) ≥ 1 − ϵ.
Notably, the Cartesian product

K̇(ϵ) = K(ϵ) × L (2)

is also a compact set. Consequently, the convergence in distribution of g(YYYn) to g(YYY) is
uniform on the set K̇(ϵ).

In summary, the asymptotic distribution of g(YYYn) can be expressed as Fg(YYY)(xxx), pro-
vided that xxx is a point of continuity for Fg(YYY). This convergence is established through
the concept of weak convergence of probability measures, highlighting the broader appli-
cability of the CLT in understanding the behavior of transformed random variables in a
distributional sense.

2.2. Confidence Ellipsoids

Confidence ellipsoids serve as valuable tools for visualizing and quantifying uncer-
tainty in multivariate data, providing insights into the variability of observations. These
ellipsoids are particularly useful for testing hypotheses, constructing simultaneous confi-
dence intervals, and making predictions in statistical analysis.

Consider a set of observations modeled by the linear equation YYY = XXXβββ + ϵϵϵ, where XXX
is a design matrix, βββ is a vector of fixed effects, and ϵϵϵ is a vector of errors. The associated
confidence ellipsoid, denoted as EEEq, can be expressed as

EEEq = {YYY −µµµ ∈ Ω : (YYY −µµµ)⊤CCC−1(YYY −µµµ) ≤ xh,1−q}, (3)

where µµµ = XXXβββ and CCC = XXX⊤XXX. Here, Ω represents the feasible region of the ellipsoid, and
xh,1−q is a critical value from a chi-square distribution with h degrees of freedom, ensuring
a desired confidence level 1 − q.

The confidence ellipsoid EEEq possesses notable properties. Firstly, it is a convex set,
implying that any point within the ellipsoid is a convex combination of points on its
boundary. This property facilitates a comprehensive understanding of the distribution
of observations.

Secondly, the confidence ellipsoid aids in constructing simultaneous confidence inter-
vals. For a vector of interest, τττ, the simultaneous confidence interval for µµµ⊤YYY is given by

τττ⊤(YYY −µµµ) ≤
√

xh,1−qτττ⊤CCCτττ. (4)

This interval provides a range for the linear combination τττ⊤YYY with a specified level
of confidence.

Finally, confidence ellipsoids are instrumental in hypothesis testing. Consider the
following null hypothesis:

H0 : τττ⊤µµµ = a0. (5)
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If the hypothesis H0 is true, then EEEq will contain the point (YYY −µµµ)a0 = (τττ⊤YYY − τττ⊤µµµ);
otherwise, the hypothesis is rejected.

3. Inference

In statistical inference, we often encounter experiments with multiple possible out-
comes, each associated with a certain probability. To quantify the likelihood of obtaining
specific results in such experiments, given the probabilities p1, . . . , pm of each outcome,
and the observed frequencies n1, . . . , nm in n trials, we can employ the following probabil-
ity function:

pr

(
m⋂

i=1

(Ni = ni)

)
=

n!
∏m

i=1 ni!

m

∏
i=1

pni
i

d−→ M(|n, p), (6)

where M represents a singular multivariate distribution.
Consider the probability vector ppp = (p1, . . . , pm), and define the vector of estimators:

p̃ppn = ( p̃n,1, . . . , p̃n,m), (7)

with p̃n,i =
ni
n for i = 1, . . . , m. These estimators represent the observed probabilities of

each outcome. As the number of trials n approaches infinity, Wilks’ theorem, in Wilks [19],
provides insight into the asymptotic behavior of the estimators:

√
n(p̃ppn − ppp) d−→ N(000, W(ppp)), (8)

where d−→ denotes convergence in distribution, and N(000, W(ppp)) represents a normal distri-
bution with zero mean vector and covariance matrix W(ppp).

The covariance matrix W(ppp) is defined as

W(ppp) = D(ppp)− pppppp⊤, (9)

where D(ppp) is a diagonal matrix with the components of ppp along its diagonal. The proba-
bilities in the initial distribution can be estimated from the observed frequencies through
maximum likelihood estimation, where each p̃n,i =

ni
n for i = 1, . . . , m. This result indicates

that as the sample size grows, the distribution of the estimated probabilities becomes
approximately normal, facilitating the application of classical statistical inference tech-
niques. The covariance matrix W(ppp) characterizes the variability in the estimates, and its
asymptotic normality allows for the construction of confidence intervals and hypothesis
tests based on the estimated probabilities p̃ppn.

