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Abstract: f -biharmonic maps are generalizations of harmonic maps and biharmonic maps. In this
paper, we give some descriptions of f -biharmonic curves in a space form. We also obtain a complete
classification of proper f -biharmonic isometric immersions of a developable surface in R3 by proving
that a proper f -biharmonic developable surface exists only in the case where the surface is a cylinder.
Based on this, we show that a proper biharmonic conformal immersion of a developable surface into
R3 exists only in the case when the surface is a cylinder. Riemannian submersions can be viewed
as a dual notion of isometric immersions (i.e., submanifolds). We also study f -biharmonicity of
Riemannian submersions from 3-manifolds by using the integrability data. Examples are given of
proper f -biharmonic Riemannian submersions and f -biharmonic surfaces and curves.
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1. Introduction and Preliminaries

In this paper, one assumes that all manifolds, maps, and tensor fields studied are
smooth unless there is a statement otherwise.

Recall that a biharmonic map ϕ : (M, g) → (N, h) between Riemannian manifolds is a
critical point of the bienergy functional

E2(ϕ, Ω) =
1
2

∫
Ω
|τ(ϕ)|2vg,

where Ω is a compact domain of M and τ(ϕ) = Traceg∇dϕ denotes the tension field of ϕ.
By calculating the first variation of the functional (see [1]), the biharmonic equation can be
written as

τ2(ϕ) := Traceg(∇ϕ∇ϕ −∇ϕ

∇M )τ(ϕ)− TracegRN(dϕ, τ(ϕ))dϕ = 0, (1)

where RN is the curvature operator of (N, h) defined by

RN(X, Y)Z = [∇N
X ,∇N

Y ]Z −∇N
[X,Y]Z.

An f -biharmonic map is a critical point of the f -bienergy functional for a map ϕ:
(M, g) → (N, h) between Riemannian manifolds:

E2, f (ϕ) =
∫

Ω
f |τ(ϕ)|2vg,

where Ω is a compact subset of M and f : M → (0,+∞). One finds that the f -biharmonic
map equation is the Euler–Lagrange equation of the f -bienergy functional, which can be
written as (see e.g., [2,3])
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τ2, f (ϕ) = −Jϕ( f τ(ϕ)) = f τ2(ϕ) + (∆ f )τ(ϕ) + 2∇ϕ
grad f τ(ϕ) = 0. (2)

Here τ(ϕ) and τ2(ϕ) denote the tension and bitension fields of ϕ, respectively, and
Jϕ is the Jacobi operator of the map ϕ, defined by Jϕ(X) = −{Traceg(∇ϕ∇ϕ −∇ϕ

∇M )X −
TracegRN(dϕ, X)dϕ}. Clearly, both harmonic maps and biharmonic maps are f -biharmonic.
We also have the following obvious relationships:

{Harmonic maps} ⊂ {Biharmonic maps} ⊂ { f -Biharmonic maps}.

A submanifold is an f -biharmonic submanifold if the isometric immersion defining
the submanifold is an f -biharmonic map. A Riemannian submersion between Riemannian
manifolds is an f -biharmonic Riemannian submersion if the Riemannian submersion is
f -biharmonic. We call f -biharmonic maps (respectively, submanifolds, Riemannian sub-
mersions) that are not biharmonic proper f -biharmonic maps (respectively, submanifolds,
Riemannian submersions).

The f -biharmonic map was first introduced in [2]. Later, f -biharmonic submanifolds
were studied in [3], where the author derived the f -biharmonic curve equation into a space
form and also obtained a complete classification of proper f -biharmonic curves into R3.
The paper [4] shows that neither circular cone and part of the standard sphere S2 in R3

is f -biharmonic for any f , and a constant mean curvature surface in R3 is f -biharmonic
if and only if it is a part of a circular cylinder or a plane. For some recent progress on
f -biharmonic submanifolds and some results on f -biharmonic maps, we refer the readers
to [2,3,5–12] and the references therein.

