
Citation: Kazimirova, R.; Ibragimov,

G.; Pansera, B.A.; Ibragimov, A.

Multi-Pursuer and One-Evader

Evasion Differential Game with

Integral Constraints for an Infinite

System of Binary Differential Equations.

Mathematics 2024, 12, 1183. https://

doi.org/10.3390/math12081183

Received: 18 March 2024

Revised: 11 April 2024

Accepted: 11 April 2024

Published: 15 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Multi-Pursuer and One-Evader Evasion Differential Game with
Integral Constraints for an Infinite System of Binary
Differential Equations
Ruzakhon Kazimirova 1,2,†, Gafurjan Ibragimov 3,4,† , Bruno Antonio Pansera 5,*,† and Abdulla Ibragimov 6,†

1 Department of Mathematics and Statistics, Universiti Putra Malaysia, Serdang 43400, Malaysia;
kazimirovarozaxon@gmail.com

2 Department of Mathematics, Andijan State University, Andijan 170100, Uzbekistan
3 V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent 100174, Uzbekistan;

gofurjon.ibragimov@tsue.uz
4 Department of Higher and Applied Mathematics, Tashkent State University of Economics,

Tashkent 100066, Uzbekistan
5 Department of Law, Economics and Human Sciences & Decisions_Lab, University Mediterranea of Reggio

Calabria, I-89124 Reggio Calabria, Italy
6 The Banking and Finance Academy of the Republic of Uzbekistan, Tashkent 100000, Uzbekistan;

a.ibragimov@bfa.uz
* Correspondence: bruno.pansera@unirc.it
† The authors contributed equally to this work.

Abstract: In the Hilbert space l2, a differential evasion game involving multiple pursuers is considered.
Integral constraints are imposed on player control functions. The pursuers are tasked with bringing
the state of a system back to the origin of l2, while the evader simultaneously tries to avoid it. It is
assumed that the energy of the evader is greater than the total energy of the pursuers. In this paper,
we contribute to the solution of the differential evasion game with multiple pursuers by building an
exact strategy for the evader.

Keywords: differential game; control; evasion strategy; infinite system of differential equations;
integral constraint

MSC: 91A23; 49N75

1. Introduction

There are many works dedicated to differential games in finite-dimensional Euclidean
spaces (see, for example, [1,2]). In recent years, multiplayer differential games have at-
tracted increasing interest. In the multi-pursuer and multi-evader differential game studied
in [3], the pursuers are faster than the evaders. It has been established that the optimal
evading strategy in the game with multiple pursuers and one evader depends only on
those pursuers catching the evader simultaneously. Using Apollonian circles, pursuers are
classified as redundant and active. Based on this, a dynamic allocation algorithm for the
pursuers is proposed to solve the problem.

A differential pursuit–evasion game of multiple pursuers and one evader is studied
in [4] in the presence of dynamic environmental disturbances. Pursuers are classified as
active pursuers, guards, and redundant pursuers. The conditions under which the game
can be terminated have been obtained. To avoid interception with one or more pursuers,
the evasion strategy was built based on Apollonius’ circle in pursuit–evasion situations
in [5].

In [6], the authors present differential pursuit–evasion games with an overview of
recent advances in the area, highlighting important contributions and describing recent
results using a classification based on the number of players. Additionally, the two cutters
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and the escape ship are studied, as well as the differential pursuit–evasion games of active
target defense. Furthermore, the works [7–13] are dedicated to various differential pursuit
and evasion games.

The evasion strategy was built for the evader to avoid many pursuers in [14,15], when
the players’ control functions are subject to integral constraints. The work [16] is dedicated
to the game of the optimal approach of multiple pursuers to an evader subject to a fixed
terminal time. Necessary and sufficient conditions for completing a differential game were
obtained in [17] for a multi-pusuer and one-evader differential game on manifolds with the
Euclidean metric.

An interesting differential game has been studied in [18], where the players of the
game are a group of pursuers, an evader, and a group of defenders of the evader. All
players have the same dynamic and inertial capabilities. The evader and the group of
defenders play cooperatively against the pursuers. The necessary and sufficient conditions
for the simultaneous multiple capture of the evader have been obtained. Furthermore, the
article [19] is dedicated to a simultaneous multi-capture differential game. In [20], an n
prisoner’s dilemma game model for network interaction of multiple players is studied and
a strategy involving punishment is proposed. The article [21] is dedicated to a detailed
investigation of multi-player differential games.

