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Abstract: The secure transmission of information is one of the most important topics in the field
of information technology. Considering that images contain important visual information, it is
crucial to create a safe platform for image transfer. One commonly employed tool to enhance the
complexity and randomness in image encryption methods is the chaos system. The logistic and
sine maps are utilized in encryption algorithms but these systems have some weaknesses, notably
chaotic behavior in a confined area. In this study, to address these weaknesses, a hybrid system
based on the Atangana–Baleanu fractional derivative is proposed. The various tests employed to
evaluate the behavior of the new system, including the NIST test, histogram analysis, Lyapunov
exponent calculation, and bifurcation diagram, demonstrate the efficiency of the proposed system.
Furthermore, in comparison to the logistic and sine maps, the proposed hybrid exhibits chaotic
behavior over a broader range. This system is utilized to establish a secure environment for the
transmission of multiple images within an encryption algorithm, subsequently concealing them
within a meaningful image. Various tools employed to assess the security of the proposed algorithm,
including histogram analysis, NPCR, UACI, and correlation values, indicate that the proposed hybrid
system has application value in encryption.

Keywords: encryption; steganography; chaotic system; multiple images; fractional calculation

MSC: 34A08; 68P25

1. Introduction

In today’s digital world, information security is discussed in almost every social
network. Security and the fast transfer of information are two major factors in most social
networks. Moreover, the safe storage of information is crucial in many fields, such as
healthcare, finance, and the legal sector, where sensitive and confidential information is
handled regularly. One of the most widely used methods in the discussion of information
security is encryption. In addition, encryption methods are used in social networks. The
primary factor that influences users’ selection of social networks is security. Social networks
that prioritize security measures tend to attract more users. By creating a sense of security
for social network users, this method ensures their safety and privacy against various
types of attack. Many examples can be given of the use of encryption in data transmission;
for example, end-to-end encryption is used in WhatsApp. Considering the privacy of
patient information, medical images must be protected from access by different parties.
The encryption of this type of image during transmission and storage can prevent public
access. Furthermore, implementing image encryption algorithms for satellite-captured
images ensures a secure transmission process. In addition to these two cases, there are
many cases where image encryption has many uses. In recent years, various algorithms
have been developed for image encryption; for example, see [1–5]. Various tools have been
used for encryption; for example, the chaos system and DNA operations have been used
in [6,7], and the variant Hill cipher has been used in [8]. Sometimes, it is necessary to select
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a set of images to save and send. This can be seen in medical images taken from different
angles to diagnose a disease or in images taken by satellites. Moreover, a 3D image can
be taken as a collection of several images. Therefore, creating an encryption algorithm
for multiple images would provide a suitable tool for the storage and transfer of images.
Various algorithms for the encryption of multiple images have been developed in recent
years. In [9], a multiple-image encryption algorithm based on single-channel scrambling
is introduced. In [10], following the compression of images via the discrete wavelet
transform, the encryption algorithm utilizes bit-level scrambling and diffusion operations
on pixels. In addition to the mentioned cases, some algorithms encrypt and compress
images to reduce the amount of information sent. However, in these cases, the quality
of the sent images decreases, and the original images are not sent. Some algorithms
for this method are discussed in papers [11,12]. In addition, video can be considered
as a sequence of images, and a chaos system can be used to encrypt them [13,14]. By
studying these and similar works, it can be seen that the common feature of the algorithms
presented in them is the use of chaotic systems. Therefore, if a chaotic system has a suitable
structure, it can improve encryption algorithms. With the development of mathematics
in recent years, various encryption tools have been introduced. One of the tools that
has attracted researchers’ attention in encryption, especially image encryption, is chaos
systems. The possibility to create a sequence of numbers that are sensitive to input changes
and unpredictability is one of the primary reasons that these systems have garnered
the attention of cryptography researchers. Regarding image encryption, this tool has
been referenced in several papers, such as [15,16]. Tent, logistic, sine, and cat systems
can be mentioned among the most used chaos systems. Among the limitations of these
systems are the limited area of chaos and the non-uniform distribution of their outputs.
However, algorithms that utilize the one-dimensional chaos system for encryption exhibit
certain security vulnerabilities [17,18]. One proposed method to address these issues is to
increase the dimensions of the chaotic system [17,18]. In this work, although some problems
have been solved, others, such as achieving a uniform distribution, remain unresolved.
Moreover, the simplest and, at the same time, the most effective way to solve this problem
is to create hybrid systems [19,20]. In this paper, to solve these problems and create a
chaos system that has a wider chaos area with a uniform distribution, a hybrid chaos
system is introduced using fractional calculations. The use of fractional calculations for the
development of chaotic systems has also been employed as a novel solution; for example,
see [21–23]. Several tests used to explore the proposed hybrid chaos system demonstrate its
efficiency. After introducing and studying the behavior, this system is used in a multi-image
encryption algorithm. Considering that an encrypted image has a meaningless structure,
an individual who has access to the image can deduce that the sent image is an encrypted
image. Subsequently, attackers can attempt various types of attacks on the sent image to
decrypt it. Steganography is one of the methods used to hide an image within another
image. In this method, an image that conceals another image is called a host image. In
recent years, this method has been used to hide encrypted images. First, the image is
encrypted, and then the encrypted image is inserted into another image that has meaning.
An observer cannot identify the encrypted image concealed within the host image. One
method used to hide images is the integer discrete wavelet transform (DWT). In [24], the
image is encrypted, and then the encrypted image is hidden in the LH and HH parts of
the DWT. A method similar to this has been studied in [25]. In another method, studied
in [26], the location of the image pixels is changed by using the Arnold’s cat transform and
then the image is hidden. One advantage of this method is that if a portion of the image
is lost, the adjacent areas in the recycled image are not simultaneously destroyed. In the
method described in this article, unlike in the wavelet transform, the host image is scaled to
the interval [0, 1], and the numerical values of the pixels are concealed within the decimal
digits of the host image’s pixels. After encrypting the images using the proposed algorithm
based on the hybrid chaos system, the host image is shifted, and then the encrypted images
are hidden using decimal representation [26].
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The layout of this paper is as follows. In Section 2, using a one-dimensional fractional
chaotic system, a novel hybrid chaotic system is introduced. Additionally, in this section,
the behavior of these systems is evaluated by various tests, such as the bifurcation diagram
and Lyapunov exponent. In Section 3, using the proposed chaos system, a new encryption
algorithm for multiple images is studied, and then the encrypted images are changed into
visually meaningful images. The simulation results and security analysis of the proposed
algorithms are given in Section 4. The conclusions of the paper are presented in Section 5.

