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Abstract: Evolutionary algorithms have been widely applied for solving multi-objective optimization
problems, while the feature selection in classification can also be treated as a discrete bi-objective
optimization problem if attempting to minimize both the classification error and the ratio of selected
features. However, traditional multi-objective evolutionary algorithms (MOEAs) may have draw-
backs for tackling large-scale feature selection, due to the curse of dimensionality in the decision
space. Therefore, in this paper, we concentrated on designing an multi-task decomposition-based evo-
lutionary algorithm (abbreviated as MTDEA), especially for handling high-dimensional bi-objective
feature selection in classification. To be more specific, multiple subpopulations related to different
evolutionary tasks are separately initialized and then adaptively merged into a single integrated
population during the evolution. Moreover, the ideal points for these multi-task subpopulations are
dynamically adjusted every generation, in order to achieve different search preferences and evolution-
ary directions. In the experiments, the proposed MTDEA was compared with seven state-of-the-art
MOEAs on 20 high-dimensional classification datasets in terms of three performance indicators, along
with using comprehensive Wilcoxon and Friedman tests. It was found that the MTDEA performed
the best on most datasets, with a significantly better search ability and promising efficiency.

Keywords: bi-objective feature selection; evolutionary algorithm; high-dimensional classification data;
multi-task decomposition

MSC: 68W50

1. Introduction

Evolutionary algorithms [1] have been widely-used as common tools to solve multi-
objective optimization problems (MOPs) [2] during the past decades. In fact, when the
number of objectives to be optimized is more than one, they are normally contradictory to
each other, and therefore multi-objective evolutionary algorithms (MOEAs) [3] are used for
finding a set of nondominated solutions. Compared with other meta-heuristics [4], MOEAs
have the advantages of a population-based search mode and no need of domain knowledge.
Thus, a huge variety of MOEAs have been proposed all over the world and can be roughly
divided into the following categories: dominance-based MOEAs [5–8], decomposition-
based MOEAs [9–13], indicator-based MOEAs [14–17], surrogate-based MOEAs [18–20],
cooperative coevolutionary MOEAs [21–23], multi-task MOEAs [24–26], and so on. There
are also many other kinds of excellent MOEAs [27–29], including the novel multi-objective
particle swarm optimization algorithm proposed by Leung et al. [30], which adopted a
hybrid global leader selection strategy with two leaders: one for exploration and the other
for exploitation. Moreover, MOEAs have also been used to solve many real-world optimiza-
tion problems [31–33], such as system control [34,35], community detection [36,37], network
construction [38–40], task allocation [41,42], and feature selection [43,44]. Generally speaking,
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feature selection is normally used to select useful feature subsets for classification [45], while
the bi-objective feature selection problem usually seeks to minimize both the classification
error and the number of selected features [46].

However, due to the curse of dimensionality in the decision space as the number of
features expands to large scale, traditional MOEAs are likely to encounter setbacks when
tackling bi-objective feature selection. In fact, the large-scale multi-objective optimization
problem (LSMOP) [47] remains challenging for most MOEAs, although many MOEAs
have attempted to solve it. For example, Ma et al. [48] and Zhang et al. [49] focused on
analyzing different kinds of decision variables before evolution, while Bai et al. [50] and
Yang et al. [51] proposed decision-variable-based MOEAs for solving continuous LSMOPs.
However, not all large-scale MOEAs can be used for discrete optimization, especially for
feature selection that has to face the complex interrelationships among features and a
large number of feasible feature combinations. One possible approach is to bring in the
multi-task framework [52,53] for cooperative evolution, as this can achieve an overall
effect of learning by transferring genetic knowledge between different evolutionary tasks.
Many MOEAs have already adopted multi-tasking [54–56] and it seems quite promising
for decomposition-based MOEAs to be integrated with the multi-task framework, due
to the intrinsic parallelism characteristics inside the weight-vector-related aggregation
functions [43].

In fact, the integration of multi-task mechanisms with the decomposition-based evo-
lutionary approaches is theoretically appropriate, mainly because of the following three
reasons. First, both multi-task mechanisms and decomposition-based approaches share
the same philosophy: to decompose a complex problem (task) into multiple interrelated
or independent subproblems (tasks), in order to solve the problem (task) more efficiently
and comprehensively. Second, each subproblem in a decomposition-based MOEA can be
treated as an independent search task, whose search behaviors can be adjusted by changing
the direction of the related weight vector. Third, the global ideal point for a decomposition
based MOEA controls the general search areas, while different global ideal points would
make the algorithm display quite different search preferences, which can be combined
with the multi-task mechanism, allowing different global ideal points to represent different
evolutionary search tasks. The abovementioned third point is exactly what is made use of
in this paper and also acted as our major motivation.

Therefore, in this paper, we aimed to design an adaptive decomposition-based MOEA
framework combined with a dynamic multi-task mechanism, named a multi-task
decomposition-based evolutionary algorithm (MTDEA), for tackling the large-scale bi-
objective evolutionary feature selection problem in high-dimensional classification datasets.
To be more specific, we attempted to organically combine a multi-task mechanism with
the decomposition-based approach to self-adaptively adjust the search preferences and
evolutionary directions for each task-related subpopulation, in order to improve both the
optimization and classification performance, and to achieve cooperative evolution within
the population for better diversity and convergence. Overall, our major contributions can
be summarized as follows:

• First, a dynamic multi-task mechanism is designed and combined with the decomposition-
based MOEA framework, which assigns multiple evolutionary search tasks for different
subpopulations within the entire population and then conditionally merges them into
a single task or an integrated population as the evolutionary process goes on, for
tackling the large-scale bi-objective feature selection in a more effective way.

• Second, an adaptive decomposition-based MOEA framework is set up, which coop-
erates with the above multi-task mechanism via adaptively adjusting the ideal point
for each subpopulation related to different tasks, so that each task has distinct search
biases and focuses its computational resources on searching more productive areas in
the objective space.

• Third, a series of comprehensive studies were conducted in experiments to analyze
the optimization and classification performance of the proposed MTDEA algorithm
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against other state-of-the-art MOEAs, in terms of multiple indicators and using a
variety of high-dimensional classification datasets.

The remainder of this paper is organized as follows: First of all, the related works
are introduced in Section 2. Then, the proposed algorithm MTDEA is comprehensively
illustrated in Section 3. The experiment setups are given in Section 4, while the empirical
results are studied in Section 5. Last, the conclusions are given in Section 6.

2. Related Works
2.1. Bi-Objective Feature Selection Problem

Generally, a multi-objective feature selection problem [57] can be defined as a multi-
objective optimization problem, shown as follows:

minimize F(x) = ( f1(x), f2(x), . . . , fM(x))T

subject to x = (x1, x2, . . . , xD), xi = {0, 1}
(1)

where M is the total number of objectives to be optimized, and D is the full number of
features that can be selected, i.e., also the dimensionality of the decision space. In this paper,
M is set to 2, and F(x) is the objective vector of x, while fi(x) is the objective value in the fi
direction. x = (x1, x2, . . . , xD) is the decision vector of a certain solution, while the value
of 1 means selecting that feature and 0 means not. In addition, the first objective function
f1(x) can be further defined as follows:

f1(x) =
D

∑
i=1

xi/D (2)

where its function values are between 0 and 1, i.e., ∈ {0, 1/D, 2/D, . . . , 1}, denoted as the
rate of currently selected features. Moreover, the second objective function f2(x) denotes
the resultant classification error rate for the previously selected features in x, whose function
values also discretely range from 0 to 1. Given the results of TP (true positive), TN (true
negative), FP (false positive), and FN (false negative), f2(x) can be formalized as follows:

f2(x) =
FP + FN

TP + TN + FP + FN
(3)

2.2. Evolutionary Feature Selection Methods

In the past decades, evolutionary feature selection [58] has been roughly categorized
into wrapper-based or the filter-based approaches [59,60]. Generally, a wrapper-based
approach [61,62] uses a classification model, like SVM (support vector machine) or KNN
(K-nearest neighbor) [63], as a “black box” to evaluate the classification accuracy, while the
filter-based approach [64,65] is independent of any classifier and ignores the classification
results of the currently selected features. Thus, a wrapper-based approach is normally
more accurate but may consume a higher computational cost [66–68]. In this paper, the
wrapper-based approach is adopted for bi-objective feature selection, and in fact, many
other such MOEAs have been proposed in the last few years [69]. For example, in 2020,
Tian et al. [70] proposed a large-scale MOEA framework, named SparseEA, based on pre-
analyzing each feature’s classification performance, which however, would consume a large
number of objective function evaluations for high-dimensional datasets. Subsequently,
Xu et al. [71] proposed a duplication-analysis-based MOEA, named DAEA, with an
efficient reproduction method to generate more valid and diverse offspring, but its tested
feature dimensionality has not yet reached 10000. Following the idea of DAEA, Jiao
et al. [72] modified the solution duplication handling method and further designed a
problem reformulation mechanism, named PRDH, whose applicability across other MOEA
frameworks remains unconfirmed. In 2022, Cheng et al. [73] proposed a steering-matrix-
based algorithm for high-dimensional classification, named SM-MOEA, which was quiet
efficient in tackling large-scale optimization, but its generalization ability still needs to be
verified on more datasets, as only 12 datasets were tested in their work.
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2.3. Decomposition-Based MOEA Approaches