Modeling control problems as partial differential equations (PDEs) is a common
approach in the field of control theory, especially when dealing with distributed parameter
systems. It is worth noting that the complexity of solving PDEs and designing controllers
for distributed parameter systems can be challenging. A large literature has studied control
problems for partial differential equations. A time-optimal control problem was studied
for the first time in the work [22] for the parabolic-type equation. For a more in-depth
understanding, we refer the readers to the book [23].

Differential games for PDEs involve dynamic interactions between multiple players in
which the evolution of the system is described by the PDEs. The first works that studied
differential game problems for PDEs are [24,25]. The decomposition method has been used
by many researchers to study control or differential clearance problems for PDEs (see, for
example, [26–33]) to obtain such problems for an infinite system of ordinary differential
equations (ODEs). Despite the simplicity of the ODEs in the system, it is it difficult to
investigate the control problems of such systems due to the infinite number of ODEs in
the system.

The papers [26,27,29] motivated us to study differential games for the infinite system
of differential equations independently of the PDEs. Several studies have been conducted
on control and differential game problems described by infinite systems of differential
equations (see, for example, [31,34]).

If, to model control processes, exhaustible resources such as fuel, energy, resources,
etc., are bounded, then the control functions are bounded by integral constraints. Therefore,
an integral constraint on the control functions is one of the most important constraints.

For an infinite system of binary differential equations, the optimal strategies for players
in a differential game of a chaser and an evader were constructed in [34] when the control
functions are subject to integral constraints. In the present paper, we study a differential
evasion game of many pursuers and one evader with integral constraints for the same
infinite system of binary differential equations in the Hilbert space l2. We prove that, if
the control resource of the evader is greater than or equal to the total control resource
of the pursuers, then evasion is possible from any initial position of the infinite system.
Furthermore, we build an evasion strategy for the evader.

2. Statement of the Problem

We recall that the vector space of all sequences of real numbers:

l2 =

{
ξ = (ξ1, ξ2, ...) |

∞

∑
n=1

ξ2
n < ∞

}
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is a Hilbert space with the inner product and norm:

⟨ξ, η⟩ =
∞

∑
n=1

ξnηn, ||ξ|| =
√
⟨ξ, ξ⟩.

We consider a differential game described by the following infinite system of differential
equations:

ẋij = −αixij − βiyij + u1
ij − v1

i , xij(0) = x0
ij,

ẏij = βixij − αiyij + u2
ij − v2

i , yij(0) = y0
ij,

(1)

where xij, yij ∈ R, i = 1, 2, ..., m, j = 1, 2, ..., are the state variables, αi, βi are given real
numbers with αi ≥ 0, u1

ij, u2
ij are the control parameters of the i-th pursuer, i = 1, 2, . . . , m,

and v1
i , v2

i are the control parameters of the evader:

xi = (x0
i1, x0

i2, ...) ∈ l2, yi = (y0
i1, y0

i2, ...) ∈ l2, i = 1, 2, . . . , m.

Let uij = (u1
ij, u2

ij), vj = (v1
j , v2

j ), ψ0
ij = (x0

ij, y0
ij), ψij(t) = (xij(t), yij(t)), i = 1, 2, . . . , m,

j = 1, 2, . . . . Also, we let

v(t) = (v1(t), v2(t), ...), ||v(t)|| =
(

∞

∑
j=1

((
v1

j (t)
)2

+
(

v2
j (t)

)2
))1/2

,

ui(t) = (ui1(t), ui2(t), ...), ||ui(t)|| =
(

∞

∑
j=1

((
u1

ij(t)
)2

+
(

u2
ij(t)

)2
))1/2

,

ψ0
i = (ψ0

i1, ψ0
i2, ...), ∥ψ0

i ∥ =

(
∞

∑
j=1

((
x0

ij

)2
+
(

y0
ij

)2
))1/2

,

ψi(t) = (ψi1(t), ψi2(t), ...), ∥ψi(t)∥ =

(
∞

∑
j=1

(
x2

ij(t) + y2
ij(t)

))1/2

.