2. Hybrid Fractional Chaos Generation

In this section, after introducing the preliminary tools, the two-dimensional chaos
system is proposed, and, in the next step, the behavior of this system is discussed.

2.1. Structure of Proposed Chaos Generation

Chaos systems based on fractional calculations have been studied in various papers.
One of the methods used to create a system is the use of the left Atangana–Baleanu fractional
derivative, which is studied in paper [22]. In the mentioned paper, a new chaos system is
introduced by considering the following fractional equation

ABR
a Dα

t x(t) = Λr
(
x(t)

)
,

where Λr represents a hybrid chaos system [27]. Moreover, ABR
a Dα

t represents the left
Atangana–Baleanu fractional derivative in the Riemann–Liouville sense, which is defined
as [28]

ABR
a Dα

t f (t) =
β(α)

1 − α

d
ds

∫ t

a
f (s)εα,1

(
− α

1 − α
(t − s)α

)
ds, t ∈ (a, b),

where β(α) and ε denote normalization and the Mittag–Leffler function, respectively, and
are obtained by

εa,b(t) :=
∞

∑
i=0

ti

Γ(ai + b)
, t ∈ C,

β(α) = 1 − α +
α

Γ(α)
, β(0) = β(1) = 1,

where Γ is a gamma function. In the following, the chaos system that is obtained by this
equation is shown by φα

r,h, where h represents the step length of the partition for t. For
further details of this type of chaotic system, readers are encouraged to refer to [22].

Now, considering the definitions stated so far, we introduce the hybrid chaos system.
Consider X0 = (x0, y0), r, α and h as input values; the proposed system is described in the
following steps.
Step 1. Obtain X1

0 = (x1
0, y1

0) as

x1
0 = φ

α
2
r,h(x0), y1

0 = φ
α
2
2r,h(y0).

Step 2. Define r1 and r2 as

r1 = r +
1
10

(
⌊y1

0 × 10⌋ − ⌊y1
0⌋ × 10

)
,

r2 = 2r +
1

10

(
⌊x1

0 × 10⌋ − ⌊x1
0⌋ × 10

)
,

and then calculate

X1 = (x1, y1) =
(

mod
(
x1

0 + φ
α
10
r1,h(x1

0), 1
)
, mod

(
y1

0 + φ
α
10
r2,h(y

1
0), 1

))
.
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In the next subsection, the behavior of this system is investigated by various types of tests.
Additionally, in the remainder of this paper, the vector of n elements produced by the
proposed system is denoted by ψα,r

h,n.

2.2. Behavior Analysis of Proposed System

In this subsection, as well as in the section related to the simulation of the algorithm,
in order to calculate φα

r,h, the system Λr is considered as follows:

Λr(x) :=


20 sin

(
rx(1 − x)

)
+ (80−r)x

2 mod 1, when x < 0.5,

20 exp
(
rx(1 − x)

)
+ (80−r)(1−x)

2 mod 1, when x ≥ 0.5.

As mentioned in the Introduction, one of the problems with chaotic systems is the limited
chaos area, and the proposed hybrid system addresses this issue. To verify this, consider
the 2D logistic map [29] and the 2D sine logistic modulation map (2D SLMM) [18], which
are defined as follows:

xi+1 = r(3yi + 1)xi(1 − xi),

yi+1 = r(3xi+1 + 1)yi(1 − yi),

and

xi+1 = α
(

sin(πyi) + β
)
xi
(
1 − xi

)
,

yi+1 = α
(

sin(πxi+1)
)
yi
(
1 − yi

)
.

In the following, these two systems are compared with the proposed hybrid system.
The Lyapunov exponent and bifurcation diagram are the first tests used to investigate

the chaotic behavior of the proposed system. The value of the Lyapunov exponent is cal-
culated by λ = limn→∞

1
n ∑n−1

i=0 ln |ψ′(xi)| [30]. The relationship between chaotic behavior
and this quantity can be expressed as follows [31]: when at least one of the average Lya-
punov exponents is positive, the system exhibits chaotic behavior; conversely, if the average
Lyapunov exponent is negative, the orbit becomes periodic. A zero-average Lyapunov
exponent indicates a bifurcation in the system. The results of the Lyapunov exponent
and bifurcation diagram for the 2D logistic map and 2D SLMM and the proposed system
for different values of α are shown in Figure 1. By observing these results, it can be seen
that the 2D logistic map behaves chaotically from approximately 1.2 onwards, and the 2D
SLMM exhibits chaotic behavior from approximately 0.8 onwards. However, the proposed
system demonstrates chaotic behavior across the entire range. By comparing the results, it
can be seen that the proposed chaos system has a wider chaos area compared to the other
two systems.