3.1. One Sample

Let ααα1, . . . , αααm constitute an orthonormal basis for the orthogonal complement, Ω⊥, of
Ω. Then, we can write

W(p̃ppn) =
m

∑
j=1

vjαααjααα
⊤
j , (10)

where vj is the eigenvalue associated with αααj, see Horn [20]. We can further decompose the
matrix W(p̃ppn) as

W(p̃ppn) =
m−1

∑
j=1

viαααjααα
⊤
j + vmαααmααα⊤m . (11)

Let αααm be the eigenvector associated with the largest eigenvalue vm. Then, we can write

W(p̃ppn)
+ =

m−1

∑
j=1

v−1
j αααjααα

⊤
j + v−1

m αααmααα⊤m , (12)

where + denotes the Moore–Penrose inverse, expressed as
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W(p̃ppn)
+ =

m

∑
j=1

v−1
j αααjααα

⊤
j . (13)

According to Schott [16] and attending to the continuity of the Moore–Penrose
inverse, if

W(p̃ppn)
p−→ W(ppp), (14)

where
p−→ denotes convergence in probability, then

W(p̃ppn)
+ p−→ W(ppp)+. (15)

Moreover, the continuity of the Moore–Penrose inverse implies that the covariance
matrix of the vector

√
n(p̃ppn − ppp), ̸Σ(

√
n(p̃ppn − ppp)) will converge in probability to W(ppp),

̸Σ
(√

n(p̃ppn − ppp)
) p−→ W(ppp). (16)

Furthermore, the continuity of the Moore–Penrose inverse implies that, if ccc is a vector,
the inner product ccc⊤W(p̃ppn)ccc will converge in probability to the inner product ccc⊤W(ppp)ccc, i.e.,

ccc⊤W(p̃ppn)ccc
p−→ ccc⊤W(ppp)ccc (17)

and the variance of the vector
√

nccc⊤(p̃ppn − ppp)ccc will also converge in probability to the inner
product ccc⊤W(ppp)ccc, i.e.,

Var
(√

nccc⊤(p̃ppn − ppp)ccc
) p−→ ccc⊤W(ppp)ccc. (18)

These properties of the Moore–Penrose inverse can be used to draw statistical inference
from the data. For example, the covariance matrix of the vector

√
n(p̃ppn − ppp) can be used

to estimate the variance of the vector ppp, and the inner product ccc⊤W(p̃ppn)ccc can be used to
estimate the inner product ccc⊤W(ppp)ccc. Besides this, we have{ √

n(p̃ppn − ppp) ↷ N( 000, W(ppp))√
n(ccc⊤ p̃ppn − ccc⊤ppp) ↷ N( 000, ccc⊤W(ppp)ccc)

; (19)

see Tsui [21] . We can then make use of the central limit theorem to show that

√
n

ccc⊤(p̃ppn − ppp)ccc√
ccc⊤W(p̃ppn)ccc

↷ N(0, 1). (20)

Using this result, we can construct a confidence interval for ccc⊤ppp, with confidence level
(1 − q), given by

pr

ccc⊤ p̃ppn − zq

√
ccc⊤W(p̃ppn)ccc

n
≤ ccc⊤ppp ≤ ccc⊤ p̃ppn + zq

√
ccc⊤W(p̃ppn)ccc

n

→ 1 − q. (21)

We may then use duality to test the hypothesis

H0(ccc) : ccc⊤ppp = ccc⊤ppp0 (22)

at the limit q. This method is useful for testing hypotheses about parameters in a variety of
different models, including linear mixed models.

3.2. Pair of Samples

We denote M(|m(l), ppp(l)) as the singular multivariate distribution for a pair of inde-
pendent samples, l = 1, 2, with ppp(l) = (p1(l), . . . , pm(l)) and pi(l) ≥ 0. Thus, distributions
and the corresponding statistics, such as estimators, will be independent.
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We have √
n(l)(p̃pp(l)− ppp(l)) ↷ N(|000, W(ppp(l))). (23)

We can also take the difference between each of the pi(1) and pi(2), i = 1, . . . , m, and
end up with unbiased estimators for qi, as follows:

q̃i = p̃i(1)− p̃i(2), i = 1, . . . , m. (24)

If n(2)
n(1) → r, we will have {

n(1)
n → 1

1+r
n(2)

n → r
1+r

, (25)

with n = n(1) + n(2). So,{
Var

(√
np̃i(1)