Since its first introduction in the famous algorithm MOEA/D [74], a great number
of decomposition-based MOEAs have been proposed all around the world [75–79]. To
be more specific, a decomposition-based approach uses a series of uniformly distributed
weight vectors as the aggregation functions to decompose a complex MOP into a set of
simpler single-objective optimization problems that are related to each weight vector one
by one.Generally speaking, there are three widely-used aggregation functions for decompo-
sition, i.e., the weighted sum (WS) approach [80], the Tchebycheff (TCH) approach [81], and
the penalty-based boundary intersection (PBI) approach [82]. The TCH approach is further
introduced here, as it was the original decomposition approach adopted in MOEA/D and
is also one of the comparison algorithms used in our later experiment. In detail, the TCH
approach can be formally defined as follows:

minimize gtch(x|w, z) = max
1≤i≤M

{| fi(x)− zi|∗wi}

subject to x = (x1, x2, . . . , xD), xi = {0, 1}
(4)

where w and z respectively denote the current weight vector and the ideal point, while the
selection principle is based on a Max-Min mechanism that first calculates the maximum
values and then selects the minimum one.

3. Proposed Algorithm

In this section, we first introduce the general framework of the proposed MTDEA, and
then further illustrate its essential components, i.e., initialization, reproduction, environ-
mental selection, and task merging processes.

3.1. General Framework

The general framework of the MTDEA is shown in Algorithm 1, where the popu-
lation size N and the decision space dimension D (i.e., the total number of features) are
input as the primary parameters. In brief, its general framework is similar to traditional
MOEAs but brings in multi-task factors and adds a task merging process at the end of
every evolutionary generation. In detail, each solution in the population is related with a
task number, which are initialized together at the beginning and correlated closely through-
out the subsequent evolution. The implicit relationship between solutions and tasks is
dynamically maintained by an external array with two rows and N columns, where the
first row stores the solution indexes and the second row stores the corresponding task
numbers. More specific relationship and constructions of the initial tasks and population
are shown in Figure 1, which will be further illustrated in Section 3.2. As a result, the
reproduction process of the MTDEA also uses a multi-task mechanism for cooperatively
exchanging genetic information between the different tasks, which will be further illus-
trated in Section 3.3. Moreover, the duplicated decision vectors should first be removed
before separately truncating each task-related subpopulation from the current population
and offspring, while the detailed selection process based on decomposition will be shown
in Section 3.4. At last, the task merging process dynamically decides whether to merge
each two tasks or not and will eventually integrate all the tasks into a single task, details of
which will be given in Section 3.5.

3.2. Initialization Process

The initialization process of the MTDEA is shown in Algorithm 2, which also invokes
Algorithm 3. During initialization, there are a total of three subpopulations to be generated
related with different task numbers. The implicit inner relationship between the solutions
and tasks is shown in Figure 1, assuming a population size of 100. It can be seen from
Figure 1 that the first 25% of solutions are related to task-1, the median 50% to task-2, and
the last 25% to task-3, with each solution corresponding one-to-one to a task number at the
same index position. Thus, the whole population can be split into three subpopulations,
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and the generation of a new subpopulation is shown in Algorithm 3, where the so-called
distribution axis parameter is input to roughly control the solution distributions in the
objective space.

Algorithm 1 General Framework (N, D)

Input: population size N, decision space dimension D;
Output: final population Pop;

1: [Pop, T] = Initialize(N, D); // Algorithm 2
2: while termination criterion is not reached do
3: [Pop∗, T∗] = Reproduce(Pop, T); // Algorithm 4
4: for each unique task i from T do
5: j← get the quantity of task-i solutions in Pop

according to the task numbers in T;
6: ψ← get all the task-i solutions in Pop and Pop∗

according to the task numbers in T and T∗;
7: ψ← remove duplicated decision vectors in ψ;
8: ψ = Select(ψ, i, j); // Algorithm 5
9: replace all the task-i solutions in Pop with ψ;

10: end for
11: if more than one task exist then
12: T = Merge(Pop, T); // Algorithm 6
13: end if
14: end while

Figure 1. Implicit inner relationship between the solutions and tasks with a population size of 100
and three subpopulations inside.

Algorithm 2 Initialize (N, D)

Input: population size N, decision space dimension D;
Output: initial population Pop, related tasks T;

1: Tasks = [1, 2, 3]; // task numbers
2: Axes = [0.25, 0.5, 0.75]; // distribution axes
3: Sizes = [N/4, N/2, N/4]; // subpopulation sizes
4: Pop = ∅, T = ∅;
5: for i = 1, 2, . . . , Length(Tasks) do
6: Pop = Pop ∪ NewPop(Sizes(i), D, Axes(i));
7: ψ = Ones(1, Sizes(i)); // create a vector of ones
8: T = T ∪ (ψ. ∗ Tasks(i));
9: end for
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Algorithm 3 NewPop(K, D, A)

Input: subpopulation size K, decision space dimension D, distribution axis A;
Output: new subpopulation SubPop;

1: SubPop = Zeros(K, D); // create a matrix of zeros
2: for i = 1, 2, . . . , K do
3: for j = 1, 2, . . . , D do
4: if ρ < A then // ρ is a random probability
5: SubPop(i, j) = 1; // select the jth feature
6: end if
7: end for
8: end for

As can be seen from Line 4 in Algorithm 3, the distribution axis A plays a role as the
probability threshold, while a larger threshold indicates a higher probability of randomly
selecting this feature, which also means that the resultant decision vector is likely to select
more features. Reflected in the objective space, this implies that the overall distribution
of the newly generated solutions should be more backward in the f1 direction for a larger
distribution axis value, and vice versa. Figure 2 gives an intuitive example of how the three
subpopulations related to different tasks are likely to be distributed in the objective space. It
is shown in Figure 2 that each newly generated subpopulation is assumed to be distributed
around their preset axes in the f1 direction. Moreover, the gray arrows in Figure 2 point out
the expected evolutionary direction of each subpopulation, corresponding to the specific
search bias of each related task, which will be further illustrated in Section 3.4.

Figure 2. An example of how three initial subpopulations are likely to be distributed in the objective
space, with different distribution axes input: 0.25, 0.5, and 0.75, respectively, for SubPop1, SubPop2,
and SubPop3, while solutions are shown in dots and general search directions are shown in arrows.

3.3. Reproduction Process

The reproduction process of the MTDEA is shown in Algorithm 4, where the current
population and the related task set are input. First, a total of N (i.e., Length(Pop)) pairs of
parent solutions are randomly selected from the current population. Then, for each pair of
parents, a corresponding new offspring will be generated after conducting the so-called
valid crossover (from Lines 6 to 10 in Algorithm 4) and bitwise mutation (from Lines 11 to
13 in Algorithm 4) operations. It should be noted that the related task number for a new
offspring is the same as its parent p1. Moreover, the valid crossover will not occur if the
two parents have different tasks and the random probability ρ fails to reach 0.5, which
acts as a key parameter for controlling the genetic information transfer among different
tasks (Line 6 in Algorithm 4). Here, it is set to 0.5 for the sake of a relatively uniform
random selection, without loss of generality. The so-called valid crossover operation can
also be further referred to in our previous work [71], a simple example of which is shown in
Figure 3, where two decision vectors are drawn as parents and only the gray parts owning
different decision variable values are allowed to swap genes randomly.
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Algorithm 4 Reproduce(Pop, T)

Input: current population Pop, related tasks T;
Output: offspring solutions Pop∗, offspring tasks T∗;

1: Pairs ← randomly select Length(Pop) pairs of solutions from Pop as parents; //
random mating

2: for i = 1, 2, . . . , Length(Pop) do
3: p1, p2 ← get the ith pair of parents from Pairs;
4: t1, t2 ← get the related task numbers of p1, p2

according to the corresponding indexes in T;
5: T∗(i) = t1; // assign offspring task number
6: if (t1 = t2) ∥ (t1 ̸= t2 ∩ ρ < 0.5) then
7: j← find the indexes of different decision

variable values between p1 and p2;
8: j← uniformly randomly select indexes from j;
9: p1(j) = p2(j); // valid crossover

10: end if
11: ρ← get a set of Length(p1) random probabilities;
12: j← get the indexes satisfying ρ < 1/Length(p1);
13: p1(j) = ¬p1(j); // bitwise mutation
14: Pop∗(i) = p1; // get the new offspring
15: end for

Figure 3. A simple example of the adopted valid crossover operation between two decision vectors
during reproduction.