We assume that ψ0
i ̸= 0 for all i = 1, 2, . . . , m.

Definition 1. Vector functions ui(t) = (ui1(t), ui2(t), . . . ), i ∈ {1, 2, . . . , m} and v(t) =
(v1(t), v2(t), . . . ) with Borel measurable coordinates uij(t) and vj(t), j = 1, 2, . . . , such that

T∫
0

||ui(t)||2dt ≤ ρ2
i ,

T∫
0

||v(t)||2dt ≤ σ2 (2)

are called admissible controls of the i-th pursuer and evader, respectively, where ρi and σ are given
positive numbers and T is a given positive number.

Definition 2. We call a continuous function V(t, u1, . . . , um), V : R+ × l2 × · · · × l2 → l2, a
strategy of the evader if initial-value problems (1) have unique solutions ψ1(t), ψ2(t), . . . , ψm(t),
0 ≤ t ≤ T, at v = V(t, u1, . . . , um) and any admissible controls u1 = u1(t), . . . , um = um(t) of
the pursuers, and the following integral constraint:

T∫
0

||V(t, u1(t), . . . , um(t))||2dt ≤ σ2

is satisfied.
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Definition 3. If there exists a strategy V0(t, u1, . . . , um), 0 ≤ t ≤ T, of the evader such that for
arbitrary admissible controls ui(t), 0 ≤ t ≤ T, of pursuers, the solutions of initial-value problems
(1), ψi(t) = (ψi1(t), ψi2(t), . . . ), i = 1, . . . , m, are not equal to zero for any t, 0 ≤ t ≤ T, i.e.,
ψi(t) ̸= 0 for all 0 ≤ t ≤ T and i = 1, 2, . . . , m, then we say that evasion is possible in game (1).

Note that, on the time interval [0, T], the evader uses a strategy V0 and the pursuers
apply arbitrary admissible controls ui(t), i = 1, 2, . . . , m.

The problem is to construct a strategy V0, 0 ≤ t ≤ T, for the evader such that evasion
is possible in game (1).

3. The Main Result

The following statement is the main result of the paper.

Theorem 1. If
m

∑
j=1

ρ2
j ≤ σ2,

then, for any initial states ψ0
i , i = 1, 2, . . . , m, evasion is possible in the game described by the

infinite system of Equation (1).

Proof. We rewrite system (1) as follows:

ψ̇ij = Bjψij + uij − vj, ψij(0) = ψ0
ij, i = 1, 2, ..., m, j = 1, 2, ..., (3)

where

Bj =

[
−αj −β j
β j −αj

]
, j = 1, 2, ... .

Observe that

eBjt = e−αjt
[

cos β jt − sin β jt
sin β jt cos β jt

]
, j = 1, 2, ... .

Then, the solution of (1) (that is (3)) takes the form

ψij(t) = eBjtξij(t), ξij(t) = ψ0
ij +

t∫
0

e−Bjs(uij(s)− vj(s))ds. (4)

The solutions ψi(t) = (ψi1(t), ψi2(t), . . . ), 0 ≤ t ≤ T, of the infinite system of differential
equations (1) are considered in the space of continuous functions h(t) = (h1(t), h2(t), . . . ) ∈
l2 with absolutely continuous coordinates hi(t) defined on the interval 0 ≤ t ≤ T. Applying
techniques similar to [32] (see Ch. III, Sec. 1 and 2), one can establish that ψi(t) =
(ψi1(t), ψi2(t), . . . ) ∈ l2, 0 ≤ t ≤ T, for any fixed positive T. Therefore, the integration in (2)
is over [0, T].

From the fact that the matrices eBjt are not singular, we conclude that ψij(t) = 0 if and
only if ξij(t) = 0, i = 1, 2, ..., m, j = 1, 2, . . . . Hence, to prove the theorem, it is sufficient to
show that, for some strategy of the evader, ξi(t) = (ξi1(t), ξi2(t), . . .) ̸= 0 for all 0 ≤ t ≤ T
and i = 1, 2, . . . , m.

