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Abstract: We examine the qualitative properties of ionic flows through ion channels via a quasi-one-
dimensional Poisson–Nernst–Planck model under relaxed neutral boundary conditions. Bikerman’s
local hard-sphere potential is included in the model to account for finite ion size effects. Our main
interest is to examine the boundary layer effects (due to the relaxation of electroneutrality boundary
conditions) on both individual fluxes and current–voltage relations systematically. Critical values of
potentials are identified that play significant roles in studying internal dynamics of ionic flows. It
turns out that the finite ion size can either enhance or reduce the ionic flow under different nonlinear
interplays between the physical parameters in the system, particularly, boundary concentrations,
boundary potentials, boundary layers, and finite ion sizes. Much more rich dynamics of ionic flows
through membrane channels is observed.

Keywords: PNP; critical potentials; I–V relations; boundary layers; finite ion sizes
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1. Introduction

One of the most extraordinary physical problems that is performed by living cells is the
migration of ions through open ion channels. Cells are enveloped by lipid membranes that
are almost impermeable to physiological ions (mostly Na+, K+, Ca2+, Cl−, etc.). One mech-
anism for ions to move across the membrane is via ion channels, which are large proteins
with a hole down the middle regulating the electrodiffusion of the ions [1]. Two related
major topics of ion channels, structure of ion channels and the properties of ionic flows, are
the main concerns in the study of ion channel problems. Once the structure is provided, for
an open ion channel, the main interest is to analyze its electrodiffusion property.

Ionic flows follow fundamental physical laws of electrodiffusion. The macroscopic
properties of ionic flow through membrane channels depend on external driving forces,
mainly boundary potentials and ion concentrations [2,3], and specific structural characteris-
tics. These structural features [1,4,5] encompass factors such as the shape of the pore and the
distribution of permanent charges along the inner surface of the channel. These attributes
are crucial for ensuring the proper functioning of the channel. Permeation and selectivity
are two significant biological properties of ion channels, and they can be characterized
through experimental measurements of the current–voltage (I–V) relations under different
ionic conditions [6,7].

1.1. One-Dimensional Poisson–Nernst–Planck System

Focusing on the structural characteristics, the basic continuum model for ionic flows is
the Poisson–Nernst–Planck (PNP) system that regards the aqueous medium as a dielectric
continuum (see [4,5,8–14] for example).
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In this work, we consider the following quasi-one-dimensional steady-state PNP
model [15,16]

1
A(X)

d
dX

(
εr(X)ϵ0 A(X)

dΦ
dX

)
= −e

( n

∑
j=1

zjCj(X) + Q(X)

)
,

dJi
dX

= 0, −Ji =
1

kBT
Di(X)A(X)Ci(X)

dµi
dX

, i = 1, 2, . . . , n,

(1)

where X ∈ [0, 1] is the coordinate along the axis of the channel that is normalized to
[0, 1], A(X) is the area of the cross-section of the channel over the point X, Q(X) is the
distribution of the permanent charge along the interior wall of the channel, εr(X) is the
relative dielectric coefficient, ε0 is the vacuum permittivity, e is the elementary charge, kB is
the Boltzmann constant, T is the absolute temperature, Φ is the electric potential for the
ith ion species, Ci is the concentration, zi is the valence, Ji is the flux density, Di(X) is the
diffusion coefficient, and µi(X) is the electrochemical potential.

Equipped with system (1), we impose the following boundary conditions [17], for
k = 1, 2, . . . n,

Φ(0) = V, Ck(0) = Lk > 0; Φ(1) = 0, Ck(1) = Rk > 0. (2)

For a solution of the boundary value problem (1) and (2), the total flow rate of charge
or the total current, I , through a cross-section is defined by

I =
n

∑
s=1

zsJs. (3)

For fixed Lks and Rks, Jks depend on V only, and formula (3) defines the so-called
current–voltage (I–V) relation.

1.2. Excess Chemical Potentials and Bikerman’s Model

For the ith ion species, the electrochemical potential, µi(X), includes two components:
the ideal component, µid

i (X), and the excess component, µex
i (X), defined by

µi(X) = µid
i (X) + µex

i (X),

where

µid
i (X) = zieΦ(X) + kBT ln

Ci(X)

C0
, (4)

with some characteristic number density, C0. The ideal component, µid
i (X), reflects the colli-

sion between water molecules and charged particles. The PNP system that includes just the
ideal component is called the classical PNP (cPNP), and has been studied
extensively ([2,3,7,8,11,13,15–47] and the reference therein). But, a substantial weakness
of the cPNP is that it treats ions as point-charges, and does not consider the interaction
between ions. On the other hand, many critical properties of ion channels, such as selectiv-
ity, depend on ion sizes critically [48]. To study the effects on ionic flows from ion sizes,
ion-specific components of the electrochemical potential in the PNP models should be
considered. Including hard-sphere potential models of the excess electrochemical potential
is a natural choice. The PNP-type models considering finite ion sizes have been analyzed
to some extent and have shown great success ([11,48–55], etc.). In this work, to account
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for the effects from finite ion sizes, Bikerman’s local hard-sphere potential [56] is included,
which is defined as, for i = 1, 2, . . . , n,

µBik
i (X) = −kBT ln

(
1 −

n

∑
j=1

νjCj(X)

)
, (5)

where νj is the volume of the j-th ion species.

1.3. Electroneutrality Conditions and Boundary Layers

In the study of ion channel problems, electroneutrality boundary concentration con-
ditions are often enforced at both ends of the channel (see, e.g., [6,48,57–60]), which are
defined as

n

∑
s=1

zsLs =
n

∑
s=1

zsRs = 0. (6)

Applying these conditions simplifies the qualitative analysis of ionic flows by elimi-
nating boundary layers. On the other hand, if these boundary layers extend into the region
of the device that has atomic control, they can significantly impact its behavior. Such charge
boundary layers may cause artifacts over long distances due to the spreading of the electric
field [17]. Therefore, it is crucial for one to understand the influence of these boundary
layers on ionic flows properties (see [17] for the discussion of boundary layers). A natural
step is to study the case that is not neutral but close to a more realistic biological setting.
Based on this consideration, in [44], the author studied the cPNP system for two ion species,
one positively charged and one negatively charged, without permanent charges focusing
on the dynamics of ionic flows. To be specific, the author supposes

−z2L2 = σ(z1L1) and − z2R2 = ρ(z1R1), (7)

where (σ, ρ) → (1, 1) are some constants but not equal to 1 simultaneously (σ = 1 = ρ in
(7) implies electroneutrality conditions). Richer dynamics of ionic flows was obtained com-
pared with that under electroneutrality boundary concentration conditions. Later, under
various setups, the authors in [43,61–64] also analyzed the PNP system with boundary lay-
ers to further study the rich qualitative properties of ionic flows through ion channels. All
the works indicate the importance of the role played by the boundary layer in the analysis
of ionic flow properties of interest. This is the main motivation for our current work.

2. Problem Setup and Previous Results

In this section, we set up our problem and briefly recall some results obtained from [48],
which will be the starting point of the current work.

2.1. Assumptions and a Dimensionless PNP-Type System

For consistency, we make essentially the same assumptions as those in [48] except
that we do not assume electroneutrality boundary conditions (6). More precisely, we
assume (A1)–(A4).

(A1) Two ion species (n = 2), one positively charged (z1 > 0) and one negatively charged
(z2 < 0).

(A2) We assume the permanent charge Q(x) = 0.
(A3) Both the ideal component, µid

i , and the Bikerman’s excess potential, µBik
i , are consid-

ered in the electrochemical potential, µi.
(A4) We assume the relative dielectric coefficient εr(x) = εr to be a constant, and the

diffusion coefficients Di(x) = Di to be some constants.
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We further make the following dimensionless rescaling

ϵ2 =
εrε0kBT
e2l2c0

, x =
X
l

, h(x) =
A(x)

l2 , Di = lC0Di;

ϕ(x) =
e

kBT
Φ(X), ci(x) =

Ci(X)

C0
, Ji =

Ji
Di

;

V =
e

kBT
V, Li =

Li
C0

, Ri =
Ri
C0

.

(8)

Substituting (5) and (8) into system (1), the boundary value problem becomes

ε2

h(x)
d

dx

(
h(x)

d
dx

ϕ

)
= −z1c1 − z2c2,

dJ1

dx
=

dJ2

dx
= 0,

dc1

dx
= − f1(c1, c2; ν1, ν2)

dϕ

dx
− 1

h(x)
g1(c1, c2, J1, J2; ν1, ν2),

dc2

dx
= f2(c1, c2; ν1, ν2)

dϕ

dx
− 1

h(x)
g2(c1, c2, J1, J2; ν1, ν2)

(9)

with the boundary conditions

ϕ(0) = V , ci(0) = Li > 0; ϕ(1) = 0, ci(1) = Ri > 0. (10)

Here

f1(c1, c2; ν1, ν2) = (z1 − z1ν1c1 − z2ν2c2)c1,

f2(c1, c2; ν1, ν2) = −(z2 − z1ν1c1 − z2ν2c2)c2,

g1(c1, J1, J2; ν1, ν2) = J1 − (ν1 J1 + ν2 J2)c1,

g2(c2, J1, J2; ν1, ν2) = J2 − (ν1 J1 + ν2 J2)c2.