3.4. Environmental Selection Process

The environmental selection process of the MTDEA is shown in Algorithm 5, where a
certain task-related union population (subpopulation + offspring) is input for further trun-
cation into the required size of subpopulation. The whole selection process is based on
decomposition with a set of uniformly distributed weight vectors in the objective space, which
selects the best qualified solution for each weight-vector-related aggregation function (the
so-called subproblem) one by one, until the required number of solutions have been selected.
Combined with the multi-task mechanism, the major differences of the proposed MTDEA
from the traditional-decomposition based MOEAs are that it uses different ideal points (i.e.,
Zmin in Algorithm 5) for different related tasks (also shown in Lines 5 to 11 in Algorithm 5)
and uses a normalized modified inverse Tchebycheff (abbreviated as I-TCH) approach as the
aggregation function for decomposition. A simple example of how to adaptively adjust the
ideal point is given in Figure 4 for a more intuitive explanation.

Figure 4. An example of how the ideal point Zmin (drawn as stars in this figure) is adaptively
adjusted according to the related task numbers for each subpopulation: task-1, task-2, and task-3,
while weight vectors are roughly shown in arrows.
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Algorithm 5 Select(ψ, τ, K)

Input: union subpopulation ψ, related task number τ, required subpopulation size K;
Output: required subpopulation ψ;

1: W ← get a set of K normalized uniformly distributed weight vectors in the objective
space for decomposition;

2: S← get a K-dimensional vector of false boolean values;
3: Zmin← get the best ideal point from ψ;
4: Zmax ← get the worst ideal point from ψ;
5: if τ == 1 then
6: set the f1 objective value of Zmin to zero;
7: else if τ == 2 then
8: normalize objective values of ψ by Zmax-Zmin;
9: else if τ == 3 then

10: set the f2 objective value of Zmin to zero;
11: end if
12: for i = 1, 2, . . . , K do
13: j← get indexes of all the false boolean values in S;
14: f it← get the fitness of all the solutions in ψ(j) by

Equation (5), along with Zmin and W(i) input;
15: best← get the index of the smallest value in f it;
16: set the boolean value of S(j(best)) to be true;
17: end for
18: ψ = ψ(S); // get the final selected solutions

In Figure 4, the ideal point Zmin is drawn as stars for the three different task-related
subpopulations. As previously shown in Lines 6 and 10 of Algorithm 5, Zmin for the task-1
subpopulation is transformed by changing its f1 objective value to zero, thereby moving
the ideal point to the f2 axis, as shown in Figure 4. The same goes for the ideal point
of the task-3 subpopulation, which is moved to the f1 axis by contrast, while that of the
task-2 subpopulation has no transformation. In this way, the three different task-related
subpopulations can have distinct evolutionary search behaviors, with their exploring
preferences adjusted in different directions in the objective space, while task-1 prefers to
search more of the sparse areas in the f1 direction, task-3 prefers to search more of the
sparse areas in the f2 direction, and task-2 makes a balanced compromise between the
other two tasks. It should also be noted that the weight vectors for each subpopulation are
uniformly generated and distributed in the objective space, which uses the same method
recommended in the classic MOEA/D algorithm [80]. In brief, they are uniformly sampled
from a normalized hyperplane in the objective space; more details can be referred to in the
literature for the MOEA/D [80].

However, this also requires that the final optimal solution for a weight vector should
be obtained as closely as possible to both the weight vector itself and the ideal point
Zmin. Thus, to better achieve this, the previously mentioned normalized modified I-TCH
approach is then adopted in this paper as the aggregation function for decomposition,
which can be formally defined as follows:

minimize gi-tch(x|w, z) = max
1≤i≤M

{| fi(x)− zi |/wi}

subject to x = (x1, x2, . . . , xD), xi = {0, 1}
(5)

where the number of objectives M is set to two, and w or z respectively denotes the
current weight vector W(i) or the ideal point Zmin in Algorithm 5, while x denotes the D-
dimensional decision vector of a certain solution. It can be seen that the above Equation (5)
is almost the same as the previously introduced Equation (4) but uses wi as a denominator
instead of a multiplier. In fact, one of the comparison algorithms (i.e., MOEA/AWA [83]) in
our experiments also adopted the I-TCH approach for decomposition, which also proved
its effectiveness, while more details can be found in the following reference [83]. It is also
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worth noting that Equation (5) can be treated as the final fitness function in this paper,
while a smaller value of Equation (5) is preferred for environmental selection.

3.5. Task Merging Process

The task merging process of the MTDEA is shown in Algorithm 6, where the current
population and the related task numbers are input. First, it is seen from Algorithm 6 that the
merging of tasks is divided into the merging of task-1 and task-2, and the merging of task-3
and task-2. Nevertheless, they share the same merging rule based on the coverage of unique
f1 objective values from two different tasks. As adopted in Lines 5 and 12 of Algorithm 6,
if the coverage rate is beyond half, or if task-1 or task-3 is totally covered by task-2 in the f1
direction, then the other two tasks will be merged into task-2, and eventually, there will be
only a single task-2 remaining for evolution. Moreover, an intuitive picture of the so-called
coverage in the f1 direction (also shown as ψ1 and ψ2 in Algorithm 6) is given in Figure 5
to further explain the above process, which takes the merging of task-1 and task-2 as an
example. As can be seen from Figure 5, it is actually quite common in bi-objective feature
selection that two different solutions may share the same f1 value, meaning they own the
same number of selected features (but probably have different feature combinations). Thus,
the coverage of solutions in the f1 direction is naturally suitable for use as a criterion for
determining the distribution relationship between two subpopulations during evolution.

Algorithm 6 Merge(Pop, T)

Input: current population Pop, related tasks T;
Output: updated tasks T;

1: ψ2 ← get unique f1 objective values of all the task-2 solutions in Pop according to the
task numbers in T;

2: if task-1 still exists then
3: ψ1 ← get unique f1 objective values of all the task-1

solutions in Pop according to the task numbers in T;
4: k← get the number of all the duplicated elements

between ψ1 and ψ2;
5: if (k/Length(ψ2)) > 0.5 ∥ k == Length(ψ1) then
6: set all the task-1 numbers in T to be task-2;
7: end if
8: end if
9: if task-3 still exists then

10: ψ3 ← get unique f1 objective values of all the task-3
solutions in Pop according to the task numbers in T;

11: k← get the number of all the duplicated elements
between ψ3 and ψ2;

12: if (k/Length(ψ2)) > 0.5 ∥ k == Length(ψ3) then
13: set all the task-3 numbers in T to be task-2;
14: end if
15: end if

Figure 5. An example of how solutions cover the f1 direction for the task-1 and task-2.
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4. Experimental Setups
4.1. Classification Datasets

A total of 20 open-source classification datasets [84] were used as test problems to
evaluate the search performance of the compared MOEAs in tackling bi-objective feature
selection. More detailed information of these datasets is given in Table 1, with the number
of total features sorted in ascending order. It can be seen that the number of total features for
each dataset varied from 1024 to 10,509, which covered a wide variety of feature dimensions
and concentrated on high dimensionality.In addition, the number of samples varied from
50 to 400, and the classes ranged from 2 to 40, also suggesting the comprehensiveness of
the test problems.

Table 1. Attributes of each dataset used for test problems.

No. Dataset Feature Sample Class

1 ORL 1024 400 40
2 Yale 1024 165 15
3 Colon 2000 62 2
4 SRBCT 2308 83 4
5 AR10P 2400 130 10
6 PIE10P 2420 210 10
7 Lymphoma 4026 96 9
9 DLBCL 5469 77 2
8 TOX171 5748 171 4
10 Brain1 5920 90 5
11 Leukemia 7070 72 2
12 CNS 7129 60 2
13 ALLAML 7129 72 2
14 Carcinom 9182 174 11
15 Nci9 9712 60 9
16 Arcene 10,000 200 2
17 Pixraw10P 10,000 100 10
18 Orlraws10P 10,304 100 10
19 Brain2 10,367 50 4
20 Prostate 10,509 102 2

4.2. Comparison Algorithms

Seven state-of-the-art MOEAs were adopted in this paper as comparison algorithms
against the proposed MTDEA, i.e., the NSGA-II (nondominated sorting-based genetic
algorithm) [85], MOEA/D (MOEA based on decomposition) [80], MOEA/AWA (MOEA
with adaptive weight adjustment) [83], MOEA/HD (MOEA based on hierarchical decom-
position) [11], SparseEA (sparse evolutionary algorithm) [70], DAEA (duplication-analysis-
based evolutionary algorithm) [71], and PRDH (problem reformation and duplication
handling based algorithm) [72]. Among them, the NSGA-II and MOEA/D are among the
most classic and well-known MOEAs based on dominance and decomposition, respectively.
MOEA/AWA is also a decomposition-based MOEA but further modifies the adjustment
of weight vectors in order to handle convex or disconnected Pareto fronts. Moreover, the
MOEA/AWA also uses the same inverse Tchebycheff approach as the MTDEA, and thereby
having comparative values. The MOEA/HD is a recently published MOEA based on
dominance and decomposition, and especially designed for solving MOPs with complex
Pareto fronts. The SparseEA, DAEA and PRDH are recently published MOEAs based
on dominance and specifically designed for tackling large-scale and discrete MOPs, like
bi-objective feature selection in classification.