One of the most important properties for the output of a chaotic system used in an
encryption algorithm is that it has a flat distribution. In order to check the distribution of
the sequences produced by the 2D logistic map, the 2D SLMM, and the proposed system,
the trajectories and histogram plots are drawn, as shown in Figure 2. According to the
results of these plots, it is evident that the sequence of numbers produced by the 2D logistic
map and 2D SLMM does not exhibit a uniform distribution, nor does it generate a flat
histogram. Conversely, the sequence of numbers produced by the proposed system is
spread out and exhibits a uniform distribution in the histogram.
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Figure 1. Lyapunov exponent and bifurcation diagram: (a–c) 2D logistic map, (d–f) 2D SLMM with
β = 3, (g–i) α = 0.3, (j–l) α = 0.9.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Trajectories and histogram plots of (a–c) 2D logistic map with r = 1.19; (d–f) 2D SLMM
with α = 1 and β = 3; and (g–i) proposed system with α = 0.3 and r = 1.2.

The sensitivity of the output of the chaos system to the initial value is the most basic
feature of the chaos system, providing a suitable tool for use in cryptography. To check the
sensitivity to the initial input, the output graphs for different values of α with r = 1.2 are
drawn, as shown in Figure 3. In this, the output graph is drawn once for the initial values
of (x0

1, y0
1) = (0.1, 0.8) and again for the initial values of (x0, y0) = (0.1, 0.8 + 10−15). From

Figure 3, it is evident that even a very small change (e.g., 10−15) in the initial value of the
proposed system leads to a completely different generated sequence. Consequently, based
on these results, it can be concluded that the proposed system is highly sensitive to the
input data.

Now, in the investigation of the behavior of the proposed system, the 0 − 1 test is
studied [32,33]. According to this test, for a time series such as Tn, p and q are obtained by
using the following system,

pn+1 = pn + Tn cos cn,

qn+1 = qn + Tn sin cn, n = 1, 2, . . . ,

and c ∈ (0, 2π) is a fixed number. The output of the plots of p versus q for the 2D logistic
map and the proposed system are shown in Figure 4. By analyzing the results of this
diagram, the chaotic behavior of the system can be studied. Output sequences without
chaotic behavior indicate regular dynamics, while output sequences with chaotic behavior
indicate irregular dynamics. The 2D logistic map at r = 1.10 does not have chaotic behavior
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and the plots of p versus q for this map are shown in Figure 4a,b. These results show
regular dynamic behavior. This plot is drawn for the proposed system in Figure 4c–f,
for different values of α. As can be seen, the output of these plots does not have regular
dynamics and these results show the chaotic behavior of the proposed system.

n
10 15 20 25 30 35 40

x
n
 &

 y
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x

n

1

x
n

2

y
n

1

y
n

2

(a)
n

10 15 20 25 30 35 40

x
n
 &

 y
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
n

1

x
n

2

y
n

1

y
n

2

(b)

Figure 3. Outputs of the proposed hybrid chaotic system with r = 0.2 and (a) α = 0.3, (b) α = 0.9,
and (x0, y0) = (0.1, 0.8) (red and green), (x0, y0) = (0.1, 0.8 + 10−15) (blue and black).
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Figure 4. Plots of p versus q for the proposed system for (a,b) 2D logistic map with r = 1.10;
(c,d) proposed system with r = 1.2 and α = 0.3; (e,f) proposed system with r = 1.2 and α = 0.9.

One of the most important features of chaotic systems is their ability to generate a
sequence of numbers with a random-like structure that can be replicated by specifying
the initial values of this sequence. However, how can one ascertain whether a sequence of
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numbers truly exhibits the characteristic of randomness? To address this question, various
tests exist, such as the TESTU01 or NIST tests. In the following section, we present the
results of the NIST test conducted on the sequence generated by the proposed system. This
test was introduced by the National Institute of Standards and Technology [34]. The NIST
test includes several quantities that are calculated and examines the behavior of the input
sequences. For this test, 106 sequences of 100 bits generated by the proposed hybrid system
with α = 0.75, h = 0.001, and r = 1.2 are considered as input. The result for different
quantities of this test is shown in Table 1. Based on the results, the evaluated quantities
pass these tests with an acceptable percentage.

Table 1. The results of the NIST test for 106 sequences of 100 bits generated by the proposed
hybrid system.

xn yn

Type of Test p-Value Proportion p-Value Proportion

Frequency Test (Monobit) 0.5264 100/100 0.4942 98/100
Frequency Test within a Block 0.4848 98/100 0.4822 99/100
Run Test 0.4662 99/100 0.5175 99/100
Longest Run of Ones in a Block 0.4933 98/100 0.4847 100/100
Binary Matrix Rank 0.4467 100/100 0.4954 100/100
Discrete Fourier Transform (Spectral) 0.4814 100/100 0.4461 100/100
Non-Overlapping Template Matching 0.5501 99/100 0.4699 99/100
Overlapping Template Matching 0.4996 98/100 0.4572 98/100
Maurer’s Universal Statistical 0.5474 99/100 0.4510 99/100
Linear Complexity 0.4596 97/100 0.4862 100/100
Serial Test: Serial 1 0.5136 99/100 0.4795 100/100
Serial Test: Serial 2 0.4870 100/100 0.4888 100/100
Approximate Entropy Test 0.5003 100/100 0.4857 99/100
Cumulative Sums (Forward) 0.5039 100/100 0.4655 98/100
Cumulative Sums (Reverse) 0.4953 100/100 0.4710 99/100

3. Proposed Image Encryption Algorithm

In this section, the details of the proposed algorithm are discussed. The proposed
algorithm consists of two parts: in the first part, the encryption algorithm is introduced,
while, in the second part, the encrypted images are hidden within a meaningful image.