)
→ (r + 1)pi(1)(1 − pi(1))

Var
(√

np̃i(2)
)
→ r+1

r pi(2)(1 − pi(2))
, i = 1, . . . , m (26)

and, given the independence of the two samples,

Var
(√

nq̃i
)
→ (r + 1)

[
pi(1)(1 − pi(1)) +

1
r

pi(2)(1 − pi(2))
]

, i = 1, . . . , m. (27)

When r → 0, the variance of
√

nq̃i tends to zero, so it becomes an unbiased estimator. The
same is true for r → ∞. To compare the two multivariate distributions, M(|m(1), ppp(1)) and
M(|m(2), ppp(2)), we can use the Hotelling’s T2 statistic to measure the distance between the
two distributions:

T2 = n(p̃pp(1)− p̃pp(2))TW(ppp(1))−1(p̃pp(1)− p̃pp(2)). (28)

It is well known that if
n(2)
n(1)

→ r, (29)

then
T2 ↷ χ2

m−1(r). (30)

Now, reasoning as in the previous subsection, it may be shown that
√

n(q̃i − qi)√
(r + 1) p̃i(1)(1 − p̃i(1)) + 1

r p̃i(2)(1 − p̃i(2))
↷ N(|0, 1), i = 1, . . . , m, (31)

and so

pr

[
q̃i − zq

√
(r + 1)

(
p̃i(1)(1 − p̃i(1)) +

1
r

p̃i(2)(1 − p̃i(2))
)
≤ qi (32)

≤ q̃i + zq

√
(r + 1)

(
p̃i(1)(1 − p̃i(1)) +

1
r

p̃i(2)(1 − p̃i(2))
)]

≤ 1 − q, i = 1, . . . , m.

Thus, through duality, we get a 1 − q limit level test for

H0(q0,i) : qi = q0,i, i = 1, . . . , m. (33)

In addition, {
Var

(√
nccc⊤ p̃pp(1)

)
→ (r + 1)ccc⊤W(ppp(1))ccc

Var
(√

nccc⊤ p̃pp(2)
)
→ r+1

r ccc⊤W(ppp(2))ccc
, (34)

as n → ∞, so that
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Var
(√

n(ccc⊤ p̃pp(1)− ccc⊤ p̃pp(2))
)
−−−→
n→∞

(r + 1)ccc⊤
[

W(ppp(1)) +
1
r

W(ppp(2)
]

ccc, (35)

and that
√

n
[
(ccc⊤ p̃pp(1)− ccc⊤ p̃pp(2))− (ccc⊤ppp(1)− ccc⊤ppp(2))

]√
(r + 1)(ccc⊤W(p̃pp(1)) + 1

r W(p̃pp(2))ccc)
= (36)

√
n(ccc⊤q̃qq − ccc⊤qqq)√

(r + 1)(ccc⊤W(p̃pp(1)) + 1
r W(p̃pp(2))ccc)

↷ N(|0, 1). (37)

Thus,

pr

(
ccc⊤q̃qq − zq

√
(r + 1)(ccc⊤W(p̃pp(1)) +

1
r

W( p̃(2))ccc) ≤ ccc⊤qqq ≤ (38)

ccc⊤q̃qq + zq

√
(r + 1)(ccc⊤W(p̃pp(1)) +

1
r

W( p̃(2))ccc)

)
→ 1 − q. (39)

And, using duality once again, we can obtain limit level q tests for

H0(ccc⊤qqq) : ccc⊤qqq = dl , l = 1, 2. (40)

3.3. Structured Families of Samples

Let us consider d treatments of fixed-effects designs, with a total of

n =
d

∑
l=1

n(l) (41)

individuals, and d independent samples. This configuration is referred to as a structured
family, and the distributions of the samples,

M(|n(l), ppp(l)), l = 1, . . . , d, (42)

with ppp(l) = (p1(l), ..., pm(l)), l = 1, . . . , d, and pi(l) ≥ 0, i = 1, . . . , m, l = 1, . . . , d,
characterize it. Moreover, consider

n(l)
n

→ r(l), l = 1, . . . , d. (43)

Now, we will have

ẊXXn(l) =
n

r(l)

(
p̃ppn(l)(l)− ppp(l)

)⊤
W+(pppl)

(
p̃ppn(l) − ppp(l)