4.3. Performance Indicators

In this work, multiple performance indicators (i.e., hypervolume [86], minimum
classification error, and number of selected features [71]) were used to measure the com-
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prehensive performance of the compared algorithms, in terms of both optimization and
classification. More specifically, the hypervolume (HV) indicator was used as the main
metric to measure the MOEAs’ general optimization performance, whose reference point
was set to (1, 1). In addition, the minimum classification error (MCE) indicator and the
number of selected features (NSF) indicator were used to measure the MOEAs’ classifica-
tion performance, related to the best converged solution found in the f2 direction (i.e., the
solution with the best classification accuracy). Here, MCE denotes the classification error
rate of the solution and NSF denotes the corresponding number of selected features. Nor-
mally, a greater HV value means better performance, while smaller MCE and NSF values
are preferred by contrast. Finally, Wilcoxon’s test with a 5% significance level was adopted
to identify the significant differences between each pair of algorithms, while Friedman’s
test was utilized to calculate the overall mean ranks among all algorithms.

4.4. Parameter Settings

In the experiment, all the compared algorithms adopted the same traditional initializa-
tion method, for the sake of fairness, while the reproduction methods and other parameter
settings taken from the algorithms’ references.All algorithms were coded and run on an
open-source MATLAB platform called PlatEMO [87]. For classification, each dataset was
randomly divided into training and test subsets, with a proportion of 70/30, according to
the stratified split process [71]. Moreover, a KNN (K = 5) classification model was utilized
with 10-fold cross-validation on the training data, so as to avoid feature selection bias [88].
Last, each experiment was independently run 20 times with randomly preset starting seeds,
while the population size for each algorithm was set to 100 and the termination criterion
(i.e., the number of objective function evaluations) was set to 10,000 (about 100 generations).

5. Experimental Studies

In this section, we first study the general empirical results of the algorithms on each
dataset, in terms of the three performance metrics. Then, we analyze the nondominated
solution distributions obtained by each algorithm in the objective space during optimiza-
tion. Moreover, the proposed MTDEA is further analyzed by comparing it with a modified
benchmark algorithm to verify the contribution of its essential components. Finally, the
computational time of each algorithm was recorded and compared to analyze the computa-
tional efficiency of the proposed algorithm.

5.1. General Performance Studies

The general performances of each algorithm run on all classification datasets are shown
in Tables 2–5. First of all, it is suggested from the overall mean ranks of each algorithm on
all datasets, in terms of the Friedman’s test as shown in Table 2, that the proposed MTDEA
always ranked first for all three performance metrics (HV, MCE, and NSF). In contrast, the
DAEA generally fell behind the MTDEA and ranked second in terms of all three metrics,
while the SparseEA seemed to perform much better in terms of MCE than for the other two
metrics. Generally, the highest HV rank being for the MTDEA implied its comprehensive
advantages in both diversity and convergence in multi-objective optimization, while the
highest MCE rank being for MTDEA implied its overall superiority in finding solutions
with the best classification accuracy.In addition, the highest NSF rank being for the MTDEA
suggests its promising computational efficiency, because the number of selected features
generally affects the complexity of classification models for learning (normally a larger
number of selected features leads to a higher computational cost of classification). The
computational time of each algorithm will be further analyzed in Section 5.4.
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Table 2. General mean ranks calculated using Friedman’s test for each algorithm in terms of each
metric, with best performances marked in gray.

Metric MTDEA NSGA-II MOEA/D MOEA/AWA MOEA/HD SparseEA DAEA PRDH
HV 1.012 5.215 3.917 5.290 6.275 7.530 2.192 4.567

MCE 3.615 4.688 5.124 4.787 5.030 4.303 3.740 4.714
NSF 1.000 5.270 3.112 5.640 6.461 7.949 2.110 4.457

Table 3. Mean HV performances of each algorithm on each dataset, with the best performance
marked in gray, and insignificant differences prefixed by b.

Dataset MTDEA NSGA-II MOEA/D MOEA/AWA MOEA/HD SparseEA DAEA PRDH

ORL
7.928e-01 6.103e-01 6.642e-01 6.576e-01 5.996e-01 5.859e-01 7.249e-01 6.350e-01
±1.80e-02 ±1.08e-02 ±1.53e-02 ±1.79e-02 ±1.25e-02 ±9.94e-03 ±1.75e-02 ±1.18e-02

Yale
6.597e-01 4.878e-01 5.127e-01 5.199e-01 4.920e-01 4.811e-01 6.050e-01 5.071e-01
±3.18e-02 ±1.34e-02 ±2.62e-02 ±2.40e-02 ±3.39e-02 ±1.64e-02 ±2.48e-02 ±2.15e-02

Colon
7.746e-01 5.500e-01 6.078e-01 5.466e-01 5.239e-01 4.987e-01 6.680e-01 5.554e-01
±3.84e-02 ±2.65e-02 ±4.78e-02 ±3.55e-02 ±3.30e-02 ±2.01e-02 ±3.95e-02 ±3.10e-02

SRBCT
6.654e-01 2.841e-01 3.178e-01 2.983e-01 2.554e-01 2.479e-01 3.028e-01 2.768e-01
±1.70e-01 ±2.05e-03 ±2.03e-03 ±2.74e-03 ±1.81e-03 ±1.69e-03 ±1.96e-02 ±3.17e-03

AR10P
4.972e-01 3.631e-01 3.709e-01 3.544e-01 3.449e-01 3.223e-01 4.314e-01 3.603e-01
±2.74e-02 ±2.01e-02 ±2.26e-02 ±1.35e-02 ±1.75e-02 ±1.11e-02 ±2.05e-02 ±1.86e-02

PIE10P
8.127e-01 6.023e-01 6.458e-01 6.003e-01 5.883e-01 5.434e-01 6.982e-01 6.056e-01
±2.00e-02 ±1.06e-02 ±1.13e-02 ±1.29e-02 ±1.22e-02 ±6.44e-03 ±1.57e-02 ±9.92e-03

Lymphoma
7.645e-01 5.603e-01 6.007e-01 5.598e-01 5.456e-01 5.067e-01 6.434e-01 5.626e-01
±2.18e-02 ±9.91e-03 ±9.76e-03 ±1.59e-02 ±8.85e-03 ±1.07e-02 ±1.57e-02 ±6.99e-03

TOX171
6.749e-01 4.829e-01 4.876e-01 4.697e-01 4.776e-01 4.575e-01 5.423e-01 4.907e-01
±2.21e-02 ±8.58e-03 ±1.97e-02 ±1.13e-02 ±1.65e-02 ±1.19e-02 ±1.92e-02 ±1.23e-02

DLBCL
8.054e-01 5.852e-01 5.999e-01 5.722e-01 5.735e-01 5.469e-01 6.703e-01 5.982e-01
±3.06e-02 ±2.02e-02 ±1.82e-02 ±2.17e-02 ±1.67e-02 ±1.83e-02 ±2.12e-02 ±1.77e-02

Brain1
6.496e-01 4.718e-01 4.906e-01 4.657e-01 4.535e-01 4.312e-01 5.127e-01 4.744e-01
±1.38e-02 ±3.11e-03 ±1.09e-02 ±1.06e-02 ±1.00e-02 ±1.78e-03 ±8.53e-03 ±2.57e-03

Leukemia
7.626e-01 5.360e-01 5.450e-01 5.295e-01 5.126e-01 4.972e-01 6.022e-01 5.454e-01
±2.70e-02 ±8.95e-03 ±1.94e-02 ±1.89e-02 ±1.79e-02 ±9.84e-03 ±1.67e-02 ±2.04e-02

CNS
5.255e-01 3.781e-01 3.743e-01 3.690e-01 3.707e-01 3.669e-01 4.408e-01 3.844e-01
±5.88e-02 ±3.28e-02 ±3.32e-02 ±3.09e-02 ±3.25e-02 ±1.57e-02 ±3.03e-02 ±2.94e-02

ALLAML
7.278e-01 5.205e-01 5.358e-01 5.084e-01 5.060e-01 4.853e-01 5.826e-01 5.280e-01
±2.93e-02 ±1.52e-02 ±1.34e-02 ±1.60e-02 ±1.44e-02 ±1.52e-02 ±1.83e-02 ±1.32e-02

Carcinom
7.199e-01 5.180e-01 5.233e-01 5.098e-01 5.091e-01 4.871e-01 5.809e-01 5.193e-01
±1.40e-02 ±1.09e-02 ±1.55e-02 ±1.00e-02 ±1.10e-02 ±8.18e-03 ±1.18e-02 ±7.20e-03