As the dual notion of biharmonic isometric immersions (i.e., biharmonic submanifolds),
biharmonic Riemannian submersions were first studied by using the integrability data of
an adapted frame of the Riemannian submersion in [4], where the authors showed that any
biharmonic Riemannian submersion from a 3-space form onto a surface has to be harmonic
and also constructed a family of proper biharmonic Riemannian submersions from a 3-
dimensional warped product space. Following the idea from [4], we study f -biharmonic
Riemannian submersions from 3-manifolds by using the integrability data.

In this paper, we first derive an f -biharmonic curve equation in a general Riemannian
manifold. We then obtain some characterizations of f -biharmonic curves in a space form by
giving the explicit functions f and the explicit curvatures of the curves. For f -biharmonic
surfaces in R3, we give a complete classification of proper f -biharmonic isometric immer-
sions of a developable surface into R3 by proving that a proper f -biharmonic developable
surface into R3 exists only in the case when the surface is a cylinder. Based on this, we
also show that a proper biharmonic conformal immersion of a developable surface into
R3 exists only in the case where the surface is a cylinder in R3. Riemannian submersions
can be viewed as the dual notion of isometric immersions (i.e., submanifolds). We also
study f -biharmonicity of a Riemannian submersion from 3-manifolds by using the inte-
grability data. Examples are given of proper f -biharmonic Riemannian submersions and
f -biharmonic surfaces and curves.

2. f -Biharmonic Submanifolds in a Space Form

In this section, we characterize f -biharmonic curves in a space form by using the ex-
plicit functions f and the explicit curvatures of the curves. Many examples of proper
f -biharmonic curves in Rn are obtained. We also give complete classifications of f -
biharmonic isometric immersions and biharmonic conformal immersions of a developable
surface into R3. An interesting result is that a cylinder whose directrix takes a proper
f̄ -biharmonic curve in a 2-space form N2(K) of constant Gauss curvature K has to be a
proper f -biharmonic cylinder for f = ψ(v,K)

c1
f̄ , where ψ(v, K) given by (30) and a constant

c1 > 0. Based on this, one constructs infinitely many examples of proper f -biharmonic
cylinders and biharmonic conformal immersions of cylinders into R3.
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2.1. f -Biharmonic Curves in Space Forms

A Frenet frame {Ti}i=1,2,...,n associated to an arc length parametrized curve γ : (a, b) →
(Nn, h) (see, e.g., [13]) is an orthonormal frame which can be described by

T1 = dγ( ∂
∂s ) = γ′,

∇T1 T1 = κ1T2,
∇T1 Ti = −κi−1Ti−1 + kiTi+1, ∀ i = 2, 3, . . . , n − 1,
∇T1 Tn = −κn−1Tn−1,

where the functions κi, i = 1, 2, . . . , n − 1, are called the curvatures of the curve γ. It is well
known (see [3]) that the curve is f -biharmonic with a function f : (a, b) → R+ iff

f (∇N
γ′∇N

γ′∇N
γ′γ

′ − RN(γ′,∇N
γ′γ

′)γ′) + 2 f ′∇N
γ′∇N

γ′γ
′ + f ′′∇N

γ′γ
′ = 0. (3)

With respect to the Frenet frame, Equation (3) can be written as follows:

Lemma 1. Let γ : (a, b) → (Nn, h)(n ≥ 2) be a curve parametrized by arc length into an
n-dimensional Riemannian manifold. Then, γ is an f -biharmonic curve iff:

−3κ1κ′1 − 2κ2
1 f ′/ f = 0,

κ′′1 − κ1κ2
2 − κ3

1 + κ1RN(T1, T2, T1, T2) + κ′1 f ′′/ f + 2κ′1 f ′/ f = 0,
2κ1κ2 + κ1κ′2 + κ1RN(T1, T2, T1, T3) + 2κ1κ2 f ′/ f = 0,

κ1κ2κ3 + κ1RN(T1, T2, T1, T4) = 0,
k1R(T1, T2, T1, Tj) = 0, j = 5, . . . , n.