(11)

We point out that, in our analysis, we assume h(x) = 1 over the entire interval [0, 1]
(see [43] for a detailed explanation).

2.2. Some Previous Results

The authors in [48] employed geometric singular perturbation theory to study the
PNP system with Bikerman’s model for finite ion size effects. The analysis is conducted
under the assumption of electroneutrality conditions (6), and treats the system as a regular
perturbation of the case where ν1 = ν2 = 0. Upon introducing ν = ν1 and ν2 = λν, the
authors derived the approximations of the I–V relation of the following form, which is the
starting point of our study.

I(V; λ, ν) = z1D1 J1 + z2D2 J2 = I0(V) + I1(V; λ)ν + o(ν), (12)

where I0(V) = z1D1 J10 + z2D2 J20 and I1(V; λ) = z1D1 J11 + z2D2 J21 with Jk = Jk0 + νJk1 +
o(ν). From [48], one has

J10 =
cL

10 − cR
10

H(1)(ln cL
10 − ln cR

10)
(z1(ϕ

L
0 − ϕR

0 ) + ln cL
10 − ln cR

10),

J20 = − z1

z2

cL
10 − cR

10

H(1)(ln cL
10 − ln cR

10)
(z2(ϕ

L
0 − ϕR

0 ) + ln cL
10 − ln cR

10),

J11 = α10(L1, L2, R1, R2, λ) + α11(L1, L2, R1, R2, λ)
e

kBT
V,

J21 = β10(L1, L2, R1, R2, λ) + β11(L1, L2, R1, R2, λ)
e

kBT
V,

(13)
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where

H(1) =
∫ 1

0

1
h(x)

dx,

α10 =
ln(L1R2)− ln(L2R1)

z1 − z2
F1 +F2, α11 = H(1)F1,

β10 = − ln(L1R2)− ln(L2R1)

z1 − z2
F1 −

z1

z2
F2, β11 = −α11,

with F1 and F2 being defined by

F1 =
1

ln cL
10 − ln cR

10

(
F2 +

z1(cL
10 − cR

10)(R1 − L1 + λ(R2 − L2))

ln cL
10 − ln cR

10

)
,

F2 = cL
10(L1 + λL2)− cR

10(R1 + λR2) +
z1λ − z2

2z2
(cL

10 − cR
10)(c

L
10 + cR

10),

where

ϕL
0 =

e
kBT

V − 1
z1 − z2

ln
−z2L2

z1L1
, ϕR

0 = − 1
z1 − z2

ln
−z2R2

z1R1
,

z1cL
10 = −z2cL

20 = (z1L1)
−z2

z1−z2 (−z2L2)
z1

z1−z2 ,

z1cR
10 = −z2cR

20 = (z1R1)
−z2

z1−z2 (−z2R2)
z1

z1−z2 .

Remark 1. We point out that, under the electroneutrality condition (6), one has ϕL
0 = e

kBT V,
ϕR

0 = 0, cL
k0 = Lk, and cR

k0 = Rk, where ϕL
0 , ϕR

0 , cL
k0, and cR

k0 are defined through the two landing
points (see Proposition 3.2 in [48] for the definition of landing points). The two boundary layers BL

and BR (see Equation (3) in [48]) defined by the corresponding boundary conditions disappear. To
study the effects on ionic flows, one needs to relax the neutral conditions, as discussed in Section 1.2
in current work.

3. Qualitative Properties of Ionic Flows under Relaxed Neutral Conditions

In this section, our focus is on the finite ion size effects on ionic flows under relaxed
boundary neutral conditions (7). Of particular interest are the leading terms Jk1(V; λ) and
I1(V; λ) that contain ion size effects.

To start, we rewrite Jk0 and Jk1 in (13) under relaxed neutral condition (7). For conve-
nience, we introduce g0 = g0(L1, R1; σ, ρ) and g1 = g1(L1, R1; σ, ρ) as

g0 =
L1σ

z1
z1−z2 − R1ρ

z1
z1−z2

g1(L1, R1; σ, ρ)
and g1 = ln L1 − ln R1 +

z1(ln σ − ln ρ)

z1 − z2
.

Lemma 1. Under condition (7), one has

J10 =
g0(L1, R1; σ, ρ)

H(1)

(
z1e
kBT

V − z1(ln σ − ln ρ)

z1 − z2
+ g1(L1, R1; σ, ρ)

)
,

J20 =
− z1

z2
g0(L1, R1; σ, ρ)

H(1)

(
z2e
kBT

V − z2(ln σ − ln ρ)

z1 − z2
+ g1(L1, R1; σ, ρ)

)
,

J11 = α10(L1, R1; σ, ρ; λ) + α11(L1, R1; σ, ρ; λ)
e

kBT
V,

J21 = β10(L1, R1; σ, ρ; λ) + β11(L1, R1; σ, ρ; λ)
e

kBT
V,

(14)
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where

α10 =
ln ρ − ln σ

z1 − z2
F1 +F2, α11 = H(1)F1, β10 =

ln σ − ln ρ

z1 − z2
F1 −

z1

z2
F2, β11 = −α11

with F1 and F2 given by

F1 =
1
g1

[
F2 + z1g0(L1, R1; σ, ρ)

(
R1 − L1 −

z1

z2
λ(R1ρ − L1σ)

)]
,

F2 =L2
1σ

z1
z1−z2

(
1 − z1λ

z2
σ
)
− R2

1ρ
z1

z1−z2

(
1 − z1λ

z2
ρ
)
+

z1λ − z2

2z2

(
L2

1ρ
2z1

z1−z2 − R2
1ρ

2z1
z1−z2

)
,

where

ϕL
0 =

e
kBT

V − 1
z1 − z2

ln σ, ϕR
0 = − 1

z1 − z2
ln ρ,

z1cL
10 = −z2cL

20 = z1L1σ
z1

z1−z2 , z1cR
10 = −z2cR

20 = z1R1ρ
z1

z1−z2 .

In particular,

I0(V) =
z1(z1D1 − z2D2)g0

H(1)

( e
kBT

V − ln σ − ln ρ

z1 − z2

)
+

z1(D1 − D2)g0g1

H(1)
,

I1(V; λ) = z1D1α10 + z2D2β10 + (z1D1 − z2D2)α11V.
(15)

Recall that our main focus is on the qualitative properties of ionic flows under relaxed
neutral conditions (7), with (σ, ρ) → (1, 1), a more realistic setup. For this purpose, we
expand Jk0 and Jk1 along (σ, ρ) = (1, 1) up to the first order and neglect higher order terms,
from which the effects from boundary layers (due to the relaxation of neutral boundary
conditions) on ionic flows can be characterized in detail. To be specific, we have

J10(V; σ, ρ) =J10(V; 1, 1) +
∂J10(V; 1, 1)

∂σ
(σ − 1) +

∂J10(V; 1, 1)
∂ρ

(ρ − 1),

J20(V; σ, ρ) =J20(V; 1, 1) +
∂J20(V; 1, 1)

∂σ
(σ − 1) +

∂J20(V; 1, 1)
∂ρ

(ρ − 1),

J11(V; σ, ρ) =α10(1, 1) +
∂α10(1, 1)

∂σ
(σ − 1) +

∂α10(1, 1)
∂ρ

(ρ − 1)

+
(

α11(1, 1) +
∂α11(1, 1)

∂σ
(σ − 1) +

∂α11(1, 1)
∂ρ

(ρ − 1)
) e

kBT
V,

J21(V; σ, ρ) =β10(1, 1) +
∂β10(1, 1)

∂σ
(σ − 1) +

∂β10(1, 1)
∂ρ

(ρ − 1)

+
(

β11(1, 1) +
∂β11(1, 1)

∂σ
(σ − 1) +

∂β11(1, 1)
∂ρ

(ρ − 1)
) e

kBT
V,

(16)

where

J10(V; 1, 1) =
f0(L1, R1)

H(1)

(
z1e
kBT

V + ln L1 − ln R1

)
,

∂J10(V; 1, 1)
∂σ

=
z1(L1 − f0(L1, R1))

(z1 − z2)H(1)(ln L1 − ln R1)

(
z1e
kBT

V + ln L1 − ln R1

)
,

∂J10(V; 1, 1)
∂ρ

=− z1(R1 − f0(L1, R1))

(z1 − z2)H(1)(ln L1 − ln R1)

(
z1e
kBT

V + ln L1 − ln R1

)
,

J20(V; 1, 1) =− z1 f0(L1, R1)

z2H(1)

(
z2e
kBT

V + ln L1 − ln R1

)
,
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∂J20(V; 1, 1)
∂σ

=
−z1

z2H(1)

[
f0(L1, R1) +

z1(L1 − f0(L1, R1))
( z2e

kBT V + ln L1 − ln R1
)

(z1 − z2)(ln L1 − ln R1)

]
,

∂J20(V; 1, 1)
∂ρ

=
z1

z2H(1)

[
f0(L1, R1)−

z1( f0(L1, R1)− R1)
( z2e

kBT V + ln L1 − ln R1
)