Nci9
3.570e-01 2.406e-01 2.616e-01 2.544e-01 2.370e-01 2.254e-01 2.707e-01 2.451e-01
±2.33e-02 ±2.54e-02 ±2.94e-02 ±2.80e-02 ±2.21e-02 ±2.00e-02 ±2.75e-02 ±2.71e-02

Arcene
5.132e-01 3.625e-01 3.724e-01 3.649e-01 3.445e-01 3.374e-01 3.859e-01 3.647e-01
±4.15e-03 ±1.10e-03 ±1.85e-03 ±2.23e-03 ±1.24e-03 ±1.29e-03 ±2.75e-03 ±1.71e-03

Pixraw10P
8.104e-01 5.795e-01 5.911e-01 5.773e-01 5.640e-01 5.407e-01 6.327e-01 5.846e-01
±6.33e-03 ±2.22e-03 ±9.88e-03 ±7.09e-03 ±7.64e-03 ±1.57e-03 ±9.37e-03 ±2.65e-03

Orlraws10P
7.491e-01 5.390e-01 5.447e-01 5.328e-01 5.297e-01 5.057e-01 5.951e-01 5.444e-01
±1.43e-02 ±7.53e-03 ±9.58e-03 ±1.13e-02 ±8.00e-03 ±3.88e-03 ±8.65e-03 ±4.77e-03

Brain2
5.603e-01 3.903e-01 3.824e-01 3.816e-01 3.782e-01 3.687e-01 4.335e-01 3.898e-01
±2.84e-02 ±2.15e-02 ±2.43e-02 ±2.91e-02 ±2.12e-02 ±1.66e-02 ±2.82e-02 ±1.83e-02

Prostate
6.456e-01 4.629e-01 4.599e-01 4.574e-01 4.559e-01 4.419e-01 5.204e-01 4.693e-01
±2.38e-02 ±1.29e-02 ±1.51e-02 ±1.58e-02 ±1.16e-02 ±8.71e-03 ±1.53e-02 ±1.52e-02
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The more detailed performance of each algorithm on every dataset, in terms of all three
metrics, is presented in Tables 3–5, respectively. It is seen from Tables 3–5 that the MTDEA
generally performed the best on all datasets in Tables 3 and 5 in terms of the HV and NSF
metrics, but it encountered a few insignificant losses in Table 4 in terms of the MCE metric.
To be more specific, in Table 4, although the MTDEA performed the best on 14 out of 20
datasets, it lost out slightly on the 6 others, either against the DAEA or SparseEA, which are
two recently published MOEAs specially designed for tackling bi-objective feature selection
or large-scale discrete optimization. The very few insignificant setbacks of the MTDEA for
the MCE performance were mainly because the MTDEA emphasizes the dynamic balance
between diversity and convergence, while MCE mainly focuses on finding the solution
with the best classification accuracy. In addition, as the “no free lunch” theory says, it is
also impossible for a single method to best solve all kinds of problems.

Table 4. Mean MCE performance of each algorithm on each dataset, with the best performances
marked in gray, and insignificant differences prefixed by b.

Dataset MTDEA NSGA-II MOEA/D MOEA/AWA MOEA/HD SparseEA DAEA PRDH

ORL
1.375e-01 b 1.442e-01 b 1.437e-01 1.475e-01 1.517e-01 1.471e-01 b 1.304e-01 1.487e-01
±1.49e-02 ±2.01e-02 ±1.35e-02 ±1.30e-02 ±2.03e-02 ±1.33e-02 ±1.49e-02 ±1.39e-02

Yale
2.944e-01 3.478e-01 3.622e-01 3.367e-01 3.400e-01 b 3.133e-01 b 2.989e-01 3.500e-01
±3.60e-02 ±2.53e-02 ±3.82e-02 ±3.90e-02 ±5.20e-02 ±2.78e-02 ±3.01e-02 ±3.13e-02

Colon
1.421e-01 2.132e-01 2.079e-01 2.079e-01 2.342e-01 1.974e-01 1.684e-01 2.132e-01
±4.86e-02 ±4.35e-02 ±6.50e-02 ±5.53e-02 ±5.26e-02 ±3.77e-02 ±5.01e-02 ±4.97e-02

SRBCT
2.840e-01 6.400e-01 6.400e-01 6.400e-01 6.400e-01 6.400e-01 6.400e-01 6.400e-01
±2.15e-01 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16

AR10P
4.688e-01 b 4.900e-01 5.200e-01 4.962e-01 5.150e-01 5.075e-01 b 4.700e-01 5.063e-01
±3.52e-02 ±3.38e-02 ±3.77e-02 ±2.47e-02 ±3.08e-02 ±2.00e-02 ±3.10e-02 ±3.02e-02

PIE10P
7.750e-02 9.667e-02 1.033e-01 9.583e-02 1.017e-01 1.017e-01 b 8.583e-02 1.058e-01
±2.25e-02 ±1.28e-02 ±2.27e-02 ±1.42e-02 ±1.42e-02 ±1.07e-02 ±1.82e-02 ±1.56e-02

Lymphoma
1.200e-01 1.350e-01 b 1.300e-01 b 1.333e-01 b 1.300e-01 b 1.300e-01 b 1.250e-01 1.333e-01
±2.27e-02 ±1.31e-02 ±1.49e-02 ±2.16e-02 ±1.03e-02 ±1.84e-02 ±2.39e-02 ±1.08e-02

TOX171
2.038e-01 2.236e-01 2.406e-01 2.330e-01 2.274e-01 b 2.132e-01 b 2.179e-01 2.208e-01
±2.97e-02 ±1.53e-02 ±3.56e-02 ±2.06e-02 ±2.84e-02 ±2.38e-02 ±2.84e-02 ±2.04e-02

DLBCL
7.174e-02 b 5.870e-02 b 7.174e-02 b 6.957e-02 b 6.304e-02 3.913e-02 4.130e-02 4.130e-02
±3.80e-02 ±3.53e-02 ±2.92e-02 ±3.28e-02 ±2.63e-02 ±3.43e-02 ±2.98e-02 ±2.98e-02

Brain1
2.593e-01 b 2.593e-01 b 2.593e-01 b 2.593e-01 b 2.593e-01 b 2.593e-01 b 2.593e-01 b 2.593e-01
±1.20e-02 ±0.00e+00 ±0.00e+00 ±0.00e+00 ±0.00e+00 ±0.00e+00 ±0.00e+00 ±0.00e+00

Leukemia
1.091e-01 1.318e-01 1.455e-01 1.364e-01 1.455e-01 b 1.273e-01 b 1.205e-01 b 1.227e-01
±3.73e-02 ±1.40e-02 ±2.80e-02 ±2.95e-02 ±2.80e-02 ±1.87e-02 ±2.67e-02 ±3.64e-02

CNS
4.000e-01 b 4.139e-01 b 4.417e-01 b 4.167e-01 b 4.167e-01 b 3.833e-01 b 3.833e-01 b 4.083e-01
±7.77e-02 ±6.11e-02 ±5.55e-02 ±6.11e-02 ±5.84e-02 ±3.07e-02 ±4.73e-02 ±5.49e-02

ALLAML
1.455e-01 b 1.568e-01 b 1.591e-01 1.727e-01 b 1.636e-01 b 1.500e-01 b 1.500e-01 b 1.523e-01
±3.79e-02 ±2.75e-02 ±2.33e-02 ±2.80e-02 ±2.28e-02 ±2.99e-02 ±2.60e-02 ±2.22e-02

Carcinom
1.356e-01 b 1.423e-01 1.500e-01 b 1.394e-01 1.500e-01 b 1.385e-01 b 1.327e-01 1.471e-01
±1.59e-02 ±1.91e-02 ±2.30e-02 ±1.51e-02 ±2.03e-02 ±1.60e-02 ±1.64e-02 ±1.29e-02

Nci9
6.289e-01 6.579e-01 b 6.342e-01 b 6.368e-01 b 6.421e-01 6.553e-01 b 6.316e-01 b 6.526e-01
±3.18e-02 ±4.68e-02 ±5.26e-02 ±5.09e-02 ±4.39e-02 ±4.00e-02 ±4.83e-02 ±4.95e-02

Arcene
4.333e-01 b 4.333e-01 b 4.333e-01 b 4.333e-01 b 4.333e-01 b 4.333e-01 b 4.333e-01 b 4.333e-01
±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16 ±1.14e-16

Pixraw10P
3.333e-02 b 3.333e-02 b 3.333e-02 b 3.333e-02 b 3.333e-02 b 3.333e-02 b 3.333e-02 b 3.333e-02
±0.00e+00 ±0.00e+00 ±0.00e+00 ±0.00e+00 ±0.00e+00 ±0.00e+00 ±0.00e+00 ±0.00e+00
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Table 4. Cont.