The condition ψ0
1 = (ψ0

11, ψ0
12, . . . ) ̸= 0 implies that at least one of the components

ψ0
1j ∈ R2, j = 1, 2, . . . , of ψ0

1 is not equal to 0, meaning that there exists a positive integer

n1 such that ψ0
1n1

̸= 0. Similarly, it follows from the condition ψ0
2 = (ψ0

21, ψ0
22, . . . ) ̸= 0 that

ψ0
2n2

̸= 0 for some positive integer n2, and so on. Finally, ψ0
m = (ψ0

m1, ψ0
m2, . . . ) ̸= 0 implies

that ψ0
mnm ̸= 0 for some positive integer nm.



Mathematics 2024, 12, 1183 5 of 10

We denote n = max
i=1,...,m

ni. Then, obviously, Ψ0
i = (ψ0

i1, ψ0
i2, . . . , ψ0

in) ̸= 0 for all i = 1,

2, . . . , m. Note that the vector Ψ0
i consists of the first n components of ψ0

i . We can assume,
by increasing n if necessary, that 2n ≥ m. In this way, we obtain

Ψ0
i = (ψ0

i1, ψ0
i2, . . . , ψ0

in) ̸= 0, Ψ0
i ∈ R2n, i = 1, 2, . . . , m. (5)

Let
Ξi(t) = (ξi1(t), ξi2(t), ..., ξin(t)), i = 1, ..., m,

where

ξij(t) = ψ0
ij +

t∫
0

e−Bjs(uij(s)− vj(s))ds, i = 1, 2, ..., m, j = 1, 2, ..., n.

Clearly, Ξi(t) consists of the first n components of ξi(t).
To prove the theorem, it is sufficient to establish that Ξi(t) ̸= 0, i = 1, ..., m, for a

strategy of the evader since these inequalities imply that

ξi(t) = (ξi1(t), ξi2(t), . . .) ̸= 0, i = 1, 2, ..., m, 0 ≤ t ≤ T,

and so, ψi(t) ̸= 0, i = 1, 2, .., m. In this way, we have reduced the game in the Hilbert space
l2 to a game in the finite-dimensional Euclidean space R2n.

Since the number m of points Ψ0
i ∈ R2n does not exceed the dimension 2n of the space

R2n, that is m ≤ 2n, we conclude that there is a unit vector:

p = (p1, p2, ..., pn) ∈ R2n, |p| = 1, pj ∈ R2,

such that the inner product ⟨Ψ0
i , p⟩ ≥ 0 for all i = 1, ..., m, that is

n

∑
j=1

⟨ψ0
ij, pj⟩ ≥ 0, i = 1, 2, ..., m, (6)

where

|p| =
(

n

∑
j=1

|pj|2
)1/2

, |pj| =
(

p2
j1 + p2

j2

)1/2
.

As the vector p ∈ R2n, we can choose an orthonormal vector to the hyperplane passing
through the points Ψ0

i , i = 1, 2, . . . , m.
We let the evader apply the following strategy:

vj(t) = − e
−B∗j t

pj√
n
∑

k=1
|e−B∗k t pk |2

√
m
∑

k=1
||uk(t)||2, j = 1, ..., n

vj(t) = 0, j = n + 1, n + 2, . . .

, t ≥ 0, (7)

where B∗
j denotes the transpose of the matrix Bj.

The admissibility of the strategy (7) follows from the following relations:

∫ T

0
∥v(t)∥2dt =

T∫
0

∥e−B∗
j t p∥2

∥e−B∗
j t p∥2

m

∑
k=1

∥uk(t)∥2dt

=
m

∑
k=1

T∫
0

∥uk(t)∥2dt ≤
m

∑
k=1

ρ2
k ≤ σ2.
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We prove that, if the evader applies strategy (7), then Ξi(t) ̸= 0 for all t ≥ 0 and
i = 1, 2, . . . , m. Assume the contrary: Let