(z1 − z2)(ln L1 − ln R1)

]

and

α10(1, 1) =
(z2 − z1λ)(L2

1 − R2
1)

2z2
, α11(1, 1) =

a1z1

z2
f0(L1, R1) f1(L1, R1),

β10(1, 1) = −
z1(z2 − z1λ)(L2

1 − R2
1)

2z2
2

, β11(1, 1) = −α11(1, 1),

∂α10

∂σ
(1, 1) =

a1 f0(L1, R1)(L1 + R1)

2z2(z1 − z2)
− a4

2
L2

1 − a2a3 f 2
0 (L1, R1),

∂α10

∂ρ
(1, 1) =

a1 f0(L1, R1)(L1 + R1)

2z2(z1 − z2)
+

a4

2
R2

1 + a2a3 f 2
0 (L1, R1),

∂β10

∂σ
(1, 1) = − a1 f0(L1, R1)(L1 + R1)

2z2(z1 − z2)
+

z1a4

2z2
L2

1 + a2a3 f 2
0 (L1, R1),

∂β10

∂ρ
(1, 1) = − a1 f0(L1, R1)(L1 + R1)

2z2(z1 − z2)
− z1a4

2z2
R2

1 − a2a3 f 2
0 (L1, R1),

∂β11

∂σ
(1, 1) = −∂α11

∂σ
(1, 1),

∂β11

∂ρ
(1, 1) =

∂α11

∂ρ
(1, 1),

∂α11

∂σ
(1, 1) =

a3 f0(L1, R1)

ln L1 − ln R1

(
(a1 + a2)L1 −

a1

2
(L1 + R1)

)
−

a4L2
1

2(ln L1 − ln R1)
,

∂α11

∂ρ
(1, 1) = − a3 f0(L1, R1)

ln L1 − ln R1

(
(a1 + a2)R1 −

a1

2
(L1 + R1)

)
+

a4R2
1

2(ln L1 − ln R1)
,

where

f0(L1, R1) =
L1 − R1

ln L1 − ln R1
, f1(L1, R1) = f0(L1, R1)−

L1 + R1

2
,

a1 =z1λ − z2, a2 = (z1 − z2)λ, a3 =
z1

z2(z1 − z2)
, a4 =

2z1λ

z2
.

We identify six critical potentials in the following definition, which play critical roles in
our examination of finite ion size effects on ionic flows and characterization of the nonlinear
interplays among system parameters.

Definition 1. We define the critical potentials V1c, V1c, V2c, V2c, Vc, and Vc by

J11(V1c; λ) = 0,
∂2 J11

∂λ∂V
(V1c; λ) = 0, J21(V2c; λ) = 0,

∂2 J21

∂λ∂V
(V2c; λ) = 0,

I1(Vc; λ) = 0,
∂2 I1

∂λ∂V
(Vc; λ) = 0.

The significance of these six critical potential values, V1c, V2c, Vc, V1c, V2c, and Vc,
is clear from their definitions. The values V1c, V2c, and Vc are the potentials that balance
finite ion size effects on the individual fluxes J1, J2, and the total current I , respectively,
while the potential values V1c, V2c, and Vc are the potentials related to the relative finite
ion size effects.

3.1. Studies of the Individual Fluxes

For fixed boundary concentrations, the leading term Jk1 that contains ion size effects
exhibits a linear relationship with the boundary potential. Thus, the sign of ∂V Jk1, for
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k = 1, 2, plays a crucial role in characterizing the effects on individual fluxes from finite
ion size.

From Lemma 1, one has ∂V J11 = −∂V J21. Our primary focus will be the sign of ∂V J11.
From (16), one has

∂J11

∂V
(V; σ, ρ) =

e
kBT

(
α11(1, 1) +

∂α11(1, 1)
∂σ

(σ − 1) +
∂α11(1, 1)

∂ρ
(ρ − 1)

)
.

With x = L1/R1, we rewrite ∂J11
∂V (V; σ, ρ) as

∂J11

∂V
(x; σ, ρ) =

e
kBT

R2
1

2 ln2 x
F(x; σ, ρ), (17)

where
F(x; σ, ρ) = A1(x) +A2(x; σ, ρ),

with A1(x) corresponding to the term α11(1, 1), and A2(x; σ, ρ) corresponding to the term
∂α11(1,1)

∂σ (σ − 1) + ∂α11(1,1)
∂ρ (ρ − 1), defined by

A1(x) =
a1

z2
(x − 1)(2(x − 1)− (x + 1) ln x),

A2(x; σ, ρ) =
(

a3(x − 1)(−a1(x + 1) + 2x(a1 + a2))− a4x2 ln x
)
(σ − 1)

+(a3(x − 1)(a1(x + 1)− 2(a1 + a2)) + a4 ln x)(ρ − 1).

(18)

For the function A1(x), the following result can be established.

Lemma 2. For x > 1, one has A1(x) > 0.

Proof. Direct calculation yields

A′
1(x) =

a1

z2

(
3x − 2x ln x +

1
x
− 4
)

, A′′
1 (x) =

a1

z2

(
1 − 2 ln x − 1

x2

)
,

A′′′
1 (x) =

2a1

z2x3

(
1 − x2

)
.

(19)

Note that A′
1(1) = A′′

1 (1) = A′′′
1 (1) = 0. Note also that, for x > 1, we have A′′′

1 (x) > 0.
It then follows that A′′

1 (x) is an increasing function for x ∈ (1,+∞), from which we have
A′′

1 (x) > 0 for x > 1. Similar discussion leads to our statement that A′
1(x) is also an

increasing function, and A1(x) > 0 for x ∈ (1,+∞). This completes the proof.

We now consider the function A2(x; σ, ρ). For convenience, we first obtain the deriva-
tives of A2 with respect to x up to the fourth order.

A′
2(x; σ, ρ) =(2a3(x(2a2 + a1)− (a1 + a2))− a4(2x ln x + x))(σ − 1)

+ (2a3x(xa1 − (a1 + a2)) + a4)(ρ − 1)
1
x

,

A′′
2 (x; σ, ρ) =(2a3(2a2 + a1)− a4(3 + 2 ln x))(σ − 1) +

(2a3a1x2 − a4)(ρ − 1)
x2 ,

A′′′
2 (x; σ, ρ) =2a4

(
ρ − 1 − x2(σ − 1)

) 1
x3 ,

A(4)
2 (x; σ, ρ) =− 2a4

x2

(
5x2(σ − 1) + 3(ρ − 1)

)
.

(20)
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At x = 1, one has

A′
2(1) = A2(1) = 0, A′′

2 (1) =
2z1(λ − 1)

z1 − z2
(σ + ρ − 2), A′′′

2 (1) = 2a4(ρ − σ),

where A′′
2 (1) has the same sign as that of (λ − 1)(σ + ρ − 2), and A′′′

2 (1) has the opposite
sign to that of ρ − σ. Note that, as x → ∞, A2(x) → ∞, A′

2(x) → ∞, and A′′
2 (x) → ∞ for

σ > 1, while A2(x) → −∞, A′
2(x) → −∞, and A′′

2 (x) → −∞ for σ < 1.
For convenience, we introduce the function C(x), defined by

C(x) =
2z1(σ − 1)

z2

(
a1 − a2 ln x + a1x

z1 − z2
− λ

)
.

For the function C(x), we have the following result.

Lemma 3. For the function C(x), there exists a unique zero, x∗. Furthermore,

(i) For σ > 1, C(x) > 0 if 1 < x < x∗, while C(x) < 0 if x > x∗;
(ii) For σ < 1, C(x) < 0 for 1 < x < x∗ and C(x) > 0 if x > x∗.

Proof. Direct calculation gives

C ′(x) =
2z1(σ − 1)
z2(z1 − z2)

(
a1 −

a2

x

)
and C ′′(x) =

2a2z1(σ − 1)
z2(z1 − z2)x2 ,

where a2 = (z1 − z2)λ > 0. For σ > 1, clearly, C ′′(x) < 0 for x > 1. This indicates that
C ′(x) is a decreasing function for x > 1. Note that

C ′(1) =
2z1(σ − 1)(λ − 1)

z1 − z2
and lim

x→+∞
C ′(x) =

2z1(σ − 1)a1

z2(z1 − z2)
< 0.

• If λ − 1 > 0, one has C ′(1) > 0. It follows that there is a unique zero, x1, of C ′(x) = 0.
Consequently, C(x) is increasing for 1 < x < x1 and decreasing for x > x1.

• If λ − 1 < 0, then C ′(1) < 0, which implies that C(x) is decreasing on (1,+∞).

Note that lim
x→+∞

C(x) = −∞ and C(1) = − 2z1λ(σ−1)
z2

> 0. It is not difficult to conclude

that there exists a unique x∗ > 1, such that C(x∗) = 0, C(x) > 0 for 1 < x < x∗, and
C(x) < 0 for x > x∗. Similar discussion can be applied to the case with σ < 1.