3.1. Encryption Algorithm

In this subsection, the details of the proposed encryption algorithm for a sequence of
images such as {Ii}l

i=1 ∈ Rn×m×c is introduced. The steps of the proposed algorithm are
considered as follows. In the first part, {α, h, r, x0, L}, where L ∈ R1×4, is considered as the
initial key, and these keys are perturbed by the following algorithm.
Step 1. Consider α, h, x0 ∈ (0, 1), r ∈ (0, 2), a sequence of images {Ii}l

i=1 ∈ Rn×m×c, and
L ∈ R1×4 where each element of the vector L lies within the interval [0, 1] as input values.
Step 2. Using the bitxor operator (⊕) in the following stages, the size of the image is
reduced to one quarter. At this stage, if the dimensions of the image are not even, they can
be made even by repeating the last row or column.

a. For j = 1, . . . , n
2 obtain I1

i (j, :) = Ii(j, :)⊕ Ii(j + n
2 , :).

b. For j = 1, . . . , m
2 obtain I2

i (:, j) = I1
i (:, j)⊕ I1

i (:, j + m
2 ).

c. For j = 1, . . . , n
4 obtain I3

i (j, :) = I2
i (j, :)⊕ I2

i (j + n
4 , :).

d. For j = 1, . . . , m
4 obtain I4

i (:, j) = I3
i (:, j)⊕ I3

i (:, j + m
4 ).

If the input image is in color, each of these steps will be performed for each image
layer. The output sequence of images in this step is shown by {I4

i }l
i=1.

Step 3. Obtain the sequence of matrices {Ai}l
i=1 ∈ R20×2 by using following steps.

a. Ai(1, 1) for i = 1, · · · , l, is calculated as
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Ai(1, 1) =

mod
(∑l1,l2

I4
i (l1,l2)

n×m , 1
)
, if c = 1,

mod
(∑l1,l2,l3

I4
i (l1,l2,l3)

n×m , 1
)
, if c = 3.

b. The remaining elements of the matrix sequence are calculated using the following
Algorithm 1.

Algorithm 1 Integrating chaos systems into key structures

A1(1, 2) = mod
(

A1(1, 1) + x0, 1
)
;

for i = 2 : l do
Ai(1, 2) = mod

(
Ai(1, 1) + Ai−1(1, 2), 1

)
;

end for
for i = 1 : l do

for j = 2 : 20 do
Ai(j, 1 : 2) = ψα,r

h,1

(
Ai(j − 1, 1 : 2)

)
;

end for
end for

Step 4. Calculate the matrix B ∈ R20×2 as B = ∑l
i=1 Ai.

Step 5. Consider
X1 = circshift

(
B, ⌊B(1, 1)× 102⌋

)
,

where “circshift” denotes the circular shifting of elements in a matrix. Then, obtain the final
vector X ∈ R1×4 as follows.

X = mod
(( 10

∑
l1=1

X1(l1, :) + L(1, 1 : 2),
20

∑
l1=11

X1(l1, :) + L(1, 3 : 4)
)
, 1
)

.

After performing the calculations mentioned above, the final key is used as Key = {α, h, r, x0, Xn}
in the proposed algorithm. One of the most important features of the described algorithm is
the sensitivity to very small changes, which is analyzed later. In the second part, the image
encryption algorithm is proposed as follows.
Pixel permutation, disrupting meaning: In the initial phase of the algorithm, Steps 1 through
7 are introduced to ensure that the pixels of the image are displaced in such a manner that
the original image becomes unrecognizable to the observer. By employing this process, if a
portion of the image is lost, the resulting recovered image will remain recognizable.
Step 1. Consider input images {Ii}l

i=1 ∈ Rn×m×c and the key space as {α, h, r, X}.
Step 2. Define a1 := ⌊ c×l

2 ⌋+ 1 and obtain Ω = ψα,r
h,a1

(
X(1 : 2)

)
.

Step 3. Convert the sequence of images into a c-by-l block matrix as Ib, where the (i, j)th
block is equal to Ib

i,j = Ij(:, :, i).
In the next step, the color layers that correspond to the color images are swapped.

Step 4. If c = 1, go to Step 5; otherwise, obtain two matrices A, B ∈ R3×K by the follow-
ing steps.

a. Create the vectors vA, vB ∈ R1×2a1 by

vA = reshape
(
⌊Ω(1 : a1, 1 : 2)T × 107⌋, [1, 2a1]

)
,

vB = sort(vA),

where (·)T denotes the transpose notation and “reshape(E, [k, l])” reshapes a matrix E into
a k-by-l matrix. For this purpose, the internal MATLAB function specified with this name
can be used. Additionally, “sort(v)” is used to sort the members of the vector v from small
to large.
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b. Consider A, B as

A = reshape(vA(1, 1 : 3l), [3, l]),

B = reshape(vB(1, 1 : 3l), [3, l]).

According to the structures of both matrices, they possess identical numerical values
for their elements, with only their locations differing.

c. Rearrange the positions of each block in the matrix Ib based on the corresponding
element’s location change in the matrices A and B.

Step 5. Shift the rows of matrix Ib in the pattern as shown in Figure 5a. In this type of
shift, even and odd rows are shifted by −10⌊ c×n×l

∑ Ω(:)×10⌋ and ⌊ c×n×l
∑ Ω(:)×10⌋ units, respectively.

By using this step, the elements of the images are overlapped.

(a) (b)

Figure 5. Proposed algorithm shifts: (a) Even rows arranged back-to-back and shifted, with odd
rows similarly shifted. (b) Even columns arranged back-to-back and shifted, with odd columns
similarly shifted.

Step 6. Shift the elements of matrix Ib by using the following Algorithm 2.