Ξq(τ) = 0 (8)

for some τ ≥ 0 and q ∈ {1, 2, ..., m}. Then, by (6), we have for i = q that

n

∑
j=1

⟨ψ0
qj, pj⟩ ≥ 0, (9)

and hence,

⟨Ξq(τ), p⟩ =
n

∑
j=1

⟨ξqj(τ), pj⟩

=
n

∑
j=1

⟨ψ0
qj, pj⟩+

n

∑
j=1

τ∫
0

⟨e−Bjs(uqj(s)− vj(s)), pj⟩ds

≥
τ∫

0

n

∑
j=1

⟨e−Bjsuqj(s), pj⟩ds −
τ∫

0

n

∑
j=1

⟨e−Bjsvj(s), pj⟩ds (10)

By (7), the second integral in (10) can be transformed as follows:

τ∫
0

n

∑
j=1

⟨e−Bjsvj(s), pj⟩ds =

τ∫
0

n

∑
j=1

⟨vj(s), e−B∗
j s pj⟩ds

=

τ∫
0

n
∑

j=1
|e−B∗

j s pj|2√
n
∑

k=1
|e−B∗

k s pk|2

√√√√ n

∑
j=1

|uqj(s)|2ds

=

τ∫
0

√√√√ n

∑
j=1

|e−B∗
j s pj|2

√√√√ n

∑
j=1

|uqj(s)|2ds. (11)

By using the Cauchy inequality ⟨a, b⟩ ≤ |a||b|, for the integrand of the first integral in
(10), we obtain that

τ∫
0

n

∑
j=1

⟨e−Bjsuqj(s), pj⟩ds =

τ∫
0

n

∑
j=1

⟨uqj(s), e−B∗
j s pj⟩ds

≥ −
τ∫

0

√√√√ n

∑
j=1

|uqj(s)|2
√√√√ n

∑
j=1

|e−B∗
j s pj|2ds

≥ −
τ∫

0

||uq(s)||

√√√√ n

∑
j=1

|e−B∗
j s pj|2ds, (12)

where the equality sign in the first inequality holds when

uqj(s) = −λ |e−B∗
j s pj|, j = 1, 2, ..., n, 0 ≤ s ≤ τ,
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for some real number λ > 0, and the equality sign in the second inequality holds when

||uq(s)|| =

√√√√ n

∑
j=1

|uqj(s)|2, uqj(s) = 0, j = n + 1, n + 2, ..., 0 ≤ s ≤ τ.

Thus, the equality signs in the inequalities in (12) hold when

uqj(s) = −λ |e−B∗
j s pj|, j = 1, 2, ..., n

uqj(s) = 0, j = n + 1, n + 2, ...
, 0 ≤ s ≤ τ, (13)

for some real number λ > 0. We obtain from (13) that

n

∑
j=1

|uqj(s)|2 = λ2
n

∑
j=1

|e−B∗
j s pj|2, 0 ≤ s ≤ τ,

and so,

λ2 =

n
∑

j=1
|uqj(s)|2

n
∑

j=1
|e−B∗

j s pj|2
=

||uq(s)||2
n
∑

j=1
|e−B∗

j s pj|2
. (14)

Hence, the equality sign in (12) holds if λ in (13) is defined as follows:

λ =
||uq(s)||√
n
∑

j=1
|e−B∗

j s pj|2
. (15)

Thus, the equality sign in (12) holds if

uqj(s) = − e
−B∗j s

pj√
n
∑

k=1
|e−B∗k s pk |2

||uq(s)||, j = 1, 2, ..., n

uqj(s) = 0, j = n + 1, n + 2, ...

, 0 ≤ s ≤ τ. (16)

Combining (7), (10), (11), and (12), we obtain

⟨Ξq(τ), e⟩ ≥ −
τ∫

0

||uq(s)||

√√√√ n

∑
j=1

|e−B∗
j s pj|2ds

+

τ∫
0

√
m

∑
k=1

||uk(s)||2 ·

√√√√ n

∑
j=1

|e−B∗
j s pj|2ds

=

τ∫
0

(√
m

∑
k=1

||uk(s)||2 − ||uq(s)||)
)√√√√ n

∑
j=1

|e−B∗
j s pj|2ds. (17)