)
→ G(|m − 1), l = 1, . . . , d, (44)

where G(|m − 1) is the gamma distribution with a shape parameter of m − 1 and a scale
parameter of 1. So, with ẊXXn = (ẊXXn(1), ..., ẊXXn(d)), given the independence of the ẊXXn(l),
l = 1, . . . , d, we have

ẊXXn ↷ G(|m − 1), (45)

with

Ġ(xxx|m − 1) =
d

∏
l=1

G(xl |m − 1), (46)

whenever xxx = (x1, ..., xd).
We now study the action of the factors in the base design, assuming that the hypotheses

of absence of effects and interactions are linked to an orthogonal partition,

Rd = ⊞m
j=1∇j, (47)
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and that the row vectors of AAAj constitute an orthonormal basis for ∇j, j = 1, . . . , m. This
leads to the hypotheses

H0,j(ccc) : AAAjη(ccc) = 000, j = 1, . . . , m, (48)

where η(ccc) = (ccc⊤ppp(1), ..., ccc⊤ppp(d)).
More generally,

H0,j(ccc) : ΨΨΨj(ccc) = ΨΨΨ0,j(ccc), j = 1, . . . , m. (49)

We have
ΨΨΨj(ccc) = AAAjη(ccc). (50)

So, we will have

η̃(ccc) = (ccc⊤ppp(1), ..., ccc⊤ppp(d))Ψ̃ΨΨj(ccc) = AAAjη̃(ccc) ↷ N(|ΨΨΨj(ccc), AAAjD(ccc)AAA⊤
j ), (51)

where D(ccc) is the diagonal matrix, with

ccc⊤W(ppp(1))ccc, ..., ccc⊤W(ppp(d))ccc (52)

along its diagonal, and the estimator is given by

Ψ̃⊤
j (ccc)AAAjDDD(ccc)(AAA⊤

j )
+Ψ̃j(ccc) ↷ G(|gj), j = 1, . . . , m. (53)

Moreover, xgj ,1−q will be the critical value for a limit level q test for

H0,j(ccc), j = 1, . . . , m. (54)

4. Optimal Allocation Rules
4.1. The Discrete Case

Consider a set of populations combined together, each placed into different groups. A
randomly selected sample of n elements from this mixture belongs to a specified population
and class, denoted as ni,j for elements in class §i and population Pj, with i = 1 to w and
j = 1 to m.

Our objective is to determine an allocation rule that minimizes the overall cost of
assigning elements to their respective populations. The cost of assigning an element from
Pj to Pj′ is represented by cj,j′ .

Let Ei,j be the event that a randomly chosen element belongs to §i and Pj, with Ei,·
[E·,j] representing the event that a randomly chosen element belongs to §i [Pj]. Define

pi,j = pr(Ei,j)
pi,· = pr(Ei,·)
p·,j = pr(E·,j)

, (55)

for i = 1, . . . , w and j = 1, . . . , m. Additionally, introduce conditional probabilities{
pi|j = pr(Ei,·|E·,j)
pj|i = pr(E·,j|Ei,·)

, (56)

for i = 1, . . . , w and j = 1, . . . , m.
If the elements located in §i are assigned to Pj, i = 1, . . . , w, j = 1, . . . , m, the average

cost is given by

ci(j) =
m

∑
j′=1

pj′ ,icj′ ,j, i = 1, . . . , w, j = 1, . . . , m. (57)
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This leads to consistent estimators
p̃i,j =

ni,j
n

p̃i,· = ∑m
j=1 p̃i,j p̃·,j

p̃i|j =
p̃i,j
p̃i,·

, (58)

as the sample size increases, and the estimated average cost

c̃i(j) =
m

∑
j′=1

p̃j′ ,icj′ ,j, i = 1, . . . , w, j = 1, . . . , m. (59)

An optimum allocation for xi occurs if there exists a j(i) such that ci(j(i)) < ci(j) for
j ̸= j(i), in which case

pr

 ⋂
j ̸=j(i)

(c̃i(j(i)) < c̃i(j))

 −−−→
n→∞

1, i = 1, . . . , w. (60)

Furthermore, if there is an optimum allocation for all xi, i = 1, . . . , w,

pr

 w⋂
i=1

⋂
j ̸=j(i)

c̃i(j(i)) < c̃i(j)

 −−−→
n→∞

1. (61)

Discriminant analysis is consistent, indicating that the probability of the allocation
rule being optimal increases as the initial sample size grows to infinity. This holds true for
all §i, with i ranging from 1 to w.