Lemma 4. Assume x > 1 and (σ, ρ) → (1, 1). For A2(x), one has

(i) For σ > max{1, ρ},

(i1) If (λ − 1)(σ + ρ − 2) > 0, then A2(x) > 0;
(i2) If (λ − 1)(σ + ρ − 2) < 0, then there exists a unique x1∗ > 1, such that A2(x) < 0 for

1 < x < x1∗ and A2(x) > 0 for x > x1∗.

(ii) For 1 < σ < ρ,

(ii1) If λ − 1 > 0 and (σ − 1)/(ρ − 1) < x∗, then A2(x) > 0, where x∗ is identified in
Lemma 3;

(ii2) If (λ − 1)(σ + ρ − 2) < 0, then there exists a unique x2∗ > 1, such that A2(x) < 0 for
1 < x < x2∗ and A2(x) > 0 for x > x2∗.

(iii) For ρ < σ < 1,

(iii1) If (λ − 1)(σ + ρ − 2) < 0, then A2(x) < 0;
(iii2) If (λ − 1)(σ + ρ − 2) > 0, then there exists a unique x3∗ > 1, such that A2(x) > 0

for 1 < x < x3∗ and A2(x) < 0 for x > x3∗.

(iv) For σ < min{1, ρ},
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(iv1) If λ − 1 > 0 and (σ − 1)/(ρ − 1) < x∗, where x∗ is identified in Lemma 3, then
A2(x) < 0;

(iv2) If (λ − 1)(σ + ρ − 2) > 0, then there exists a unique x4∗ > 1, such that A2(x) > 0
for 1 < x < x4∗ and A2(x) < 0 for x > x4∗.

Proof. We will provide a detailed proof for the first statement. The other statements can be
argued similarly. Note that σ > 1 in our following discussion.

For σ > ρ, from (20), one has A(4)
2 (x) > 0. Together with A′′′

2 (1) = 2a4(ρ − σ) > 0, we
conclude that A′′′

2 (x) > 0 for x > 1. It follows that A′′
2 (x) increases in x for x > 1.

(i1) If (λ − 1)(σ + ρ − 2) > 0, one has A′′
2 (1) > 0, and, hence, A′

2(x) is increasing in x
for x > 1. Taking into account that A′

2(1) = A2(1) = 0, one has A′
2(x) > 0 and

A2(x) > 0 for x > 1.
(i2) If (σ + ρ − 2)(λ − 1) < 0, we have A′′

2 (1) < 0. Therefore, the function A′′
2 (x) has a

unique zero x0 ∈ (1,+∞). Furthermore, A′′
2 (x) < 0 on (1, x0) while A′′

2 (x) > 0 on
(x0,+∞). Together with A′

2(1) = 0, there exists a unique zero, x1, of A′
2(x) = 0 with

x1 > x0, and A′
2(x) < 0 for 1 < x < x1, while A′

2(x) > 0 for x > x1. Correspondingly,
A2(x) decreases for 1 < x < x1 and increases for x > x1. Recall that A2(1) = 0 and

lim
x→+∞

A2(x) = +∞ for σ > 1. There exists a unique root, x1∗ > x1, of A2(x) = 0, such

that A2(x) < 0 for 1 < x < x1∗ and A2(x) > 0 for x > x1∗.

We are now ready to discuss the sign of F(x; σ, ρ).

Lemma 5. Assume x > 1 and (σ, ρ) → (1, 1). One has

(i) For σ > ρ,

(i1) If (λ − 1)(σ + ρ − 2) > 0, then F(x; σ, ρ) > 0 for x > 1.
(i2) If (λ − 1)(σ + ρ − 2) < 0, then F(x; σ, ρ) = 0 has a unique root, x∗, such that

F(x; σ, ρ) < 0 for 1 < x < x∗ and F(x; σ, ρ) > 0 for x > x∗.

(ii) For σ < ρ,

(ii1) If (λ − 1)(σ + ρ − 2) > 0, σ > 1 and ρ−1
σ−1 < x∗ (where C(x∗) = 0), one has F(x) > 0

for x > 1.
(ii2) If (λ − 1)(σ + ρ − 2) < 0, then F(x; σ, ρ) = 0 has a unique root, x∗∗, such that

F(x; σ, ρ) < 0 for 1 < x < x∗∗ and F(x; σ, ρ) > 0 for x > x∗∗.

Proof. We will just provide a proof for the cases with ρ < σ. The cases with ρ > σ can be
argued in a similar way. From (17), direct calculation gives

F′′′(x) =
2

z2x3

[(
z1λ(2ρ − 1)− z2

)
− x2(z1λ(2σ − 1)− z2

)]
,

F(4)(x) =− 2
z2x4

[
5x2(z1λ(2σ − 1)− z2)− 3(z1λ(2ρ − 1)− z2)

]
.

Note that (σ, ρ) → (1, 1). One has

• z1λ(2ρ − 1) − z2 > 0 and z1λ(2σ − 1) − z2 > 0. Clearly, F′′′(x) = 0 has a unique
positive root, say x̄ given by

x̄ =

√
z1λ(2ρ − 1)− z2

z1λ(2σ − 1)− z2
.

It is easy to check that, for ρ < σ, one has 0 < x̄ < 1.
• F(4)(x) > 0 for x > 1, which implies that F′′′(x) is increasing in x for x > 1.
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It follows that F′′′(x) > 0 for x > 1, which implies that F′′(x) is increasing on (1,+∞).
Note that

F′′(1) = A′′
2 (1) =

2z1(λ − 1)
z1 − z2

(σ + ρ − 2).

(i1) For (λ − 1)(σ + ρ − 2) > 0, one has F′′(1) > 0. Therefore, F′′(x) > 0 for all x > 1
with (λ − 1)(σ + ρ − 2) > 0. Together with F′(1) = F(1) = 0, one has F′(x) > 0 and
F(x) > 0 for x > 1.

(i2) For (λ − 1)(σ + ρ − 2) < 0, then there exists a unique root, x̄1, of F′′(x) = 0, such
that F′′(x) < 0 for 1 < x < x̄1 and F′′(x) > 0 for x > x̄1. This implies that F′(x) is
decreasing for 1 < x < x̄1 and increasing for x > x̄1. Note that F′(1) = 0. There is a
unique root, x̄2, of F′(x) = 0, such that F′(x) < 0 for 1 < x < x̄2 and F′(x) > 0 for
x > x̄2. Note also that F(1) = 0. Similar argument leads to the conclusion that there
exists a unique root, x∗, of F(x) = 0, such that F(x) < 0 for 1 < x < x∗ and F(x) > 0
for x > x∗.

This completes the proof.

It follows directly from Definition 1 and Lemma 5 that

Theorem 1. Assume (σ, ρ) → (1, 1) and L1 > R1. For ν > 0 small, one has

(i) If (λ − 1)(σ + ρ − 2) > 0 and ρ < σ, then ∂J11
∂V

> 0, while ∂J21
∂V

< 0. Furthermore,

(i1) The ion size reduces the individual flux J1 for V < V1c and enhances it for V > V1c.
Equivalently, J1(V; σ, ρ; λ, ν) < J1(V; σ, ρ; 0, 0) for V < V1c, while J1(V; σ, ρ; λ, ν) >
J1(V; σ, ρ; 0, 0) for V > V1c;

(i2) The ion size enhances (resp. reduces) the individual flux J2 if V < V2c (resp. V > V2c),
that is, J2(V; σ, ρ; λ, ν) > J2(V; σ, ρ; 0, 0) if V < V2c (resp. J2(V; σ, ρ; λ, ν) <
J2(V; σ, ρ; 0, 0) if V > V2c).

(ii) For (λ − 1)(σ + ρ − 2) > 0, ρ > σ > 1, and ρ−1
σ−1 < x∗, one has ∂J11

∂V
> 0, while ∂J21

∂V
< 0.

Furthermore,

(ii1) The ion size reduces the individual flux J1 for V < V1c and enhances it for V > V1c.
Equivalently, J1(V; σ, ρ; λ, ν) < J1(V; σ, ρ; 0, 0) for V < V1c, while J1(V; σ, ρ; λ, ν) >
J1(V; σ, ρ; 0, 0) for V > V1c;

(ii2) The ion size enhances the individual flux J2 for V < V2c and reduces it for V > V2c.
Equivalently, J2(V; σ, ρ; λ, ν) > J2(V; σ, ρ; 0, 0) for V < V2c, while J2(V; σ, ρ; λ, ν) <
J2(V; σ, ρ; 0, 0) for V > V2c.

(iii) For (λ − 1)(σ + ρ − 2) < 0 and 1 < x < x∗, one has ∂J11
∂V

< 0, while ∂J21
∂V

> 0. Furthermore,

(iii1) The ion size enhances the individual flux J1 for V < V1c and reduces it for V > V1c.
Equivalently, J1(V; σ, ρ; λ, ν) > J1(V; σ, ρ, 0, 0) for V < V1c, while J1(V; σ, ρ; λ, ν) <
J1(V; σ, ρ, 0, 0) for V > V1c;

(iii2) The ion size reduces the individual flux J2 for V < V2c and enhances it for V > V2c.
Equivalently, J2(V; σ, ρ; λ, ν) < J2(V; σ, ρ, 0, 0) for V < V2c, while J2(V; σ, ρ; λ, ν) >
J2(V; σ, ρ, 0, 0) for V > V2c.