Algorithm 2 Image pixel shift algorithm

a2 := max
(
⌊ c×n

2 ⌋, ⌊ l×m
2 ⌋

)
;

Λ = ψα,r
h,a2

(
X(3 : 4)

)
;

s = reshape(ΛT , [1, 2a2]);
for i = 1 : l × m do

Ib(:, i) = circshift
(

Ib(:, i),
[
(−1)i × mod (⌊s(i)× 103⌋, c × n), 1

])
;

end for
for j = 1 : c × n do

Ib(j, :) = circshift
(

Ib(j, :),
[
1, (−1)j × mod (⌊s(j)× 103), l × m⌋

])
;

end for

Step 7. Shift the columns of matrix Ib in the pattern as shown in Figure 5b. As in Step 5, in this
shift, even and odd columns are shifted by −10⌊ c×n×l

∑ Ω(:)×10⌋ and ⌊ c×n×l
∑ Ω(:)×10⌋ units, respectively.

Diffusion: The impact of these steps (Steps 1–7) on the input images can be observed in the
experimental results section. Although the final image resulting from this process success-
fully obscures the meaning of the original images by displacing their pixels, rendering them
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unrecognizable, the histograms of the images remain unchanged. To address this issue, in
the following steps, the pixels of the images are combined with sequences generated by the
proposed hybrid chaos system.

Step 8. Calculate M1 = ψ2α,2r
h,⌊ n

4 ⌋×⌊ m
2 ⌋

((
Ω(a1, 1), Λ(a2, 2)

))
and define M2 ∈ R⌊ n

2 ⌋×⌊ m
2 ⌋ as

M2
(
1 : ⌊n

4
⌋, 1 : ⌊m

2
⌋
)
= reshape

(
M1(:, 1),

[
⌊n

4
⌋, ⌊m

2
⌋
])

,

M2
(
⌊n

4
⌋+ 1 : ⌊n

2
⌋, 1 : ⌊m

2
⌋
)
= reshape

(
M1(:, 2),

[
⌊n

4
⌋, ⌊m

2
⌋
])

,

and then obtain the sequence of images {Id
i }l

i=1 by using the following algorithm. For
i = 1, . . . , l, obtain

Id
i
(
1 : ⌊n

2
⌋, 1 : ⌊m

2
⌋, :

)
= Ib

i
(
1 : ⌊n

2
⌋, 1 : ⌊m

2
⌋, :

)
⊕ M2,

Id
i
(
⌊n

2
⌋+ 1 : n, 1 : ⌊m

2
⌋, :

)
= Ib

i
(
⌊n

2
⌋+ 1 : n, 1 : ⌊m

2
⌋, :

)
⊕ M2,

Id
i
(
1 : ⌊n

2
⌋, ⌊m

2
⌋+ 1 : m, :

)
= Ib

i
(
1 : ⌊n

2
⌋, ⌊m

2
⌋+ 1 : m, :

)
⊕ M2,

Id
i
(
⌊n

2
⌋+ 1 : n, ⌊m

2
⌋+ 1 : m, :

)
= Ib

i
(
⌊n

2
⌋+ 1 : n, ⌊m

2
⌋+ 1 : m, :

)
⊕ M2.

In this step, it should be noted that if either n or m is an odd number, then we calculate
the sequence of M1 such that M2 covers the entire quadrant of the images.

Step 9. Calculate Θ = ψα,r
h,n×m

((
Ω(a1, 1), Λ(a2, 2)

))
. Then, define

A1 = reshape
(
Θ(:, 1), [n, m]

)
,

A2 = reshape
(
Θ(:, 2), [n, m]

)
.

Obtain the sequence of images {Ie
i }l

i=1 by using the following Algorithm 3.

Algorithm 3 Image diffusion using chaos systems

for i = 1 : l do
if c = 1 then

Ie
i = Id

1,i ⊕ A1 ⊕ A2;
else if c = 3 then

Ie
i (:, :, 1) = Id

1,i ⊕ A1;
Ie
i (:, :, 2) = Id

2,i ⊕ A2;
Ie
i (:, :, 3) = Id

3,i ⊕ A1;
end if

end for

In the next steps, the results obtained from Steps 8 and 9 are scrambled using the
following algorithms to maximize the confusion regarding the pixel locations.
Step 10.

a. Define sp as

sp =


∑l1,l2

Ie
i (l1,l2)

n×m×256 , if c = 1,
∑l1,l2,l3

Ie
i (l1,l2,l3)

n×m×256 , if c = 3.

b. Define ap :=
∣∣⌊sp × 1015⌋ − ⌊sp × 1015⌋ × 1015

∣∣/104. This value is considered as the
key that is generated within the algorithm. After calculating these values, taking
r := r + ap, α : α + ap, X := X + ap × [1, 1, 1, 1] and {Ii}l

i=1 := {Ie
i }l

i=1, Steps 2 to 7 are
repeated, and the final encrypted image is obtained.
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Figure 6 provides a summary of the encryption algorithm structure presented in this
section. The decryption process is exactly the reverse of the encryption process; therefore,
the details of the method are not provided.

Figure 6. Flowchart of the proposed image encryption algorithm.