(4)

Proof. A straightforward computation gives

τ(γ) = ∇N
γ′γ

′ = κ1F2,
∇N

γ′∇N
γ′γ

′ = −κ2
1T1 + κ′1T2 + κ1κ2T3,

τ2(γ) = ∇N
γ′∇N

γ′∇N
γ′γ

′ − RN(γ′,∇N
γ′γ

′)γ′

= −3κ1κ′1F1 + (κ′′1 − κ1κ2
2 − κ3

1 + κ1RN(T1, T2, T1, T2))T2
+(2κ′1κ2 + κ1κ′2 + κ1RN(T1, T2, T1, T3))T3

+(κ1κ2κ3 + κ1RN(T1, T2, T1, T4))T4 +
n
∑

j=5
κ1RN(T1, T2, T1, Tj)Fj.

(5)

We substitute (5) into (3) and compare the coefficients of both sides to obtain (4), from
which the lemma follows.

Applying Lemma 1, we have

Proposition 1 (see [3]). Let γ : (a, b) → Nn(C) be a curve parametrized by arc length into an
n-dimensional space form. Then, γ is f -biharmonic iff one of the following cases happens:
(i) κ2 = 0, f = c1κ−3/2

1 and the curvature κ1 solves the following ODE

3κ′21 − 2κ1κ′′1 = 4κ2
1(κ

2
1 − C); (6)

(ii) κ2 ̸= 0, κ3 = 0, κ2/κ1 = c3, f = c1κ−3/2
1 and the curvature κ1 solves the following ODE

3κ′21 − 2κ1κ′′1 = 4κ2
1[(1 + c2

3)κ
2
1 − C]. (7)

It is critical to solve the ODEs (6) and (7) to describe f -biharmonic curves in space
forms. So we need the following proposition.

Proposition 2. For constants A and C, solving the following ODE

3y′2 − 2yy′′ = 4y2(Ay2 − C), (8)
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we obtain all nonconstant solutions as

y =


1

C1e2
√
−Cs+C2e−2

√
−Cs±

√
4C1C2+

A
C

, for C < 0,

4C1
16A+C2

1(s+C2)2 , for C = 0,
1

C1 cos(2
√

Cs)+C2 sin(2
√

Cs)±
√

C2
1+C2

2+
A
C

, for C > 0,

where C1, C2 are constants and C2
1 + C2

2 ̸= 0.

Proof. First of all, one sees that y = 0 is a solution of (8). For AC > 0, it is easy to check

that (8) has constant solutions y = ±
√

C
A .

From now on, we only need to consider that y(s) is a nonconstant solution of (8).
Putting y = u−1 and substituting this into (8), we obtain

u′2 − 2uu′′ = 4(Cu2 − A). (9)

Putting p = u′ = du
ds , then we obtain p dp

du = u′′(s), and hence, (9) turns into

d(p2)

du
− 1

u
p2 + 4Cu − 4A/u = 0, (10)

which is solved by p2 = −4Cu2 + Bu − 4A. This, together with u′ = p, implies that

u′2 = −4Cu2 + Bu − 4A, (11)

where B is a constant.
We take the derivative of both sides of (11) with respect to s and simplify the resulting

equation to obtain
u′′ = −4Cu +

1
2

B. (12)

For the case C > 0, we solve (12) to obtain the general solution as

u = C1 cos(2
√

Cs) + C2 sin(2
√

Cs) + B
8C , (13)

where C1, C2 are constants. Substituting (13) into (11) and simplifying the resulting equation,
we have

B2 = 64AC + 64C2(C2
1 + C2

2), (14)

which implies that

u = C1 cos(2
√

Cs) + C2 sin(2
√

Cs)±
√

A
C + (C2

1 + C2
2),

(and hence) y = 1

C1 cos(2
√

Cs)+C2 sin(2
√

Cs)±
√

A
C +C2

1+C2
2

,

where constant 8C
√

A
C + C2

1 + C2
2 = ±B.