(iv) For (λ − 1)(σ + ρ − 2) < 0 and x > x∗, one has ∂J11
∂V

> 0, while ∂J21
∂V

< 0. Furthermore,

(iv1) The ion size reduces the individual flux J1 for V < V1c and enhances it for V > V1c.
Equivalently, J1(V; σ, ρ; λ, ν) < J1(V; σ, ρ, 0, 0) for V < V1c, while J1(V; σ, ρ; λ, ν) >
J1(V; σ, ρ, 0, 0) for V > V1c;

(iv2) The ion size enhances the individual flux J2 for V < V2c and reduces it for V > V2c).
Equivalently, J2(V; σ, ρ; λ, ν) > J2(V; σ, ρ, 0, 0) for V < V2c, while J2(V; σ, ρ; λ, ν) <
J2(V; σ, ρ, 0, 0) for V > V2c.
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Remark 2. It is clear from (17) that the sign of ∂J11
∂V is determined by the one of F(x; σ, ρ). From

Lemmas 3–5, one can see that the boundary layer parameters σ and ρ play critical roles in the study
of the sign of F(x; σ, ρ). The interplays between (σ, ρ), the boundary concentrations (L1, R1) in the
form of x = L1/R1, and the parameter λ, representing the relative ion size effect, are non-intuitive.
The detailed characterization in this work provides better understanding of the ionic flow properties,
particularly, the effects from the finite ion sizes under the more general setups of boundary conditions.
Compared with some previous works performed under electroneutrality boundary conditions, much
more rich dynamics of ionic flows is observed. For example, in the work [48], under electroneutrality
boundary conditions, the sign of ∂J11

∂V is always positive except for some very degenerate cases, while,
under our relaxed setups, the sign of ∂J11

∂V can be either positive or negative, which depends on σ and
ρ sensitively.

Next, we examine the effects from relative ion sizes, represented by λ = ν2/ν, on
individual fluxes. Here, recall that ν = ν1 is the volume of the cation, and ν2 is the volume
of the anion. More precisely, we consider the sign of ∂2 J11

∂λ∂V .
With x = L1/R1, direct calculation gives

∂2 J11

∂λ∂V
=

e
kBT

R2
1

ln3 x
f (x; σ, ρ), (21)

where

f (x; σ, ρ) =
z1

z2
(x − 1)(2(x − 1)− (x + 1) ln x)

+

(
a3(x − 1)(−z1(x + 1) + 2x(2z1 − z2))− 2

z1

z2
x2 ln x

)
(σ − 1)

+

(
a3(x − 1)(z1(x + 1)− 2(2z1 − z2)) + 2

z1

z2
ln x

)
(ρ − 1).

Lemma 6. Assume (σ, ρ) → (1, 1), x = L1/R1 > 1.

(i) If σ + ρ > 2 and ρ < σ, one has f (x) > 0 for x > 1.
(ii) If σ+ ρ < 2, there exists a unique root, x∗∗, of f (x) = 0, such that f (x) < 0 (resp. f (x) > 0)

as 1 < x < x∗∗ (resp. x > x∗∗).

Proof. The proof is similar to that of Lemma 5, and we omit it here.

Our other main result follows.

Theorem 2. Assume x = L1/R1 > 1 and (σ, ρ) → (1, 1). For ν > 0 small, one has

(i) If σ + ρ > 2 and ρ < σ, then ∂2 J11
∂V∂λ > 0, and ∂2 J21

∂V∂λ < 0. Furthermore,

(i1) The individual flux J1 is decreasing (resp. increasing) in λ for V < V1c (resp. V > V1c).
(i2) The individual flux J2 is increasing (resp. decreasing) in λ for V < V2c (resp. V > V2c).

(ii) If σ + ρ < 2 and 1 < x < x∗∗, then ∂2 J11
∂V∂λ < 0, and ∂2 J21

∂V∂λ > 0. Furthermore,

(ii1) The individual flux J1 is increasing (resp. decreasing) in λ for V < V1c (resp. V > V1c).
(ii2) The individual flux J2 is decreasing (resp. increasing) in λ for V < V2c (resp. V > V2c).

(iii) If σ + ρ < 2 and x > x∗∗, then ∂2 J11
∂V∂λ > 0, and ∂2 J21

∂V∂λ < 0. Furthermore,

(iii1) The individual flux J1 is decreasing (resp. increasing) in λ for V < V1c (resp. V > V1c).
(iii2) The individual flux J2 is increasing (resp. decreasing) in λ for V < V2c (resp. V > V2c).

Remark 3. The effects on ionic flows from the relative ion sizes are analyzed in Theorem 2 under
relaxed neutral conditions. The sign of ∂2 Jk1

∂λ∂V again can be either positive or negative sensitively
depending on the interplay between boundary concentrations and boundary layers, while the
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sign is generally positive for ∂2 J11
∂λ∂V and negative for ∂2 J21

∂λ∂V under electroneutrality conditions. The
dynamics of ionic flows through membrane channels is much more rich under these more general
and realistic setups.

3.2. Finite Ion Size Effects on the I-V Relations under Relaxed Neutral Conditions

The analysis on the total current I follows from Equation (12) and the Lemmas 5 and 6
directly.

Theorem 3. Assume x = L1/R1 > 1 and ν > 0 small.

(i) For (λ − 1)(σ + ρ − 2) > 0 and σ > ρ, one has ∂I1
∂V

> 0. Furthermore, the ion size reduces
(resp. enhances) the current I if V < Vc (resp. V > Vc). Equivalently, I(V; σ, ρ; λ, ν) <
I(V; σ, ρ; 0, 0) (resp. I(V; σ, ρ; λ, ν) > I(V; σ, ρ; 0, 0)) if V < Vc (resp. V > Vc);

(ii) For (λ − 1)(σ + ρ − 2) > 0, 1 < σ < ρ and ρ−1
σ−1 < x∗, one has ∂I1

∂V
> 0. Furthermore,

the ion size reduces (resp. enhances) the current I if V < Vc (resp. V > Vc). Equivalently,
I(V; σ, ρ; λ, ν) < I(V; σ, ρ; 0, 0) (resp. I(V; σ, ρ; λ, ν) > I(V; σ, ρ; 0, 0)) if V < Vc (resp.
V > Vc);

(iii) For (λ − 1)(σ + ρ − 2) < 0 and 1 < x < x∗, one has ∂I1
∂V

< 0. Furthermore, the ion
size enhances (resp. reduces) the current I(V; σ, ρ, λ, ν) if V < Vc (resp. V > Vc), that is,
I(V; σ, ρ; λ, ν) > I(V; σ, ρ, 0, 0) (resp. I(V; σ, ρ; λ, ν) < I(V; σ, ρ, 0, 0)) if V < Vc (resp.
V > Vc);

(iv) For (λ − 1)(σ + ρ − 2) < 0 and x > x∗, one has ∂I1
∂V

> 0. Furthermore, the ion size
reduces (resp. enhances) the current I(V; σ, ρ, λ, ν) if V < Vc (resp. V > Vc), that is,
I(V; σ, ρ; λ, ν) < I(V; σ, ρ, 0, 0) (resp. I(V; σ, ρ; λ, ν) > I(V; σ, ρ, 0, 0)) if V < V1c (resp.
V > V1c).

Theorem 4. Assume x = L1/R1 > 1 and (σ, ρ) → (1, 1). One has

(i) If σ + ρ > 2 and ρ < σ, one has ∂2 I1
∂V∂λ > 0. Furthermore, the current I is decreasing (resp.

increasing) in λ if V < Vc (resp. V > Vc).
(ii) If σ + ρ < 2, one has

(ii1) For 1 < x < x∗∗, one has ∂2 I1
∂V∂λ < 0. Furthermore, the current I is increasing (resp.

decreasing) in λ if V < Vc (resp. V > Vc);
(ii2) For x > x∗∗, one has ∂2 I1

∂V∂λ > 0. Furthermore, the current I is decreasing (resp.
increasing) in λ if V < Vc (resp. V > Vc).

3.3. Effects Due to the Relaxation of Electroneutrality Boundary Conditions: Further Discussion

In this section, we further focus on the effects on ionic flows from boundary layers
due to the relaxation of electroneutrality boundary concentrations. For convenience, we
use, for example, JEN

k to denote the individual flux derived under the electroneutrality
conditions (6), and use Jk to denote the case with relaxed neutral conditions.

3.3.1. Partial Orders of Some Critical Potentials

Recall from Definition 1 that there exists three critical potentials, V1c, V2c, and Vc, such
that J11(V1c; λ) = 0, J21(V2c; λ) = 0, I1(Vc) = 0. Particularly, under our setup,

V1c = −
α10(1, 1) + ∂α10

∂σ (1, 1)(σ − 1) + ∂α10
∂ρ (1, 1)(ρ − 1)

α11(1, 1) + ∂α11
∂σ (1, 1)(σ − 1) + ∂α11

∂ρ (1, 1)(ρ − 1)

kBT
e

,

V2c = −
β10(1, 1) + ∂β10

∂σ (1, 1)(σ − 1) + ∂β10
∂ρ (1, 1)(ρ − 1)

β11(1, 1) + ∂β11
∂σ (1, 1)(σ − 1) + ∂β11

∂ρ (1, 1)(ρ − 1)

kBT
e

,

Vc = −
z1(D1 − D2)(α10(1, 1) + ∂α10

∂σ (1, 1)(σ − 1) + ∂α10
∂ρ (1, 1)(ρ − 1))

(z1D1 − z2D2)(α11(1, 1) + ∂α11
∂σ (1, 1)(σ − 1) + ∂α11

∂ρ (1, 1)(ρ − 1))
.