Clearly, √
m

∑
k=1

||uk(s)||2 ≥ ||uq(s)||, 0 ≤ s ≤ τ, (1 ≤ q ≤ m) (18)

then (17) implies that
⟨Ξq(τ), e⟩ ≥ 0. (19)



Mathematics 2024, 12, 1183 8 of 10

We now find the conditions, under which the equality sign occurs in (19). By (8), we ob-

tain ⟨Ξp(τ), p⟩ = 0. Hence, the equality sign in (10) holds. This implies that
n
∑

j=1
(ψ0

qj, pj) = 0

in (12), and that uq is defined by (16), and that

√
m
∑

k=1
||uk(s)||2 − ||uq(s)|| = 0 in (17), and

hence, uk(s) = 0, 0 ≤ s ≤ τ, k ∈ {1, 2, . . . , m}\{q}. Then,√
m

∑
k=1

||uk(s)||2 = ||uq(s)||,

and therefore, (7) takes the form

vj(t) = − e
−B∗j t

pj√
n
∑

k=1
|e−B∗k t pk |2

· ||uq(t)||, j = 1, . . . , n

vj(t) = 0, j = n + 1, n + 2, . . .

, 0 ≤ t ≤ τ. (20)

Comparing (16) and (20), we conclude that

v(t) = uq(t), 0 ≤ t ≤ τ. (21)

Substituting (21) into (4) for i = q, we obtain

ξqj(τ) = ψ0
qj +

τ∫
0

e−Bjs(vj(s)− vj(s))ds = ψ0
qj, j = 1, 2, . . . , n.

By the assumption Ξq(τ) = 0 (see Equation (8)), consequently, ξqj(τ) = ψ0
qj = 0, j = 1,

2, . . . , n, and so,
Ψ0

q = (ψ0
q1, ψ0

q2, . . . , ψ0
qn) = 0,

which contradicts condition (5).
Hence, Ξi(t) ̸= 0, and so, ξi(t) ̸= 0 for all t ≥ 0 and i = 1, 2, . . . , m. The proof of the

theorem is complete.

4. Conclusions

We have studied an evasion game problem for an infinite system of two-block dif-
ferential equations in the Hilbert space l2. In the work [34], the game was studied in the
case of one pursuer with integral constraints on the players’ controls. In the present paper,
we studied a differential many pursuers evasion game with integral constraints on the
players’ controls.

Our contributions are as follows: (i) if the total control resource of the pursuers is
less than or equal to the control resource of the evader, then evasion is possible; (ii) the
reduction of the game in the Hilbert space l2 to an equivalent differential game in the
finite-dimensional space R2n; (iii) the construction of an explicit evasion strategy that
guarantees evasion.

It should be noted that the main difficulty in solving differential game problems with
integral constraints on player control functions arises from optimizing the expenditure of
player control resources. Therefore, building an explicit escape strategy that guarantees
escape is the most challenging part of solving evasion games with integral constraints.

For future work, we recommend studying a differential escape game with countably
many pursuers.

Author Contributions: Conceptualization, R.K., G.I., B.A.P. and A.I.; methodology, R.K., G.I.,
B.A.P. and A.I.; formal analysis, R.K., G.I., B.A.P. and A.I.; investigation, R.K., G.I., B.A.P. and
A.I.; writing—original draft preparation, R.K., G.I., B.A.P. and A.I.; writing—review and editing, R.K.,



Mathematics 2024, 12, 1183 9 of 10

G.I., B.A.P. and A.I.; supervision, G.I. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to express their gratitude to the anonymous referees for
several helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chikrii, A.A.; Chikrii, G.T. Game problems of approach for quasilinear systems of general form. Proc. Steklov Inst. Math. 2019, 304,

S44–S58. [CrossRef]
2. Petrosyan, L.A. Differential Games of Pursuit; World Scientific: Singapore, 1993.
3. Makkapati, V.R.; Tsiotras, P. Optimal evading strategies and task allocation in multi-player pursuit-evasion problems. Dyn. Games