The global average cost of assigning elements of §i, i = 1, . . . , w, to Pj(i) is given by

c. =
w

∑
i=1

pici(j(i)), (62)

with the consistent estimator

c̃. =
w

∑
i=1

p̃ici(j(i)), (63)

and the limit level 1 − p confidence interval

c̃. ± z′q
√

ddd⊤W(p̃pp)ddd, (64)

where z′q is the critical value of a standard normal distribution at level 1− q, and ddd is the vector
with all components null except the one with index 1+ (i − 1)j(i), i = 1, . . . , w, which is 1.

4.2. The Continuos Case

For each event Ai, i = 1, . . . , k, that occurs when an element of P is randomly chosen
to belong to Pi, i = 1, . . . , k, the probability of the event is pi = pr(Ai). To determine the
allocation, a partition of the observations vector XXX ∈ Rn is created such that each element
is assigned to Pi when XXX ∈ Ωi, i = 1, . . . , k. The probability of assigning to Pj an element
of Pi is denoted as qi,j, i = 1, . . . , k and j = 1, . . . , k, and is calculated from the densities of
XXX in the Pi, i = 1, . . . , k. The expected cost of the decision is then determined by summing
the product of the costs of each pair of events and their associated probabilities.

The average cost incurred by the decision will be equal to the sum of the probabilities
multiplied by the expected cost for each action multiplied by the probability of that action.
This can be expressed as the sum of integrals for each possible action over the region where
that action is the optimal choice. That is,
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E(C) =
k

∑
j=1

∫
...
∫

Ωj

gj(xxx)
n

∏
l=1

dxl , (65)

with

gj(xxx) =
k

∑
i=1

pici,j fi(xxx); j = 1, . . . , k. (66)

To minimize the expected cost, one must take the regions where each action is the
optimal choice,

Ωj = {xxx : gj(xxx) ≤ gi(xxx), i = 1, . . . , k}; j = 1, . . . , k. (67)

In the situation of identical decision costs, for which ci,j = c, i ̸= j, this is especially
noteworthy. This means that

gj(xxx) = c ∑
i ̸=j

pi fi(xxx) = c
k

∑
i=1

pi fi(xxx)− cpj f j(xxx); j = 1, . . . , k, (68)

and the sets
Ωj = {xxx : pj f j(xxx) ≥ pi fi(xxx), i = 1, . . . , k}; j = 1, . . . , k. (69)

are applicable. In addition, if pi =
1
k , i = 1, . . . , k, then

Ωj = {xxx : f j(xxx) ≥ fi(xxx), i = 1, . . . , k}; j = 1, . . . , k. (70)

This means that, given xxx, the population with the greatest probability will be chosen.
In summary, the expected cost associated with the decision can be expressed as a

sum of integrals over the regions where each action is the optimal choice. This decision
can be further simplified when the costs for each action are equal and the probabilities
are the same. In this situation, the decision is simply to choose the population with the
greatest probability.

5. Numerical Applications
5.1. The Discrete Case—An Application to Real Data

The purpose of this subsection is to illustrate the theory, relative to the discrete case.
To do this, we use an application with real data, obtained from Instituto Superior Dom
Bosco [22], related to the impact of four economic policies on greenhouse gas emissions:
Policy A, Policy B, Policy C, and Policy D. The data were provided by the Instituto Superior
Dom Bosco, and will be used to highlight the effectiveness of the discrimination rule in
guiding resource allocation decisions.

Let us assume that for each region, the four policies have four distinct categories. This
would create 44 = 256 possible combinations. If our null hypothesis is true and all of the
combinations are equally likely, then any given combination should have a probability
of 1

256 .
We present a discrimination rule, which will classify regions into two groups, “High

Emission” (Population 1) and “Low Emission” (Population 2), based on the values of
the statistic:

v = |x1 − x2|+ |x1 − x3|+ |x1 − x4|+ |x2 − x3|+ |x2 − x4|+ |x3 − x4|+ 1, (71)

where each policy category has a value of 1, 2, 3, or 4.
The choice of this statistic is based on its ability to capture the differences between the

four economic policies in terms of their impact on greenhouse gas emissions. By calculating
the absolute differences between the categories of each policy and summing them, we
obtain a single value that represents the overall dissimilarity between the policies. In
addition, the use of the absolute differences ensures that the magnitude of the differences
is taken into account, regardless of their direction. This is important in the context of
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evaluating policy effectiveness, as both positive and negative differences can contribute to
the overall impact.