(22)
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Correspondingly, under the electroneutrality boundary conditions, there also exists
three critical potentials, denoted by VEN

1c , VEN
2c , and VEN

c , respectively, given by

VEN
1c =− α10(1, 1)

α11(1, 1)
kBT

e
, VEN

2c = − β10(1, 1)
β11(1, 1)

kBT
e

, VEN
c = − z1(D1 − D2)α10(1, 1)

(z1D1 − z2D2)α11(1, 1)
. (23)

To further demonstrate the boundary layer effects, we provide partial orders of the
above six critical potentials. More precisely, we consider(

V1c − VEN
1c

) e
kBT

= Λ1c(σ, ρ),
(

V2c − VEN
2c

) e
kBT

= Λ2c(σ, ρ),(
Vc − VEN

c

) e
kBT

=
z1(D1 − D2)

z1D1 − z2D2
Λ1c(σ, ρ),

(24)

where

Λ1c(σ, ρ) =
α10(1, 1)
α11(1, 1)

−
α10(1, 1) + ∂α10

∂σ (1, 1)(σ − 1) + ∂α10
∂ρ (1, 1)(ρ − 1)

α11(1, 1) + ∂α11
∂σ (1, 1)(σ − 1) + ∂α11

∂ρ (1, 1)(ρ − 1)
,

Λ2c(σ, ρ) =
β10(1, 1)
β11(1, 1)

−
β10(1, 1) + ∂β10

∂σ (1, 1)(σ − 1) + ∂β10
∂ρ (1, 1)(ρ − 1)

β11(1, 1) + ∂β11
∂σ (1, 1)(σ − 1) + ∂β11

∂ρ (1, 1)(ρ − 1)
.

It is clear that the partial orders of the critical potentials are determined by the signs of
Λ1c, Λ2c, and D1 − D2. For convenience, we assume D1 > D2 in our following analysis.
The case with D1 < D2 can be argued similarly.

To start, we introduce x = L1
R1

, and have

α10(1, 1) =
z2 − z1λ

2z2
R2

1(x2 − 1),

∂α10

∂σ
(1, 1)(σ − 1) +

∂α10

∂ρ
(1, 1)(ρ − 1) = R2

1G(x),

where

G(x) =
(

a1(x2 − 1)
2z2(z1 − z2) ln x

− a4

2
x2 − a2a3

(x − 1)2

ln2 x

)
(σ − 1)

+

(
a1(x2 − 1)

2z2(z1 − z2) ln x
+

1
2

a4 + a2a3
(x − 1)2

ln2 x

)
(ρ − 1).

It is easy to check that α10(1, 1) > 0 for x > 1. For the function G(x) defined above,
we have the following result, which is critical for our discussion.

Lemma 7. For the function G(x) with x > 1, one has

(i) If λ > z2

z1

(
1−3(z1−z2)

) and σ + ρ > 2 with (σ, ρ) → (1+, 1−), then G(x) > 0.

(ii) If z2

z1

(
1−4(z1−z2)

) < λ < z2

z1

(
1−3(z1−z1)

) and σ + ρ > 2 with (σ, ρ) → (1+, 1−), then there

exists an x1 > 1, such that G(x) < 0 for 1 < x < x1 and G(x) > 0 for x > x1.
(iii) If λ > z2

z1

(
1−3(z1−z2)

) and σ + ρ < 2 with (σ, ρ) → (1−, 1+), then G(x) < 0.

Proof. Direct calculation leads to G′(x) = G1(x)
ln3 x

, where

G1(x) =
(

a1
(
2x2 ln x − (x2 − 1)

)
ln x

2z2(z1 − z2)x
− a4x − 2a2a3(x − 1)

ln x − (x − 1)
x

)
(σ − 1)
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+

(
a1
(
2x2 ln x − (x2 − 1)

)
ln x

2z2(z1 − z2)x
+ 2a2a3(x − 1)

ln x − (x − 1)
x

)
(ρ − 1).

Clearly, G′(x) and G1(x) have the same sign for x > 1.
It follows that

G′
1(x) =

(
a1
(
2x2 ln x(ln x + 2) + 1 − x2 − (1 + x2) ln x

)
2z2(z1 − z2)x2 − 3a4 ln2 x

− 2a2a3
x2 ln x + 1 − x

x2

)
(σ − 1) +

(
a1
(
2x2 ln x(ln x + 2) + 1 − x2 − (1 + x2) ln x

)
2z2(z1 − z2)x2

+ 2a2a3
x2 ln x + 1 − x

x2

)
(ρ − 1),

x3G′′
1 (x) =

(
a1
(
2(2x2 + 1) ln x + 3(x2 − 1)

)
2z2(z1 − z2)

− 6a4x2 ln x − 2a2a3(x2 + x − 2)

)
(σ − 1)

+

(
a1
(
2(2x2 + 1) ln x + 3(x2 − 1)

)
2z2(z1 − z2)

+ 2a2a3(x2 + x − 2)

)
(ρ − 1).

For simplicity, we define G2(x) = x3G′′
1 (x). It follows that

G′
2(x) =

(
a1
(

x2(ln x + 5) + 1
)

z2(z1 − z2)x
− 6a4(2x ln x + x)− 2a2a3(2x + 1)

)
(σ − 1)

+

(
a1
(

x2(ln x + 5) + 1
)

z2(z1 − z2)x
+ 2a2a3(2x + 1)

)
(ρ − 1),

G′′
2 (x) =

(
a1
(

x2(4 ln x + 9)− 1
)

z2(z1 − z2)x2 − 6a4(2 ln x + 3)− 4a2a3

)
(σ − 1)

+

(
a1
(

x2(4 ln x + 9)− 1
)

z2(z1 − z2)x2 + 4a2a3

)
(ρ − 1),

G′′′
2 (x) =

(
2a1
(
2x2 + 1

)
z2(z1 − z2)x3 − 12a4

1
x

)
(σ − 1) +

2a1
(
2x2 + 1

)
z2(z1 − z2)x3 (ρ − 1).

Again, for convenience, we define G3 = xG′′′
2 (x) and have

G3(x) =

(
2a1
(
2x2 + 1

)
z2(z1 − z2)x2 − 12a4

)
(σ − 1) +

2a1
(
2x2 + 1

)
z2(z1 − z2)x2 (ρ − 1).

Direct calculation leads to

G′
3(x) = −

(
8a1

2z2(z1 − z2)x3

)
(σ + ρ − 2).

Note that, with x > 1, − a1
2z2(z1−z2)

8
x3 > 0. Therefore, one has G′

3(x) > 0 if σ + ρ > 2.
Note also that

G3(1) = 12
z1λ − z2 − 4z1λ(z1 − z2)

2z2(z1 − z2)
(σ − 1) + 6

z1λ − z2

z2(z1 − z2)
(ρ − 1).

Clearly, for z1λ − z2 − 4z1λ(z1 − z2) < 0 and (σ, ρ) → (1+, 1−), we have G3(1) > 0.
Together with G′

3(x) > 0, one has G3(x) > 0 for x > 1. Since, for x > 1, G3(x) has the same
sign as that of G′′′

2 (x), we have G′′′
2 (x) > 0 for x > 1. Evaluating G′′

2 (x) at x = 1 gives

G′′
2 (1) =4

(
2

z1λ − z2

z2(z1 − z2)
− 9

z1λ

z2
− z1λ

z2

)
(σ − 1)

+ 4
(

2
z1λ − z2

z2(z1 − z2)
+

z1λ

z2

)
(ρ − 1).
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We deduce that G′′
2 (1) > 0 if z1λ − z2 − 5λ(z2

1 − z1z2) < 0. It follows that G′′
2 (x) > 0

for x > 1 and z1λ − z2 − 5λ(z2
1 − z1z2) < 0. This implies that G′

2(x) is increasing in x.
Note that

G′
2(1) = 6

(
z1λ − z2

z2(z1 − z2)
− 2

z1λ

z2
− z1λ

z2

)
(σ − 1)

+ 6
(

z1λ − z2

z2(z1 − z2)
+

z1λ

z2

)
(ρ − 1).

One has G′
2(1) > 0 if z1λ − z2 − 3λ(z2

1 − z1z2) < 0. It follows that G′
2(x) > 0 for x > 1

if z1λ − z2 − 3λ(z2
1 − z1z2) < 0. Note also that

G2(1) = G′′
1 (1) = G′

1(1) = G(1) = 0 and λ(z2
1 − z1z2) > 0.