Appl. 2019, 9, 1168–1187. [CrossRef]
4. Sun, W.; Tsiotras, P.; Lolla, T.; Subramani, D.N.; Lermusiaux, P.F.J. Multiple-pursuer/one-evader pursuit-evasion game in dynamic

flowfields. JGCD 2017, 40, 1627–1637. [CrossRef]
5. Ramana, M.V.; Kothari, M. Pursuit-Evasion Games of High Speed Evader. J. Intell. Robot. Syst. 2017, 85, 293–306. [CrossRef]
6. Weintraub, I.E.; Pachter, M.; Garcia, E. An introduction to pursuit-evasion differential games. In Proceedings of the 2020 American

Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 1049–1066. [CrossRef]
7. Ruiz, B. Surveillance evasion between two identical differential drive robots. Eur. J. Control 2023, 75, 100935. [CrossRef]
8. Fang, X.; Wang, C.; Xie, L.; Chen, J. Cooperative Pursuit With Multi-Pursuer and One Faster Free-Moving Evader. IEEE Trans.

Cybern. 2022, 52, 1405–1414. [CrossRef]
9. Garcia, E.; Casbeer, D.W.; Von Moll, A.; Pachter, M. Multiple Pursuer Multiple Evader Differential Games. IEEE Trans. Autom.

Control 2021, 66, 2345–2350. [CrossRef]
10. Garcia, E.; Bopardikar, S.D. Cooperative Containment of a High-speed Evader. In Proceedings of the American Control Conference

(ACC), New Orleans, LA, USA, 25–28 May 2021; pp. 4698–4703. [CrossRef]
11. Zhang, J.; Zhang, K.; Zhang, Y.; Shi, H.; Tang, L.; Li, M. Near-optimal interception strategy for orbital pursuit-evasion using deep

reinforcement learning. Acta Astronaut. 2022, 198, 9–25. [CrossRef]
12. Von Moll, A.; Pachter, M.; Fuchs, Z. Pure Pursuit with an Effector. Dyn. Games Appl. 2023, 13, 961–979. [CrossRef]
13. Yazdaniyan, Z.; Shamsi, M.; Foroozandeh, Z.; de Pinho, M.d.R. A numerical method based on the complementarity and optimal

control formulations for solving a family of zero-sum pursuit-evasion differential games. J. Comput. Appl. Math. 2020, 368, 112535.
[CrossRef]

14. Ibragimov, G.I.; Ferrara, M.; Ruziboev, M.; Pansera, B.A. Linear evasion differential game of one evader and several pursuers with
integral constraints. Int. J. Game Theory 2021, 50, 729–750. [CrossRef]

15. Ibragimov, G.I.; Salleh, Y. Simple motion evasion differential game of many pursuers and one evader with integral constraints on
control functions of players. J. Appl. Math. 2012, 2012, 748096. [CrossRef]

16. Kuchkarov, A.S.; Ibragimov, G.I.; Khakestari, M. On a Linear Differential Game of Optimal Approach of Many Pursuers with One
Evader. J. Dyn. Control Syst. 2013, 19, 1–15. [CrossRef]

17. Kuchkarov, A.S.; Ibragimov, G.I.; Ferrara, M. Simple motion pursuit and evasion differential games with many pursuers on
manifolds with Euclidean metric. Discret. Dyn. Nat. Soc. 2016, 2016, 1386242. [CrossRef]

18. Blagodatskikh, A.I.; Bannikov, A.S. Simultaneous multiple capture in the presence of evader’s defenders. Izv. Instituta Mat. Inform.
Udmurt. Gos. Univ. 2023, 62, 10–29. [CrossRef]

19. Blagodatskikh, A.I.; Petrov, N.N. Simultaneous Multiple Capture of Rigidly Coordinated Evaders. Dyn. Games Appl. 2019, 9,
594–613. [CrossRef]

20. Grinikh, A.L.; Petrosyan, L.A. An Effective Punishment for an n-Person Prisoner’s Dilemma on a Network. Tr. Instituta Mat.
Mekhaniki UrO RAN 2021, 27, 256–262. [CrossRef]

21. Kumkov, S.S.; Patsko, V.S. Attacker-defender-target problem in the framework of space intercept. In Proceedings of the 57th Israel
Annual Conference on Aerospace Sciences, Haifa, Israel, 15–16 March 2017.