The collection of potential values for v is DDD = {1, 4, 5, 7, 8, 9, 10, 12, 13}. We use the

values of rh =
ph,1

ph,2
, h ∈ DDD of the conditional probabilities and allocate to population 2 or 1

those with v ∈ DDD(x) or v /∈ DDD(x), respectively.
Suppose nh,l denotes the number of elements with v = h in population l. We can

obtain the sample size for each population as follows:

∑
h∈DDD

nh,l , l = 1, 2 (72)

and the probability of obtaining v = h in a randomly chosen element from that sample as

nh,l

∑h∈DDD nh,l
, h ∈ DDD, l = 1, 2. (73)

The overall sample size will be
2

∑
l=1

∑
h∈DDD

nh,l , (74)

while the number of its elements, with v = h, will be

2

∑
l=1

nh,l , h ∈ DDD. (75)

The probability of a randomly chosen element of the global sample having v = h
[belonging to population l] will be

∑2
l=1 nh,l

∑2
l=1 ∑h∈DDD nh,l

(76)

and
∑h∈DDD nh,l

∑2
l=1 ∑h∈DDD nh,l

. (77)

We begin by finding the ratios rh =
ph,1

ph,2
, h ∈ DDD, of the conditional probabilities, and

set DDD(x) = {h; rh ≤ x}, allocating to population 2 [population 1] those with v ∈ DDD(x)
[v /∈ DDD(x)], therefore to those with rv ≤ x [rv > x].

Table 1 displays the results, which indicate that x = 1 should be chosen and DDD(1) = {1},
thus giving to population 1, the elements with v = 1, and to population 2, the elements
with v > 1.

Table 1. Numbers, probabilities and ratios of cases for the values of v from the different population.

h 1 4 5 7 8 9 10 11 12 13 Total

nh.1 17,456 738 755 939 1369 254 380 997 670 40 n·.1 = 23,598
nh.2 38,193 542 156 28 88 6 24 22 17 2 n·.2 = 39,078
nh.· 55,649 1280 911 967 1457 260 404 1019 687 42 n·.· = 62,676
ph.1 0.740 0.031 0.032 0.040 0.058 0.011 0.016 0.042 0.028 0.002 1
ph.2 0.977 0.014 0.004 0.001 0.002 0.000 0.001 0.001 0.000 0.000 1
Πh.· 0.888 0.020 0.015 0.015 0.023 0.004 0.006 0.016 0.011 0.001 1
rh 0.757 2.255 8.015 55.535 25.762 70.103 26.220 75.046 65.265 33.120
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By computing {
q1,l = ∑v∈DDD(1) pv,l ; l = 1, 2
q2,l = ∑v/∈DDD(1) pv,l ; l = 1, 2

, (78)

the outcomes are summarized in Table 2.

Table 2. Contingency table of probabilities.

Population 1 Population 2

q1,l 0.740 0.977
q2,l 0.260 0.023

The cost of wrong decisions for both populations was calculated to be c̄cc1 = 0.73972
and c̄cc2 = 0.02265. The global average cost of wrong decisions can be estimated by the sum
of the product of the probability of randomly chosen elements for the mixture, Π·,1 and
Π·,2, and the respective population average costs, which is

c̄̄c̄c = 0.73972Π·,1 + 0.02265Π·,2. (79)

5.2. The Continuous Case—An Application to Simulated Data

In this subsection, we used R software, version 4.3.0, to simulate and compute a
mixture of three populations with mean vectors

µµµ1 = (1.5; 1.5)
µµµ2 = (3.5; 3)
µµµ3 = (5; 4.5)

, (80)

and identical covariance matrices III2. All measures were taken based on the corresponding
normal homocedastic distributions. These values were assumed based on a reasonable
assumption for the data generation process, taking into account the need for clear separation
between the populations for effective simulation and analysis. In a real-world context, such
as in the field of botany, these could, for example, represent averages of certain measurable
traits, such as the lengths of petals from three different types of plants.

Simulated samples, with dimension 1000 were generated. These samples are presented
in Figure 1.

Figure 1. Simulated samples, with blue, red, and green points, corresponding to populations with
mean µ1, µ2, and µ3, respectively.