We have G(x) > 0 for z1λ − z2 − 3λ(z2
1 − z1z2) < 0. Similar argument shows that if

z1λ − z2 − 3λ(z2
1 − z1z2) < 0, together with σ + ρ − 2 < 0 and (σ, ρ) → (1−, 1+), one has

G(x) < 0 for x > 1. This proves statements (i) and (iii).
For σ + ρ − 2 > 0 with (σ, ρ) → (1+, 1−) and z1λ − z2 − 4λ(z2

1 − z1z2) < 0, if further
z1λ − z2 − 3λ(z2

1 − z1z2) > 0, then G′′
2 (x) > 0 x > 1, but G′

2(1) < 0. Consequently, there
exists a unique root, x1, of G(x) = 0, such that G(x) < 0 for x < x1 and G(x) > 0 for
x > x1. This complete the proof of the statement (ii).

For convenience, we introduce x̃1 = min{x∗, x1∗} and x̃2 = min{x∗∗, x4∗}, where x∗

and x∗∗ are defined in Lemma 5, and x1∗ and x4∗ are defined in Lemma 4. Together with
Lemmas 4, 5, and 7, the following results can be established.

Proposition 1. Assume D1 > D2, one has

(i) V1c > VEN
1c and Vc > VEN

c if z2
z1−3(z2

1−z1z2)
< λ < 1, (σ, ρ) → (1+, 1−) with σ + ρ > 2

and 1 < x < x̃1.
(ii) V1c < VEN

1c and Vc < VEN
c if λ > 1, (σ, ρ) → (1−, 1+) with σ + ρ < 2 and 1 < x < x̃2.

Proof. We just provide a detailed proof for statement (i). Statement (ii) can be discussed
similarly. Recall that

(
V1c − VEN

1c
) e

kBT
= Λ1c and

(
Vc − VEN

c
) e

kBT
=

z1(D1 − D2)

z1D1 − z2D2
Λ1c.

It is critical to study the sign of Λ1c, where

Λ1c =
α10(1, 1)

(
∂α11
∂σ (1, 1)(σ − 1) + ∂α11

∂ρ (1, 1)(ρ − 1)
)
− α11(1, 1)

(
∂α10
∂σ (1, 1)(σ − 1) + ∂α10

∂ρ (1, 1)(ρ − 1)
)

α11(1, 1)
(

α11(1, 1) + ∂α11
∂σ (1, 1)(σ − 1) + ∂α11

∂ρ (1, 1)(ρ − 1)
) .

From Lemma 2, α11(1, 1) has the same as that of A1(x), which is positive for x > 1.
α10(1, 1) > 0 for x > 1 from its definition. Note that the sign of

∂α11

∂σ
(1, 1)(σ − 1) +

∂α11

∂ρ
(1, 1)(ρ − 1)

is determined by the function A2(x) (see the definition in (17)). It follows from Lemma 4
that, for (σ, ρ) → (1+, 1−) with σ + ρ − 2 > 0 and λ < 1, there exists a x1∗, such
that A2(x) < 0 for 1 < x < x1∗. Together with Lemma 7, one has ∂α10

∂σ (1, 1)(σ − 1) +
∂α10
∂ρ (1, 1)(ρ − 1) > 0 for 1 > λ > z2

z1−3(z2
1−z1z2)

and (σ, ρ) → (1+, 1−). Hence, the nu-

merator of Λ1c is negative for 1 < x < x1∗. From Lemma 5, one has F(x) < 0 for
1 < x < x∗. Therefore, one has Λ1c(σ, ρ) > 0 for 1 < x < x̃1 under the assumption
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1 > λ > z2
z1−3(z2

1−z1z2)
, and (σ, ρ) → (1+, 1−) with σ + ρ > 2. This indicates that V1c > VEN

1c

and Vc > VEN
c under the assumptions. This completes the proof.

Proposition 2. For the critical V2c and VEN
2c , one has

(i) V2c > VEN
2c if λ < 1, (σ, ρ) → (1+, 1−) with σ + ρ > 2 and 1 < x < x̃1.

(ii) V2c < VEN
2c if λ > 1, (σ, ρ) → (1−, 1+) with σ + ρ < 2 and 1 < x < x̃2.

We demonstrate that the partial order of the critical potentials allows us to further
characterize the effects on ionic flows from the boundary layers due to the relaxation of
electroneutrality boundary concentration conditions. This is stated in the next result.

Theorem 5. Assume D1 > D2, σ > ρ, (λ − 1)(σ + ρ − 2) < 0, and 1 < x < x̃1.

(i) For the individual flux J1 with V1c > VEN
1c , one has

(i1) If V < VEN
1c , then JEN

11 (V; 1, 1) < 0, while J11(V; σ, ρ) > 0. Equivalently, the finite ion
size reduces JEN

1 (V; 1, 1), while it enhances J1(V; σ, ρ);
(i2) If VEN

1c < V < V1c, then JEN
11 (V; 1, 1) > 0 and J11(V; σ, ρ) > 0. Equivalently, the

finite ion size enhances both JEN
1 (V; 1, 1) and J1(V; σ, ρ);

(i3) If V > V1c, then JEN
11 (V; 1, 1) > 0, while J11(V; σ, ρ) < 0. Equivalently, the finite ion

size enhances JEN
1 (V; 1, 1), while it reduces J1(V; σ, ρ).

(ii) For the individual flux J2 with V2c > VEN
2c , one has

(ii1) If V < VEN
2c , then JEN

21 (V; 1, 1) > 0, while J21(V; σ, ρ) < 0. Equivalently, the finite ion
size enhances JEN

2 (V; 1, 1), while it reduces J2(V; σ, ρ);
(ii2) If VEN

2c < V < V2c, then JEN
21 (V; 1, 1) < 0 and J21(V; σ, ρ) < 0. Equivalently, the

finite ion size reduces both JEN
2 (V; 1, 1) and J2(V; σ, ρ);

(ii3) If V > V2c, then JEN
21 (V; 1, 1) < 0, while J21(V; σ, ρ) > 0. Equivalently, the finite ion

size reduces JEN
2 (V; 1, 1), while it enhances J2(V; σ, ρ).

(iii) For the current I with Vc > VEN
c , one has

(iii1) If V < VEN
c , then IEN

1 (V; 1, 1) < 0, while I1(V; σ, ρ) > 0. Equivalently, the finite ion
size reduces IEN(V; 1, 1), while it enhances I(V; σ, ρ);

(iii2) If VEN
c < V < Vc, then IEN

1 (V; 1, 1) > 0 and I1(V; σ, ρ) > 0. Equivalently, the finite
ion size enhances both IEN(V; 1, 1) and I(V; σ, ρ);

(iii3) If V > Vc, then IEN
1 (V; 1, 1) > 0, while I1(V; σ, ρ) < 0. Equivalently, the finite ion

size enhances IEN(V; 1, 1), while it reduces I(V; σ, ρ).

Proof. Note that, from (17), ∂JEN
11 (V;1,1)

∂V = e
kBT

R2
1

2 ln2 x
A1(x), which is positive for x > 1. This

implies that JEN
11 (V; 1, 1) is increasing in the potential V for x > 1. Note also that, from

(17), ∂J11(V;σ,ρ)
∂V = e

kBT
R2

1
2 ln2 x

F(x; σ, ρ) and the sign is determined by that of F(x; σ, ρ), which
is discussed in Lemma 5. Together with Proposition 1 and 2, our result follows.

Remark 4. We would like to point out that the boundary layers have very sensitive effects on ionic
flow properties of interest. Take the discussion on the leading term J11, containing ion size effects of
the individual flux J1 for example. Under the condition stated in Theorem 5,

• With electroneutrality conditions, one always has ∂JEN
11 (V;1,1)

∂V > 0 for all x = L1
R1

> 1, that
is, JEN

11 (V) is increasing in the membrane potential V and JEN
11 < 0 (resp. JEN

11 > 0) for
V < VEN

1c (resp. V > VEN
1c );

• However, with boundary layers, ∂J11(V;σ,ρ)
∂V can be either positive or negative, as discussed in

Theorem 1, which further depends on the nonlinear interplays among other system parameters.
With V1c > VEN

1c , the dynamics of the leading terms J11 and JEN
11 is quite different over the

subregions (−∞, VEN
1c ) and (V1c, ∞) (see statement (i) in Theorem 5).
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To provide more intuitive illustration of our analytical results, particularly, the in-
terplays between the finite ion sizes and the boundary layers, the following numerical
simulations are performed on the PNP system with dimensions. More precisely, we view
the cation to be Na+ and the anion to be Cl−, and λ is the ratio of the volume of Na+ to
Cl−. The diffusion coefficients for Na+ and Cl− were set as DNa = 1.334 × 10−9 m2/s
and DCl = 2.032 × 10−9 m2/s, respectively. We take the value of the Boltzmann constant
(kB) to be 1.381 × 10−23 J/K. The temperature (T) was fixed at 273.16 K, the elementary
charge (e) at 1.602 × 10−19 C, and the valence of Na+ and Cl− ions (z1 and z2) was set to
+1 and −1, respectively.