3.2. Visually Meaningful Images

As discussed in the Introduction, there are two common methods of steganography.
In the first case, the most significant bits are hidden in the least significant bits of the host
image, and the second method involves hiding the main digits among the least significant
digits of the host image. In [26], the image values are transferred to the interval [0, 1], and
then the digits of the encrypted image that are within the interval [0, 255] are hidden in the
least significant decimal digits of the host pixel. In the following, the proposed method is
based on this method. The size of the image and the number of places available for hiding
are some of the most important challenges in steganography. To explain these challenges,
let us assume that the size of the host image is n × m, and the decimal representation of
each pixel in the interval [0, 1] is 0. h1h2 . . . h16. Additionally, let us assume that the first four
decimal digits, i.e., h1, h2, h3, h4, are considered the most significant digits and should not be
changed. Therefore, considering these assumptions, there are 12× n×m locations available
to hide digits. In this case, four images with a size of n × m, containing pixel values in
the range of [0, 255] and integers, can completely fill these places, and, if another image is
added to these images, a large image should be selected for the host image. Therefore, if we
wish to hide l images with a size n × m, containing pixel values in the range of [0, 255] and
integers, the host image must have at least 3 × l × n × m places. The number 3 is included
in this expression because every integer in the interval [0, 255] is represented by 3 digits.
For example, the number 7 is represented as 007 and the number 78 is represented as 078. In
the proposed method, if there is only one encrypted image with the size of n × m, the host
image is also considered to have a size of n × m, and the pixel values are hidden in the last
3 digits of the decimal representation. However, if the number of encrypted images is up to
4, each with a size of n × m, then the host image is still considered to have the same size.
In this case, the last digits of the decimal representation are divided into 3 parts, and the
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values of the encrypted images are hidden within these parts. If the number of images
increases, the size of the host image will be increased according to the number of images.
This enhancement is considered such that each pixel of an image is hidden in only one pixel
of the host image. The explanation given up to this point is trivial and is similar to that for
the method described in [26]. Now, the proposed steganography method is explained in
the following steps.

Consider H ∈ Rn×m×c as the host image, where its pixels are in the range [0, 1]. In the
following algorithm, xst, yst ∈ (0, 1) are considered as the keys. Additionally, consider a set
of encrypted images {Ic

i }l
i=1, where the pixels are integers in the range [0, 255]. It is also

assumed that this host image has enough space to hide the images.
Step 1.

a. If c = 1, consider H1 = H, and if c = 3, consider H1 as

H1((i − 1)n + 1 : in, 1 : m
)

:= H
(
1 : n, 1 : m, i

)
, i = 1, 2, 3.

b. Shift the rows of matrix H1 in the pattern, as shown in Figure 5a. In this type of shift,
even and odd rows are shifted by ⌊xst × 104⌋ and −10⌊yst × 104⌋ units, respectively.

c. The matrix obtained in the previous part is shifted as in Figure 5b, where even and
odd columns are shifted by ⌊xst × 104⌋ and −10⌊yst × 104⌋ units, respectively.

The output host image in this step is shown as H2.
Step 2. At this step, the encrypted images generated by the proposed encryption algorithm
are hidden within the host image (H2) using a method similar to [26]. Suppose that the
decimal representation of the numerical value of each pixel is 0. r1r2 . . . r15r16. In this case,
the numerical values of the pixels of the first encrypted image are replaced in r14r15r16;
the numerical values of the pixels of the second, third, and fourth images are replaced in
r11r12r13, r8r9r10, and r5r6r7, respectively. If the number of images increases, a larger host
image will be selected, and the images will be hidden using the aforementioned process.
Step 3. In this step, reverse Step 1 to obtain the final visually meaningful image.

The general structure of the proposed algorithm is shown in Figure 7.

Input images
{Ii}i

Host images
H

Key space

Encrypted
images
{Ic

i }i

Visually
meaningful

image

Encryption
algorithm

Steganography
algorithm

Figure 7. Illustration of the proposed algorithm.

4. Experimental Results

In this section, the proposed algorithms are simulated and the security is evaluated by
different types of tests.

4.1. Platform Implementation and Dataset Overview

In the numerical experiment, the proposed algorithm is simulated using Python and
the MATLAB 2014b software on Windows 10 64-bit and an Intel(R) Core(TM) i3-5005U
CPU @2.00GHz. The USC-SIPI (available online http://sipi.usc.edu/database/ (accessed
on 31 December 1977)) image dataset is the source of the images utilized in this section.

http://sipi.usc.edu/database/
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Moreover, the code for the encryption part is available on the GitHub site (available online
https://github.com/RezaParvaz7 (accessed on 9 April 2024)) of the second author.

4.2. Key Sensitivity Analysis

An encryption algorithm should be designed in such a way that the possibility of ac-
cessing the key space by attackers is minimized, and the key space should be large enough
so that it cannot be compromised by attackers. In addition to these cases, the encryption
algorithm should be sensitive to changes in the key space so that it is not possible to recover
the original image with very small changes in the key space. In [35], a study was conducted
to examine the correlation between the key size and brute force attacks. The findings of this
study indicate that if the key space exceeds 2100, the algorithm is capable of resisting brute
force attacks. The proposed key space consists of 9 keys. In addition, two keys are consid-
ered according to the visually meaningful image. Thus, the total number of keys in the key
space is 11. Considering the precision of the key to be 10−15 in the calculations, the size of
the key space is 10165 = 2165 log2 10 ≈ 2548. This number exceeds the value mentioned in [35].
Therefore, the proposed algorithm is capable of withstanding brute force attacks. In this
section, for the numerical results, I1, I2, and I3 are selected as the boat, Lena, and peppers im-
ages of size 512 × 512, respectively (see Figure 8). In order to assess the sensitivity of the en-
cryption algorithm to the input key, we encrypt images I1, I2, and I3 once with the initial key
key1, which is generated using parameters α = 0.2000, h = 0.0010, r = 0.4000, x0 = 0.2000,
and L = [0.5711, 0.5575, 0.7743, 0.6308]. We then encrypt the same images again with a
different initial key, key2, which is generated using parameters α = 0.2000, h = 0.0010,
r = 0.4000, x0 = 0.2000, and L = [0.5711 + 10−15, 0.5575, 0.7743, 0.6308]. To highlight the
differences between the two sets of encrypted images, we calculate the pixel differences for
each pixel. The histogram results for these images are presented in Figure 9, which clearly
illustrates the disparities between the two sets of images.