Table 3 shows the costs of misallocation. The rows represent the real population of the
elements and the columns the populations they were allocated to.
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Table 3. Costs of misallocation

P1 P2 P3

P1 0 1 2
P2 1 0 1
P3 2 1 0

The shapes for the areas of distribution for the elements were established as illustrated
in Figure 2. These are appropriate for normally distributed data with identical covariance
matrices. The selected rectangular regions aligned with the axes allowed for efficient
calculation of the probabilities of allocation and cost of misallocation.

Figure 2. Shape of the zones to be considered.

The average cost will depend on the amount of elements that are allocated to P1 from
P2 and to P2 from P3, as the probabilities of allocating to P3 one element of P1 and to P1 one
element of P3 are very small.

With C1, C2 and C3 representing the regions in which the elements are allocated to
populations P1, P2 and P3, respectively, we must minimize

q =
∫
C1

dF2 +
∫
C2

dF1 +
∫
C3

dF2 +
∫
C2

dF3.

As shown in Figure 2, our approach was to optimize the points where the horizontal
and vertical lines intersect the x-axis at X = 2 and X = 4 and the y-axis at Y = 2 and
Y = 4, respectively. These intersection points act as delineations for the designated regions.
The selection of those initial points was based on an informed estimation leveraging the
mean vectors of the three populations. Noting the fact that the mean vectors for the three
populations are µ1 = (1.5; 1.5), µ2 = (3.5; 3), and µ3 = (5; 4.5), the initial points were
chosen to lie approximately midway between these centroids. Taking into account that
the populations are distributed normally with identical covariance matrices, this ensures
that the initial delineations for the partitioning areas (C1, C2, C3) in the clustering process
are not skewed towards one or more populations. Once these initial parameters were set,
the optimization process was run, using the ‘stats’ package of R software, version 4.3.0.
in R, particularly the ‘optim’ function, continually adjusting the parameters in order to
find the values that minimized the objective function, which, in this case, was the cost
of misallocation.

After 1000 repetitions of this optimization process, the suitable partitions displayed in
Figure 3 were obtained. These partitions represent the areas of allocation for the elements
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within the three populations that produced the minimum misallocation cost, and, therefore,
the most efficient allocation of elements within the identified clusters.

Figure 3. Considered cuts. The colors of the points, blue, red, and green, represent populations with
mean values of µ1, µ2, and µ3, respectively.

The cuts that are most cost-efficient can be represented by the straight lines{
x = 2.3; x = 4.75
y = 1.45; y = 4.15

. (81)

Table 4 shows the number of elements in each area.

Table 4. Number of elements in each area.

P2 P3 P3
P1 = 5 P1 = 0 P1 = 0
P2 = 26 P2 = 102 P2 = 6
P3 = 1 P3 = 261 P3 = 364

P1 P2 P3
P1 = 398 P1 = 125 P1 = 0
P2 = 106 P2 = 626 P2 = 82

P3 = 0 P3 = 159 P3 = 213

P1 P1 P2
P1 = 381 P1 = 90 P1 = 1

P2 = 8 P2 = 40 P2 = 4
P3 = 0 P3 = 1 P3 = 1

The corresponding obtained total minimum cost was 638.
So, using simulated samples and different partitions of the sample, we were able to

obtain the most cost-efficient cuts and the corresponding total minimum cost.

6. Conclusions

The paper discusses a comprehensive method to obtain optimal allocation rules for
fixed-effect experiments. The study process is divided into four sections, namely, asymp-
totic distributions, confidence ellipsoids, inference, and optimal allocation rules.

Under the section of asymptotic distributions, the Central Limit Theorem (CLT) is
accredited for providing valuable insights in terms of the behavior of sample averages.

In confidence ellipsoids, the ellipsoid properties are studied in developing a com-
prehensive understanding of the distribution of observations. The convex shape of the
ellipsoid allows every point within the ellipsoid to be a convex combination of points on its
boundary. Simultaneous confidence intervals can be constructed using these ellipsoids.
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In the section on inference, the probability functions are detailed. These functions
quantify the likelihood of obtaining specific results in experiments. As the number of
trials increases, the asymptotic behavior of estimators is established. The distribution of
estimated probabilities becomes approximately normal as the sample size grows.

The section on optimal allocation rules further elaborates on the methods for deter-
mining an allocation rule that minimizes the overall cost of assigning elements to their
respective populations.

The paper concludes with two numerical applications. The first is a real data appli-
cation showcasing the employment of computational techniques throughout the paper to
analyze the real data. The second application undertakes the simulation of data to validate
the findings of the study.
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