Dataset MTDEA NSGA-II MOEA/D MOEA/AWA MOEA/HD SparseEA DAEA PRDH

Orlraws10P
1.033e-01 b 1.050e-01 b 1.117e-01 b 1.067e-01 b 1.050e-01 b 1.017e-01 b 1.033e-01 b 1.017e-01
±1.84e-02 ±1.22e-02 ±1.63e-02 ±1.37e-02 ±1.22e-02 ±7.45e-03 ±1.03e-02 ±7.45e-03

Brain2
3.500e-01 3.767e-01 3.967e-01 3.833e-01 3.900e-01 b 3.700e-01 b 3.733e-01 3.833e-01
±3.67e-02 ±3.91e-02 ±4.03e-02 ±5.24e-02 ±3.91e-02 ±3.40e-02 ±4.54e-02 ±2.96e-02

Prostate
2.355e-01 b 2.419e-01 2.613e-01 b 2.387e-01 b 2.435e-01 b 2.274e-01 b 2.258e-01 b 2.371e-01
±3.33e-02 ±2.45e-02 ±2.94e-02 ±2.65e-02 ±1.95e-02 ±1.65e-02 ±2.56e-02 ±2.82e-02

Table 5. Mean NSF performance of each algorithm on each dataset, with best performances marked
in gray, and insignificant differences prefixed by b.

Dataset MTDEA NSGA-II MOEA/D MOEA/AWA MOEA/HD SparseEA DAEA PRDH

ORL
1.301e+02 3.498e+02 2.771e+02 3.257e+02 3.516e+02 4.001e+02 2.272e+02 3.054e+02
±2.37e+01 ±2.55e+01 ±1.95e+01 ±8.52e+01 ±1.56e+01 ±3.34e+01 ±3.23e+01 ±1.35e+01

Yale
1.368e+02 3.340e+02 2.682e+02 3.149e+02 3.291e+02 3.848e+02 2.311e+02 2.966e+02
±2.19e+01 ±2.99e+01 ±1.46e+01 ±5.93e+01 ±1.68e+01 ±2.03e+01 ±4.03e+01 ±1.94e+01

Colon
2.518e+02 6.990e+02 5.509e+02 7.224e+02 7.374e+02 8.752e+02 4.804e+02 6.866e+02
±2.74e+01 ±1.50e+01 ±5.59e+01 ±4.67e+01 ±2.43e+01 ±3.37e+01 ±3.17e+01 ±1.98e+01

SRBCT
2.712e+02 8.142e+02 6.096e+02 7.275e+02 9.884e+02 1.034e+03 7.004e+02 8.581e+02
±5.61e+01 ±1.24e+01 ±1.23e+01 ±1.66e+01 ±1.10e+01 ±1.03e+01 ±1.19e+02 ±1.93e+01

AR10P
3.889e+02 9.154e+02 7.826e+02 9.657e+02 9.311e+02 1.081e+03 6.920e+02 8.866e+02
±4.58e+01 ±1.77e+01 ±2.61e+01 ±5.67e+01 ±2.85e+01 ±3.27e+01 ±7.48e+01 ±1.65e+01

PIE10P
3.518e+02 9.076e+02 7.648e+02 9.489e+02 9.400e+02 1.085e+03 6.721e+02 8.814e+02
±3.11e+01 ±2.51e+01 ±2.78e+01 ±8.51e+01 ±2.50e+01 ±2.95e+01 ±3.75e+01 ±1.65e+01

Lymphoma
6.319e+02 1.600e+03 1.412e+03 1.607e+03 1.688e+03 1.890e+03 1.239e+03 1.598e+03
±4.38e+01 ±2.11e+01 ±2.43e+01 ±7.12e+01 ±4.38e+01 ±1.56e+01 ±7.37e+01 ±2.49e+01

TOX171
1.126e+03 2.510e+03 2.376e+03 2.594e+03 2.530e+03 2.768e+03 2.064e+03 2.465e+03
±7.98e+01 ±6.23e+01 ±3.48e+01 ±8.09e+01 ±3.03e+01 ±3.54e+01 ±6.63e+01 ±4.24e+01

DLBCL
8.355e+02 2.300e+03 2.154e+03 2.342e+03 2.361e+03 2.626e+03 1.838e+03 2.287e+03
±5.62e+01 ±2.54e+01 ±9.42e+01 ±7.18e+01 ±4.26e+01 ±2.31e+01 ±7.16e+01 ±2.78e+01

Brain1
9.804e+02 2.492e+03 2.332e+03 2.544e+03 2.648e+03 2.838e+03 2.143e+03 2.470e+03
±9.27e+01 ±2.65e+01 ±9.29e+01 ±9.00e+01 ±8.53e+01 ±1.52e+01 ±7.27e+01 ±2.19e+01

Leukemia
1.201e+03 3.041e+03 2.893e+03 3.081e+03 3.184e+03 3.423e+03 2.541e+03 3.010e+03
±5.41e+01 ±3.44e+01 ±1.06e+02 ±9.67e+01 ±5.71e+01 ±3.21e+01 ±8.82e+01 ±4.22e+01

CNS
1.375e+03 3.102e+03 2.939e+03 3.193e+03 3.172e+03 3.449e+03 2.550e+03 3.064e+03
±8.44e+01 ±7.67e+01 ±6.44e+01 ±8.03e+01 ±4.51e+01 ±4.15e+01 ±5.91e+01 ±8.10e+01

ALLAML
1.273e+03 3.085e+03 2.930e+03 3.112e+03 3.182e+03 3.450e+03 2.566e+03 3.043e+03
±7.06e+01 ±2.61e+01 ±4.67e+01 ±7.95e+01 ±4.63e+01 ±3.33e+01 ±5.94e+01 ±4.01e+01

Carcinom
1.853e+03 4.097e+03 3.981e+03 4.240e+03 4.149e+03 4.493e+03 3.480e+03 4.079e+03
±9.64e+01 ±3.82e+01 ±6.53e+01 ±7.39e+01 ±3.06e+01 ±3.26e+01 ±1.01e+02 ±8.56e+01

Nci9
1.777e+03 4.288e+03 4.083e+03 4.230e+03 4.600e+03 4.727e+03 3.890e+03 4.245e+03
±1.07e+02 ±3.25e+01 ±3.29e+01 ±2.61e+01 ±2.86e+01 ±1.76e+01 ±4.30e+01 ±1.69e+01

Arcene
1.686e+03 4.421e+03 4.240e+03 4.377e+03 4.748e+03 4.875e+03 3.996e+03 4.380e+03
±7.54e+01 ±1.99e+01 ±3.35e+01 ±4.04e+01 ±2.25e+01 ±2.34e+01 ±5.00e+01 ±3.10e+01

Pixraw10P
1.807e+03 4.426e+03 4.295e+03 4.452e+03 4.603e+03 4.866e+03 3.823e+03 4.368e+03
±7.19e+01 ±2.52e+01 ±1.12e+02 ±8.04e+01 ±8.66e+01 ±1.79e+01 ±1.06e+02 ±3.00e+01

Orlraws10P
1.971e+03 4.581e+03 4.463e+03 4.648e+03 4.697e+03 5.023e+03 3.890e+03 4.536e+03
±6.24e+01 ±3.63e+01 ±4.45e+01 ±8.97e+01 ±5.78e+01 ±2.67e+01 ±7.47e+01 ±3.49e+01

Brain2
2.038e+03 4.642e+03 4.584e+03 4.734e+03 4.729e+03 5.084e+03 3.935e+03 4.591e+03
±7.39e+01 ±4.55e+01 ±1.21e+02 ±9.91e+01 ±4.01e+01 ±3.71e+01 ±8.19e+01 ±4.58e+01

Prostate
2.081e+03 4.713e+03 4.587e+03 4.820e+03 4.796e+03 5.154e+03 4.024e+03 4.670e+03
±9.25e+01 ±5.72e+01 ±5.63e+01 ±8.07e+01 ±4.31e+01 ±4.61e+01 ±1.16e+02 ±6.92e+01
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5.2. Nondominated Solution Distributions

For a more intuitive view of the performances, Figure 6 illustrates the nondominated
solution distributions of each algorithm, in terms of Pareto curves in the objective space,
with the median HV performances run on each dataset. We only show the nondominated
solutions instead of the whole population, for a clearer representation of the diversity and
convergence states. It is also worth noting that the nondominated solutions shown in each
subfigure of Figure 6 look quite sparse for most datasets, due to the limited number of
training samples and the large number of features. General speaking, it is suggested from
Figure 6 that the proposed MTDEA performed the best on the majority of the classification
datasets, with a promising overall diversity and convergence.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 6. Cont.
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(q) (r) (s) (t)

Figure 6. Nondominated solution distributions in objective space, with median HV performances
obtained by each algorithm. (a) ORL. (b) Yale. (c) Colon. (d) SRBCT. (e) AR10P. (f) PIE10P. (g) Lym-
phoma. (h) DLBCL. (i) TOX171. (j) Brain1. (k) Leukemia. (l) CNS. (m) ALLAML. (n) Carcinom.
(o) Nci9. (p) Arcene. (q) Pixraw10P. (r) Orlraws10P. (s) Brain2. (t) Prostate.