(1) Numerically identify x∗∗, the root of F(x) = 0 introduced in statement (ii) of the
Lemma 5, which helps better understand the analytical result, in particular, the proof
(see Figure 1);

(2) Identify the critical potentials V1c and VEN
1c defined in Definition 1 for different setups

in boundary conditions, and observe the monotonicity of J1 and JEN
1 , respectively,

viewed as functions of the potential V, which also indicates the effects on the individ-
ual flux J1 from the boundary layers (see Figure 2);

(3) Identify the critical potentials Vc and VEN
c defined in Definition 1 for different setups

in boundary conditions, and observe the monotonicity of I1 and IEN
1 , respectively,

viewed as functions of the potential V, which also indicates the effects on the I–V
relations from the boundary layers (see Figure 3).
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Figure 1. Graph of function F(x). The left graph corresponds to statement (ii1) of Lemma 5, while the
right one corresponds to statement (ii2).
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Figure 2. The left figure is a graph of J11(V) with σ = 1.001 and ρ = 1.002 (dashed line), and JEN
11 (V)

with σ = ρ = 1 (solid line) for x > x∗∗, while the right one is 1 < x < x∗∗. The left figure shows that
both J11 and JEN

11 have the same monotonicity, while the right one shows opposite monotonicity.
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Figure 3. The left figure is a graph of I11(V) with σ = 1.001 and ρ = 1.002 (dashed line), and IEN
11 (V)

with σ = ρ = 1 (solid line) for x > x∗∗, while the right one is 1 < x < x∗∗. The left figure shows that
both I1 and IEN

1 have the same monotonicity, while the right one shows opposite monotonicity.

3.3.2. Direct Description of Boundary Layer Effects on Ionic Flows

To better understand the boundary layer effects on ionic flows, we consider the
difference between JEN

k1 and Jk1, and the difference between IEN
1 and I1. More precisely,

we define

J D
k1 =J D

k1 (V; λ, σ, ρ) = Jk1(V; λ, σ, ρ)− JEN
k1 (V, λ, 1, 1), k = 1, 2,

ID
1 =I1(V; λ, σ, ρ) = I1(V; λ, σ, ρ)− IEN

1 (V; λ, 1, 1).

From (14), together with β11 = −α11, one has

J D
11 =α10(λ, σ, ρ)− α10(λ, 1, 1) + (α11(λ, σ, ρ)− α11(λ, 1, 1))

e
kBT

V,

J D
21 =β10(λ, σ, ρ)− β10(λ, 1, 1)− (α11(λ, σ, ρ)− α11(λ, 1, 1))

e
kBT

V,

ID
1 =z1D1

(
α10(λ, σ, ρ)− α10(λ, 1, 1)

)
+ z2D2

(
β10(λ, σ, ρ)− β10(λ, 1, 1)

)
+ (z1D1 − z2D2)

(
α11(λ, σ, ρ)− α11(λ, 1, 1)

) e
kBT

V.

It follows that (up to the first order in σ and ρ)

∂J D
11 (V; λ, σ, ρ)

∂V
=−

∂J D
21 (V; λ, σ, ρ)

∂V
=

eR2
1

2kBT ln2 x
A2(x, σ, ρ),

∂ID
1 (V; λ, σ, ρ)

∂V
=

eR2
1(z1D1 − z2D2)

2kBT ln2 x
A2(x, σ, ρ),

(25)

where A2(x; σ, ρ) is given in (18).
Obviously, with A2(x; σ, ρ) ̸= 0, the equation J D

11 (V; λ, σ, ρ) = 0 has a unique zero,
say V1∗, the equation J D

21 (V; λ, σ, ρ) = 0 has a unique zero, say V2∗, and the equation
ID

1 (V; λ, σ, ρ) = 0 has a unique zero, say V∗. Furthermore, one has

V1∗ =− α10(λ, σ, ρ)− α10(λ, 1, 1)
α11(λ, σ, ρ)− α11(λ, 1, 1)

· kBT
e

,

V2∗ =− β10(λ, σ, ρ)− β10(λ, 1, 1)
β11(λ, σ, ρ)− β11(λ, 1, 1)

· kBT
e

,

V∗ =−
z1D1

(
α10(λ, σ, ρ)− α10(λ, 1, 1)

)
+ z2D2

(
β10(λ, σ, ρ)− β10(λ, 1, 1)

)
(z1D1 − z2D2)

(
α11(λ, σ, ρ)− α11(λ, 1, 1)

) .

It is not difficult to see that the critical potentials V1∗ (resp. V2∗ and V∗) balance the
effects from the boundary layers on the leading term J11 (resp. J21 and I1) that contains
finite ion size effects.
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Note that, from (25), the monotonicity ofJ D
11 (V; λ, σ, ρ), J D

21 (V; λ, σ, ρ), and ID
1 (V; λ, σ, ρ)

is determined by the sign of A2(x; σ, ρ), which is discussed in Lemma 4 in detail. For simplicity,
here, we assume A2(x) > 0, and establish the following result.

Theorem 6. Assuming L1 > R1 and (σ, ρ) → (1, 1). For ν > 0 small, one has ∂J D
11 (V;λ,σ,ρ)

∂V > 0,
∂J D

21 (V;λ,σ,ρ)
∂V < 0, and ∂I1(V;λ,σ,ρ)

∂V > 0. Moreover,

(i) J1(V; λ, σ, ρ) < JEN
1 (V, λ, 1, 1) (resp. J1(V; λ, σ, ρ) > JEN

1 (V, λ, 1, 1)) for V < V1∗ (resp.
V > V1∗). In other words, the boundary layers reduce (resp. enhance) the effect on the
individual flux J1 from the finite ion size for V < V1∗ (resp. V > V1∗).

(ii) J21(V; λ, σ, ρ) > JEN
21 (V, λ, 1, 1) (resp. J2(V; λ, σ, ρ) < JEN

2 (V, λ, 1, 1)) for V < V2∗ (resp.
V > V2∗). In other words, the boundary layers enhance (resp. reduce) the effect on the
individual flux J2 from the finite ion size for V < V2∗ (resp. V > V2∗).

(iii) I1(V; λ, σ, ρ) < IEN
1 (V, λ, 1, 1) (resp. I1(V; λ, σ, ρ) > IEN

1 (V, λ, 1, 1)) for V < V∗ (resp.
V > V∗). In other words, the boundary layers reduce (resp. enhance) the effect on the current
I from the finite ion size for V < V∗ (resp. V > V∗).

To end this section, we demonstrate that the boundary layers play crucial roles in the
study of ionic flow properties (see Theorems 5 and 6). Particularly, the characterization
of the nonlinear interactions between the boundary layer parameters σ and ρ and other
system parameters (Lemma 4 provides an example) should be considered carefully in the
future studies of ion channel problems.

4. Conclusions

In this work, we analyze a quasi-one-dimensional PNP system with finite ion sizes
modeled through Bikerman’s local hard-sphere potential. We mainly focus on the effects
from boundary layers on ionic flows due to the relaxation of electroneutrality boundary
conditions. The detailed analysis provides better understanding of the mechanism of ionic
flows through membrane channels. The study is critical because boundary layers of charge
are particularly likely to produce artifacts over long distance, which could dramatically
affect the behavior of ionic flows. Of particular interest are the leading terms Jk1 of the
individual fluxes and I1 of the I–V relations that contain finite ion size effects. To be specific,

• We study the signs of Jk1 and I1 with boundary layers, from which one can tell whether
the finite ion size enhances or reduces the individual fluxes, Jk, and the I–V relation, I.

• We characterize the monotonicity of Jk1 and I1 with boundary layers about the potential
V, from which one can efficiently adjust/control the boundary conditions to enhance
or reduce the finite ion size effects.

• We examine the boundary layer effects on ionic flows by considering

– the difference Jk1(V; σ, ρ)− JEN
k1 (V; 1, 1) and I1(V; σ, ρ)− IEN

1 (V; 1, 1), where Jk1
and I1 are with boundary layers, and JEN

k1 and IEN
1 are under electroneutrality

boundary conditions;
– the partial orders of the critical potentials Vkc, Vc, VEN

kc , and VEN
c described

in (22) and (23).

With boundary layers, many nonintuitive phenomena of ionic flows are observed.
Among others, we find

• As linear functions of the potential V (fixing other system parameters)

– ∂V J11 and ∂V I1 (resp. ∂V J21) can be negative (resp. positive), while they are
always positive (resp. negative) under the electroneutrality boundary conditions
(see Theorems 1 and 3);

– ∂Vλ J11 and ∂Vλ I1 (resp. ∂Vλ J21) can be negative (resp. positive), while they are
always positive (negative) under the electroneutrality boundary conditions (see
Theorems 2 and 4).
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• Critical potentials that either balance the ion size effects (such as V1c, V2c, and Vc) or
separate the relative ion size effects (such as V1c, V2c, and Vc) on individual fluxes,
I–V relations, and the total flow rate of matter, respectively, are identified (Definition 1),
which play critical roles in studying ionic flow properties of interest and characterizing
the effects from boundary layers (discussed in Section 3).

Finally, we demonstrate that the setting of the PNP problem in this work is relatively
simple, but our analysis is rigorous. It is an extension of the work performed in [48], and the
study provides additional information of the dynamics of ionic flows. This work, together
with the work performed in [43,62], could provide some deep insights for future studies of
ion channel problems.
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