22. Fattorini, H.O. Time-Optimal control of solutions of operational differential equations. SIAM J. Control 1964, 2, 54–59.
23. Fursikov, A.V. Optimal Control of Distributed Systems, Theory and Applications, Translations of Mathematical Monographs; American

Mathematical Society: Providence, RI, USA, 2000; Volume 187.
24. Lions, J.L. Contrôle Optimal de Systémes Gouvernées par des Equations aux Dérivées Partielles; Dunod: Paris, France, 1968.
25. Osipov, Y.S. The theory of differential games in systems with distributed parameters. Dokl. Akad. Nauk. SSSR 1975, 223, 1314–1317.

http://doi.org/10.1134/S0081543819020068
http://dx.doi.org/10.1007/s13235-019-00319-x
http://dx.doi.org/10.2514/1.G002125
http://dx.doi.org/10.1007/s10846-016-0379-3
http://dx.doi.org/10.23919/ACC45564.2020.9147205
http://dx.doi.org/10.1016/j.ejcon.2023.100935
http://dx.doi.org/10.1109/TCYB.2019.2958548
http://dx.doi.org/10.1109/TAC.2020.3003840
http://dx.doi.org/10.23919/ACC50511.2021.9483097
http://dx.doi.org/10.1016/j.actaastro.2022.05.057
http://dx.doi.org/10.1007/s13235-022-00481-9
http://dx.doi.org/10.1016/j.cam.2019.112535
http://dx.doi.org/10.1007/s00182-021-00760-6
http://dx.doi.org/10.1155/2012/748096
http://dx.doi.org/10.1007/s10883-013-9161-z
http://dx.doi.org/10.1155/2016/1386242
http://dx.doi.org/10.35634/2226-3594-2023-62-02
http://dx.doi.org/10.1007/s13235-019-00300-8
http://dx.doi.org/10.21538/0134-4889-2021-27-3-256-262


Mathematics 2024, 12, 1183 10 of 10

26. Satimov, N.Y.; Tukhtasinov, M. Game problems on a fixed interval in controlled first-order evolution equations. Math. Notes 2006,
80, 578–589. [CrossRef]

27. Satimov, N.Y.; Tukhtasinov, M. On Some Game Problems for First-Order Controlled Evolution Equations. Differ. Equ. 2005, 41,
1169–1177. [CrossRef]

28. Satimov, N.Y.; Tukhtasinov, M. On Game Problems for Second-Order Evolution Equations. Russ. Math. 2007, 51, 49–57. [CrossRef]
29. Tukhtasinov, M. Some problems in the theory of differential pursuit games in systems with distributed parameters. J. Appl. Math.

Mech. 1995, 59, 979–984. [CrossRef]
30. Tukhtasinov, M.; Mamatov, M.S. On Pursuit Problems in Controlled Distributed Parameters Systems. Math. Notes 2008, 84, 256–262.

[CrossRef]
31. Azamov, A.A.; Ruziboev, M.B. The time-optimal problem for evolutionary partial differential equations. J. Appl. Math. Mech. 2013,

77, 220–224. [CrossRef]
32. Avdonin, S.A.; Ivanov, S.A. Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter

Systems; Cambridge University Press: Cambridge, UK, 1995.
33. Cardona, D.; Delgado, J.; Grajales, B.; Ruzhansky, M. Control of the Cauchy problem on Hilbert spaces: A global approach via

symbol criteria. Commun. Pure Appl. Anal. 2023, 22, 3295–3329. [CrossRef]
34. Ibragimov, G.I. Optimal pursuit time for a differential game in the Hilbert space l2. ScienceAsia 2013, 39S, 25–30. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11006-006-0177-5
http://dx.doi.org/10.1007/s10625-005-0263-6
http://dx.doi.org/10.3103/S1066369X07010070
http://dx.doi.org/10.1016/0021-8928(95)00126-3
http://dx.doi.org/10.1134/S0001434608070250
http://dx.doi.org/10.1016/j.jappmathmech.2013.07.013
http://dx.doi.org/10.3934/cpaa.2023113
http://dx.doi.org/10.2306/scienceasia1513-1874.2013.39S.025

	Introduction
	Statement of the Problem
	The Main Result
	Conclusions
	References