(a) Peppers (b) Fishing boat (c) Watch (d) Lena

Figure 8. Test images used in the simulation.

(a) (b)

(c) (d)
Figure 9. Histograms of (a) input images, (b) images encrypted by key1, (c) images encrypted by key2,
(d) pixel difference.

https://github.com/RezaParvaz7
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4.3. Statistical Analysis

In this section, various types of statistical tests that are performed on the proposed
algorithm are discussed. The distribution of the pixel intensity is visually represented
by the histogram. A uniform histogram indicates higher resistance to statistical analysis
attacks, making it more challenging for attackers to extract image information. The overall
histogram output results for images I1, I2, and I3 are shown in Figure 9, considering two
keys. Additionally, to demonstrate the effect of each step of the proposed algorithm on the
input images, the output image and the histogram are displayed in Figure 10. Based on the
findings, it is evident that the algorithm’s output yields a flat distribution. In the results for
Figure 10, images 4.1.01, 4.1.02, 4.1.05, and 4.1.06 (256 × 256) are used. For this example,
L = [0.9000, 0.4000, 0.0010, 0.3000], α = 0.9000, r = 0.4000, x0 = 0.2, and h = 0.001 are used.
In addition, to generate a meaningful image, image 4.1.03 with xst = 0.2491 and yst = 0.2494
is utilized as the host image and key, respectively. In this figure, in order to better display
the sequences of the output images, they are placed together, and the overall histogram
of the images is shown. The histograms of the host and visually meaningful images are
depicted in Figure 11. Based on the results shown in these figures, it is evident that the
encrypted images exhibit a uniform distribution, and there are no significant differences
observed in the histograms of the host image and the visually meaningful image.

Input images 

Steps 1– 4

Encryption

Step 5

Encryption

Step 6

Encryption

Step 7

Encryption
Steps 8 – 10

Encryption

Host InageStep 1 of

Visually 

Meaningful
Steps 2–3 of

Visually Meaningful

Visually Meaningful 

image

Figure 10. The effect of the steps in the proposed image encryption algorithm.
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(a) (b)

(c) (d)

Figure 11. (a) Host image, (b) visually meaningful image, (c) histogram of host image, (d) histogram
of visually meaningful image.

Another test that is used to check the encryption algorithm is the correlation test.
Let E[·] symbolize the expectation value, µ denote the mean value, and σ represent the
standard deviation; then, this value is obtained by

Cx,y =
E
[
(x − µx)(y − µy)

]
σxσy

.

The results of these tests are given in Table 2 and compared with the results of other works.
Moreover, the correlation distributions for the original images and encrypted images are
shown in Figure 12. The correlation distributions for host image 4.1.03 before and after
hiding the four images 4.1.01, 4.1.02, 4.1.05, and 4.1.06 are presented in Figures 13 and 14,
respectively. These results indicate that there is no visible difference in the outputs. Ac-
cording to these results, it can be seen that the proposed algorithm provides an acceptable
representation for this test.

Table 2. Correlation coefficient analysis.

Image Horizontal Vertical Diagonal

Boat 0.9450 0.9758 0.9283
Peppers 0.9732 0.9847 0.9550
Lena 0.9666 0.9823 0.9566
Proposed method 0.0005 0.0001 0.0003
Method in [36] 0.0020 −0.0006 −0.0062
Method in [37] 0.0032 −0.0182 −0.0021
Method in [38] 0.0635 0.1981 0.1698
Method in [39] 0.0041 0.0043 0.0084
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(a)

(b)

(c)

(d)
Figure 12. Correlation of neighborhood pixels in different directions: (a) Lena image, (b) boat image,
(c) peppers image, (d) encrypted images.

Among the various quantities that are studied to check an encryption algorithm, there
are some values that have an ideal value. The algorithm’s representation improves as the
values obtained from the studied algorithm approach this ideal value. In the following,
these values are studied. By considering w and P as the gray level and the probability,
respectively, this value is obtained by

H(k) = −
w−1

∑
i=0

P(ki) log2 P(ki).

The output value for this quantity is between 0 and 8, and the ideal value is equal to 8.
The results of this test are given in Table 3 and compared with those of the other methods.
The entropy of the cipher image exceeds 7.9998 and approaches 8. These results show that
the output of the proposed algorithm is close to the ideal value.

Table 3. Information entropy analysis.

Plain Image Boat Peppers Lena

7.1914 7.4451 7.5937

Proposed method Method in [36] Method in [40]
7.9998 7.9998 7.9994

Encrypted image Method in [41] Method in [42] Method in [43]
7.9996 7.9995 7.9994
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(a)

(b)

(c)
Figure 13. Correlation of neighborhood pixels for host image 4.1.03 in different directions: (a) red
channel, (b) green channel, (c) blue channel.

(a)

(b)

(c)
Figure 14. Correlation of neighborhood pixels for visually meaningful image 4.1.03 in different
directions: (a) red channel, (b) green channel, (c) blue channel.
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Sensitivity analysis relies on two crucial tools, namely NPCR and UACI. NPCR, which
refers to the number of pixels change rate, quantifies the rate at which pixels change when
a single pixel in a plain image is altered. On the other hand, UACI, or the unified average
changing intensity, measures the average intensity difference between a plain image and
its encrypted counterpart. The ideal values for NPCR and UACI are set at 100% and
33.33%, respectively. When regarding C1 and C2 as matrices of size n × m representing the
encrypted image before and after the modification of the original image, these quantities
are defined as

NPCR =
∑i,j Di,j

m × n
× 100%,

UACI =
∑i,j |c1

i,j − c2
i,j|

255 × n × m
× 100%

where

Di,j =

{
1 if c1

i,j ̸= c2
i,j,

0 if c1
i,j = c2

i,j.