In detail, the MTDEA generally obtained the largest number of nondominated so-
lutions with best diversity, while the solution distributions in the f1 and f2 directions of
objective space were overall the most converged. However, there are still a few unsatisfac-
tory performances shown in some subfigures, such as Figure 6a,h,i, where the MTDEA was
not the best (but still good) of all the algorithms in the f2 objective direction (i.e., the classifi-
cation error rate). Nevertheless, the few flaws of the MTDEA are generally insignificant and
it was generally close to the best algorithms in the f2 objective direction, while the MTDEA
always exhibited the best performance in the f1 objective direction (i.e., the selected feature
rate). It should also be noted that although we choose the performance for the median
HV values obtained by each algorithm for the sake of fairness, they have a certain degree
of random fluctuation and can only be seen as a supplement to the previously studied
statistical empirical results in Section 5.1.

5.3. Component Contribution Analyses

To further confirm the effectiveness of the proposed MTDEA, especially to verify
the contributions of its essential component (i.e., the dynamic multi-task framework with
adaptive ideal points for decomposition), rather than adopting other existing methods
(such as the I-TCH based decomposition approach and normalization), the MTDEA and its
Baseline algorithm were compared in terms of all three performance metrics, as shown in
Table 6. In this paper, the so-called Baseline algorithm removed all the multi-task contents
from Algorithm 1, replacing Algorithms 2 and 4 respectively with traditional initialization
and reproduction methods, which are commonly used in most MOEAs [80,85], while
its environmental selection process still used the modified and normalized I-TCH based
decomposition approach as previously introduced. It is suggested from Table 6 that the
MTDEA generally showed outstanding performance, with significant advantages over the
Baseline algorithm on almost all datasets. The only insignificant loss for the MTDEA took
place on the Carcinom dataset in terms of the MCE metric, which was slightly worse than
the Baseline algorithm. By contrast, the performance of the MTDEA in terms of the HV and
NSF metrics were the best on all datasets compared with the Benchmark algorithm. Thus,
it was demonstrated that the essential component of the MTDEA made an overall positive
contribution in improving the performance in finding optimal or near-optimal solutions in
the large-scale search space of the high-dimensional datasets.

5.4. Computational Time Analyses

The mean computational time for each algorithm run on each dataset was recorded
and calculated in seconds, as shown in Table 7. In Table 7, we not only mark the best
performance in gray but also mark the second best performance in a lighter gray color,
in order to provide more comprehensive analyses. First, it can be seen from Table 7 that
the MTDEA performed the best on 9 out of 20 datasets, and it also performed second
best on the remaining 11 datasets. Thus, it can be concluded that the MTDEA had a
generally high computational efficiency, spending much less time than the traditional
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algorithms in tackling feature selection. Moreover, when looking into the 11 second best
performances marked in the lighter gray color, it is seen that the MTDEA only just lost
to SparseEA in terms of computational time, while most of the losses were on very high-
dimensional datasets. In fact, the reason why the SparseEA could spend even less time
than the proposed MTDEA running on those datasets was mainly due to its pre-analysis
process before the normal evolution. In brief, the SparseEA pre-analyzed each feature’s
classification performance, which actually consumed much less time than the subsequent
normal evolution, because only a single feature was selected for classification.

Table 6. Mean HV, MCE, and NSF performances of the MTDEA against the Baseline algorithm, with
best performances marked in gray and insignificant differences prefixed by b.

Dataset
HV Metric MCE Metric NSF Metric

MTDEA Baseline MTDEA Baseline MTDEA Baseline

ORL
7.9280e-01 6.2015e-01 1.3750e-01 b 1.4250e-01 1.3005e+02 3.3955e+02
±1.797e-02 ±2.020e-02 ±1.493e-02 ±1.402e-02 ±2.373e+01 ±2.964e+01

Yale
6.5971e-01 4.9766e-01 2.9444e-01 3.3556e-01 1.3675e+02 3.3045e+02
±3.181e-02 ±2.479e-02 ±3.596e-02 ±3.808e-02 ±2.190e+01 ±1.961e+01

Colon
7.7459e-01 5.4779e-01 1.4211e-01 2.1316e-01 2.5180e+02 7.0630e+02
±3.839e-02 ±2.682e-02 ±4.860e-02 ±4.345e-02 ±2.739e+01 ±1.718e+01

SRBCT
6.6537e-01 2.8661e-01 2.8400e-01 6.4000e-01 2.7120e+02 7.9880e+02
±1.696e-01 ±1.828e-03 ±2.152e-01 ±1.139e-16 ±5.614e+01 ±1.110e+01

AR10P
4.9725e-01 3.5777e-01 4.6875e-01 4.9750e-01 3.8895e+02 9.2410e+02
±2.744e-02 ±1.439e-02 ±3.524e-02 ±2.420e-02 ±4.576e+01 ±2.474e+01

PIE10P
8.1273e-01 5.9713e-01 7.7500e-02 1.0083e-01 3.5175e+02 9.1285e+02
±2.001e-02 ±9.652e-03 ±2.247e-02 ±1.144e-02 ±3.107e+01 ±2.042e+01

Lymphoma
7.6449e-01 5.6584e-01 1.2000e-01 b 1.3167e-01 6.3190e+02 1.5825e+03
±2.178e-02 ±8.253e-03 ±2.269e-02 ±1.701e-02 ±4.382e+01 ±2.530e+01

TOX171
6.7490e-01 4.8274e-01 2.0377e-01 2.2736e-01 1.1264e+03 2.5053e+03
±2.214e-02 ±1.347e-02 ±2.974e-02 ±2.247e-02 ±7.979e+01 ±8.390e+01

DLBCL
8.0543e-01 5.7887e-01 7.1739e-02 b 7.6087e-02 8.3550e+02 2.2779e+03
±3.059e-02 ±2.118e-02 ±3.805e-02 ±3.419e-02 ±5.622e+01 ±3.618e+01

Brain1
6.4956e-01 4.7324e-01 2.5926e-01 b 2.5926e-01 9.8040e+02 2.4799e+03
±1.384e-02 ±5.628e-03 ±1.202e-02 ±0.000e+00 ±9.274e+01 ±4.795e+01

Leukemia
7.6257e-01 5.4152e-01 1.0909e-01 b 1.3182e-01 1.2007e+03 2.9922e+03
±2.699e-02 ±1.669e-02 ±3.731e-02 ±2.912e-02 ±5.407e+01 ±3.736e+01

CNS
5.2552e-01 3.7420e-01 4.0000e-01 b 4.2500e-01 1.3754e+03 3.0789e+03
±5.878e-02 ±2.658e-02 ±7.774e-02 ±4.862e-02 ±8.443e+01 ±6.460e+01

ALLAML
7.2778e-01 5.2572e-01 1.4545e-01 b 1.5227e-01 1.2732e+03 3.0622e+03
±2.933e-02 ±1.071e-02 ±3.789e-02 ±2.224e-02 ±7.057e+01 ±4.950e+01

Carcinom
7.1986e-01 5.2429e-01 1.3558e-01 b 1.3462e-01 1.8533e+03 4.0858e+03
±1.404e-02 ±8.217e-03 ±1.588e-02 ±1.395e-02 ±9.638e+01 ±6.919e+01

Nci9
3.5698e-01 2.4945e-01 6.2895e-01 b 6.4737e-01 1.7768e+03 4.2062e+03
±2.326e-02 ±2.105e-02 ±3.183e-02 ±3.856e-02 ±1.071e+02 ±4.303e+01

Arcene
5.1318e-01 3.6631e-01 4.3333e-01 b 4.3333e-01 1.6858e+03 4.3514e+03
±4.154e-03 ±1.934e-03 ±1.139e-16 ±1.139e-16 ±7.540e+01 ±3.511e+01

Pixraw10P
8.1039e-01 5.8583e-01 3.3333e-02 b 3.3333e-02 1.8071e+03 4.3545e+03
±6.335e-03 ±4.056e-03 ±0.000e+00 ±0.000e+00 ±7.186e+01 ±4.601e+01

Orlraws10P
7.4909e-01 5.4469e-01 1.0333e-01 b 1.0333e-01 1.9710e+03 4.5222e+03
±1.430e-02 ±6.752e-03 ±1.842e-02 ±1.026e-02 ±6.243e+01 ±3.812e+01

Brain2
5.6026e-01 3.8877e-01 3.5000e-01 3.8333e-01 2.0377e+03 4.6294e+03
±2.838e-02 ±1.692e-02 ±3.667e-02 ±2.962e-02 ±7.393e+01 ±8.246e+01

Prostate
6.4555e-01 4.6144e-01 2.3548e-01 b 2.4839e-01 2.0812e+03 4.6716e+03
±2.378e-02 ±1.361e-02 ±3.326e-02 ±2.585e-02 ±9.247e+01 ±4.519e+01
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Table 7. Mean computational time in seconds for each algorithm run on each dataset, with best times
marked in gray, and insignificant differences prefixed by b. Moreover, if MTDEA performed second
best of all, it is also marked in a lighter gray color.

Dataset MTDEA NSGA-II MOEA/D MOEA/AWA MOEA/HD SparseEA DAEA PRDH

ORL
7.289e+02 1.071e+03 9.947e+02 9.512e+02 1.084e+03 1.065e+03 8.724e+02 1.053e+03
±2.43e+01 ±3.74e+01 ±3.94e+01 ±3.00e+01 ±4.59e+01 ±2.32e+01 ±3.81e+01 ±2.42e+01

Yale
1.434e+02 1.942e+02 1.860e+02 1.910e+02 2.032e+02 2.028e+02 1.790e+02 2.022e+02
±4.69e+00 ±4.97e+00 ±3.54e+00 ±3.57e+00 ±6.39e+00 ±4.44e+00 ±4.73e+00 ±4.74e+00

Colon
6.170e+01 8.630e+01 7.946e+01 8.715e+01 8.672e+01 8.419e+01 8.861e+01 9.450e+01
±1.06e+00 ±1.55e+00 ±1.58e+00 ±1.85e+00 ±2.60e+00 ±1.84e+00 ±1.74e+00 ±1.65e+00

SRBCT
1.653e+02 2.327e+02 2.078e+02 2.154e+02 2.618e+02 2.254e+02 2.078e+02 2.558e+02
±5.26e+00 ±5.64e+00 ±2.87e+00 ±5.34e+00 ±7.01e+00 ±5.98e+00 ±1.03e+01 ±3.74e+00

AR10P
4.898e+02 6.246e+02 6.008e+02 6.226e+02 6.349e+02 5.974e+02 5.872e+02 6.314e+02
±2.02e+01 ±9.67e+00 ±1.52e+01 ±1.60e+01 ±1.30e+01 ±1.74e+01 ±1.11e+01 ±1.02e+01

PIE10P
9.958e+02 1.462e+03 1.382e+03 1.469e+03 1.539e+03 1.411e+03 1.198e+03 1.415e+03
±3.44e+01 ±9.16e+01 ±6.56e+01 ±1.03e+02 ±9.56e+01 ±6.73e+01 ±5.89e+01 ±5.14e+01

Lymphoma
6.800e+02 9.464e+02 8.585e+02 9.201e+02 9.785e+02 8.230e+02 8.358e+02 8.834e+02
±1.93e+01 ±5.54e+01 ±2.14e+01 ±5.38e+01 ±7.62e+01 ±5.04e+01 ±3.06e+01 ±1.62e+01

TOX171
2.417e+03 3.248e+03 3.065e+03 3.128e+03 3.300e+03 2.301e+03 2.826e+03 3.013e+03
±1.96e+02 ±2.29e+02 ±2.00e+02 ±2.37e+02 ±2.51e+02 ±1.68e+02 ±3.77e+01 ±1.10e+02

DLBCL
8.218e+02 1.135e+03 1.083e+03 1.109e+03 1.159e+03 9.196e+02 1.032e+03 1.064e+03
±3.99e+01 ±7.51e+01 ±7.73e+01 ±7.66e+01 ±8.80e+01 ±7.54e+01 ±2.52e+01 ±1.94e+01

Brain1
1.224e+03 1.731e+03 1.715e+03 1.726e+03 1.789e+03 1.266e+03 1.498e+03 1.593e+03
±1.08e+02 ±1.44e+02 ±1.56e+02 ±1.42e+02 ±1.59e+02 ±1.08e+02 ±8.45e+01 ±6.91e+01

Leukemia
1.150e+03 1.648e+03 1.584e+03 1.705e+03 1.708e+03 1.080e+03 1.379e+03 1.537e+03
±9.20e+01 ±1.36e+02 ±1.28e+02 ±1.89e+02 ±1.28e+02 ±9.02e+01 ±5.30e+01 ±8.69e+01

CNS
9.885e+02 1.199e+03 1.145e+03 1.161e+03 1.217e+03 8.565e+02 1.077e+03 1.122e+03
±8.98e+01 ±8.43e+01 ±8.29e+01 ±8.87e+01 ±9.35e+01 ±6.03e+01 ±2.52e+01 ±2.03e+01

ALLAML
1.175e+03 1.677e+03 1.648e+03 1.705e+03 1.731e+03 1.086e+03 1.407e+03 1.558e+03
±9.54e+01 ±1.43e+02 ±1.51e+02 ±1.90e+02 ±1.42e+02 ±8.30e+01 ±5.50e+01 ±8.15e+01

Carcinom
4.527e+03 5.767e+03 5.719e+03 5.692e+03 5.860e+03 3.349e+03 4.934e+03 5.280e+03
±4.36e+02 ±5.05e+02 ±4.51e+02 ±4.65e+02 ±6.06e+02 ±3.03e+01 ±1.35e+02 ±2.00e+02

Nci9
1.348e+03 1.940e+03 1.891e+03 1.926e+03 2.276e+03 1.228e+03 1.818e+03 1.867e+03
±9.02e+01 ±1.58e+02 ±9.31e+01 ±8.43e+01 ±3.22e+02 ±1.69e+02 ±4.41e+01 ±1.14e+02

Arcene
5.231e+03 7.230e+03 6.937e+03 7.047e+03 7.745e+03 4.329e+03 8.062e+03 6.646e+03
±1.97e+02 ±5.42e+02 ±4.00e+02 ±3.64e+02 ±9.04e+02 ±4.43e+02 ±1.38e+03 ±3.93e+02

Pixraw10P
2.564e+03 3.430e+03 3.382e+03 3.429e+03 3.694e+03 1.989e+03 3.845e+03 3.276e+03
±1.83e+02 ±1.94e+02 ±2.31e+02 ±2.45e+02 ±3.92e+02 ±2.61e+02 ±5.98e+02 ±2.56e+02

Orlraws10P
2.693e+03 3.628e+03 3.547e+03 3.598e+03 4.208e+03 b 2.602e+03 3.944e+03 3.400e+03
±1.63e+02 ±3.12e+02 ±2.06e+02 ±2.57e+02 ±8.63e+02 ±2.36e+02 ±6.29e+02 ±2.76e+02

Brain2
1.230e+03 1.789e+03 1.708e+03 1.723e+03 1.978e+03 1.170e+03 1.775e+03 1.661e+03
±6.56e+01 ±1.49e+02 ±1.66e+02 ±1.44e+02 ±3.51e+02 ±6.17e+01 ±2.42e+02 ±1.03e+02

Prostate
2.857e+03 3.906e+03 3.762e+03 3.775e+03 4.505e+03 b 2.676e+03 3.546e+03 3.426e+03
±1.36e+02 ±1.63e+02 ±1.51e+02 ±2.99e+02 ±1.02e+03 ±7.03e+02 ±1.71e+02 ±1.46e+02

6. Conclusions

This paper proposed a multi-task decomposition-based evolutionary algorithm (named
MTDEA) for solving the discrete bi-objective feature selection problem with binary-coding,
especially for large-scale classification data. The proposed MTDEA not only adopts an
adaptive decomposition-based MOEA framework with transformed ideal points for more
efficient evolution, but also has a multi-task mechanism with dynamically merged tasks for
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more diverse cooperation. In this work, we focused on studying the adaptive integration
of the multi-task framework with the decomposition-based evolutionary approach. To
be more specific, first, a dynamic multi-task framework was designed, which initializes
different search tasks for three separate subpopulations and then eventually merges them
into a single-task population at the later evolutionary stage. Furthermore, an adaptive
decomposition-based evolutionary approach was also designed, which cooperates with the
above multi-task framework and adaptively adjusts the global ideal point for each multi-
task subpopulation. In this way, the search performance of the MTDEA was significantly
enhanced, while the population diversity and the classification convergence could also
be delicately balanced. It is suggested from the comprehensive empirical studies that the
MTDEA significantly outperformed the seven other state-of-the-art MOEAs on a total of
20 high-dimensional classification datasets, in terms of three different performance metrics,
with a better distribution diversity and classification convergence. Moreover, it was also
shown that the most essential component of the MTDEA, i.e., the dynamic multi-task frame-
work with adaptive ideal points for decomposition, made an overall positive contribution
to the improvement in the algorithm performance.

In our future work, it is planned to study the adaptive setting of initial parameters
for the multi-task framework, probably based on the dynamic analysis of the optimization
environment of different tested datasets.Moreover, we would also like to further study
the performance of the proposed MTDEA on more high-dimensional datasets, as well as
its applicability to other kinds of discrete optimization problems such as neural network
construction and community node detection.
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