The results related to this test for color and gray images are given in Tables 4 and 5. In
these tables, in each row, the name of the image and the corresponding pixel that has been
changed are specified. Based on these results, it can be observed that the output values are
close to the ideal values.

Table 4. NPCR and UACI analysis of grayscale images.

Image NPCR UACI Image NPCR UACI

Boat (1,1) = 0 99.6114 33.4516 Boat (200,200) = 0 99.6151 33.4622
Peppers (1,1) = 0 99.6140 33.4915 Peppers (200,200) = 0 99.5978 33.4319
Lena (1,1) = 0 99.6058 33.4842 Lena (200,200) = 0 99.6071 33.4679

Table 5. NPCR and UACI analysis of color images.

Image NPCR UACI Image NPCR UACI

4.1.01 (1,1) = 0 99.6141 33.5025 4.1.01 (200,200) = 0 99.6150 33.4492
4.1.02 (1,1) = 0 99.6108 33.4912 4.1.02 (200,200) = 0 99.6026 33.4843
4.1.05 (1,1) = 0 99.6081 33.4551 4.1.05 (200,200) = 0 99.6058 33.4911
4.1.06 (1,1) = 0 99.6078 33.4418 4.1.06 (200,200) = 0 99.6049 33.4559

Encrypted images should have the maximum difference from the plain images. To
check the similarity of two images, various tests are available, among which we can refer to
the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) tests. If the
values of the SSIM are close to zero and the PSNR is less than 10 dB, then it can be said that
these images are different. In this case, the sequences of the original images and encrypted
images are combined, and the results are reported. In this test, the images of the peppers,
boat, and watch, with dimensions of 512 × 512, are used, and the key space is considered as
α = 0.90, r = 0.4, h = 0.001, x0 = 0.25, and L = [0.5711, 0.5575, 0.7743, 0.6308]. The results for
these tests are presented in Table 6 and compared with the results in [44]. According to these
results, it can be observed that the differences between the encrypted images and the plain
images are evident. For this example, the sequences of the input, encrypted, and decrypted
images, as well as their histograms, are depicted in Figure 15. According to the results, it can
be seen that the histograms of the plain and decrypted images are similar, but the histogram
of the encrypted image has a uniform distribution. Moreover, the NPCR and UACI values
and correlation coefficients are reported and compared in Tables 7 and 8, respectively.
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(a)

(b)

(c)

(d) (e) (f)
Figure 15. Encryption and decryption results: (a) input sequence images, (b) encrypted sequence
images, (c) decrypted sequence images, (d) histogram of plain images, (e) histogram of encrypted
images, (f) histogram of decrypted images.

Table 6. Analysis of encryption quality.

Method PSNR SSIM

Proposed algorithm 8.6929 2.6971 × 10−4

Algorithm in [44] 8.8260 1.3449 × 10−6

Table 7. NPCR and UACI values.

Method NPCR UACI

Proposed algorithm 99.6161 33.4514
Algorithm in [44] 99.6060 33.5126
Algorithm in [45] 99.9100 33.4800
Algorithm in [40] 99.6250 33.4510
Algorithm in [41] 99.1841 33.5284
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Table 8. Correlation coefficients of encrypted images.

Method Horizontal Vertical Diagonal

Proposed algorithm −0.0001 0.0012 0.0005
Algorithm in [44] −0.0003 0.0011 0.0013
Algorithm in [45] −0.0036 0.0026 0.0012
Algorithm in [40] −0.0016 0.0057 −0.0189
Algorithm in [41] 0.0034 0.0015 0.0008

4.4. Noise and Data Loss Attacks

Some attacks are not aimed at decrypting information, but rather at causing destruc-
tion, such as noise and data loss attacks. These attacks result in the loss of certain parts
of the information. The results for this test are given in Figures 16 and 17. In Figure 16,
for the noise attack, salt and pepper noise with a density of 0.2 is used. Additionally,
as seen in Figure 17, after the encrypted images are hidden in the host image, a part of
the visually meaningful image is lost. Subsequently, the algorithm’s extraction steps are
executed. Based on the obtained outcomes, it is evident that the encrypted images remain
identifiable. Hence, it can be concluded that the suggested algorithm effectively withstands
attacks involving noise and data loss.

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 16. Results of the data loss and noise attacks: (a) data loss attacked image, (c–f) results of
the proposed algorithm after data loss attack, (b) noise attacked image, (g–j) results of the proposed
algorithm after noise attack.
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(a) (b)

(c) (d) (e)

Figure 17. Results of the data loss attack for visually meaningful image: (a) visually meaningful
image after data loss attack, (b–e) restored images after data loss attack.

5. Conclusions

This paper introduces a hybrid chaos system that addresses several issues encountered
in previous systems, such as the limited chaos area and the need for a uniform distribution
in production sequences. To check the chaotic behavior of the proposed system, various
types of tests, including the histogram, trajectory, Lyapunov exponent, and 0–1 tests,
are evaluated. The NIST test is also used to check the randomness of the production
sequence of the proposed system. The results of these tests show the effectiveness of the
proposed system in producing a sequence with a chaotic structure. As an illustration
of the application of this system, an algorithm for the encryption and concealment of
images within meaningful images is provided. Various statistical and security parameters
are utilized to assess the security of the presented algorithm, and the results indicate the
efficiency of the proposed hybrid system and the proposed algorithm in the secure transfer
of images.
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