In a similar way, we solve (8) for C = 0 and C < 0, respectively, to obtain y = 4C1
16A+C2

1(s+C2)2

and y = 1

C1e2
√
−Cs+C2e−2

√
−Cs±

√
4C1C2+

A
C

, respectively, where C1 and C2 are constants.

Summarizing all results above we obtain the proposition.

Remark 1. Hereafter, c1 > 0, C, c3, C3 > 0, C4, C5, C6, C1 > 0, C2 > 0, C2
5 + C2

6 ̸= 0,

and 4C1C2 +
1+c2

3
C > 0 are assumed to be constant unless it is otherwise stated. It is convenient to

introduce the following new function:
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χ(s, c3, C) =



1

C1e2
√
−Cs+C2e−2

√
−Cs+

√
4C1C2+

1+c2
3

C

, for C < 0,

4C3
16(1+c2

3)+C2
3(s+C4)2 , for C = 0,

1

C5 cos(2
√

Cs)+C6 sin(2
√

Cs)+

√
1+c2

3
C +(C2

5+C2
6)

, for C > 0.

(15)

As an application of Proposition 2, we now give a characterization of a proper
f -biharmonic curve in Nn(C).

Theorem 1. Let γ : (a, b) → Nn(C) be a curve parametrized by arc length into an n-dimensional
space form. Then, γ is proper f -biharmonic iff one of the following cases happens:
(i): γ is a curve with κ2 = 0, κ1 = χ(s, 0, C), and f = c1κ−3/2

1 , or
(ii): γ is a curve with κ3 = 0, κ2/κ1 = c3 ̸= 0, κ1 = χ(s, c3, C), and f = c1κ−3/2

1 .

Proof. Applying Proposition 1 and Proposition 2 with A = 1 or A = 1 + c2
3 to (8), we

immediately obtain the theorem.

Remark 2. From Theorem 1, we can give the explicit function f for any proper f -biharmonic curve
in a space form; in a sense, our result recovers Theorems 4.2 and 4.4 in [3].

By Theorem 1, we see that a proper f -biharmonic curve in R3 is either a planar curve
or a general helix.

Corollary 1 ([3]). Let γ : (a, b) → R3 be a curve parametrized by arc length. Then γ is proper
f -biharmonic iff one of the following cases happens:
(1) γ is a planar curve with κ2 = 0, κ1(s) =

4C3
16+C2

3(s+C4)2 , and f = c1κ−3/2
1 , or

(2) γ is a general helix with κ1(s) =
4C3

16(1+c2
3)+C2

3(s+2C4)2 , κ2/κ1(s) = c3 ̸= 0, and f = c1κ−3/2
1 .

Remark 3. A proper f -biharmonic map φ : (M, g) → (N, h) followed by a totally geodesic
embedding ψ : (N, h) → (Q, k) is a proper f -biharmonic map ψ ◦ φ : (M, g) → (Q, k).

In fact, using the fact in [14] (page 371), one can easily check that τ(ψ ◦ φ) = dψ(τ(φ)),
τ2(ψ ◦ φ) = dψ

(
τ2(φ)

)
, and ∇ψ◦φ

grad f τ(ψ ◦ φ) = dψ
(
∇φ

grad f τ(φ)
)

. It follows that

τ2, f (ψ ◦ φ) = dψ
(

τ2, f (φ)
)

and, hence, τ2, f (ψ ◦ φ) = 0 iff τ2, f (φ) = 0.

We know that there is no proper biharmonic curve in Rn (see, e.g., [11]). For more
results on biharmonic curves, see [11,15–20] and the references therein. At the end of this
section, we try to construct some explicit examples of proper f -biharmonic curves in a
space form.

Proposition 3. (1) If ρ′(s) ̸= ±1 solves the following ODE

ρ′′ + (1 − ρ′2) tan ρ +

√
1−ρ′2

C5 cos(2s)+C6 sin(2s)+
√

1+C2
5+C2

6
= 0, (16)

then the curve γ : (a, b) → (S2, dρ2 + cos2 ρdϕ2) with γ(s) = (ρ(s),
∫ √

1−ρ′2

cos ρ ds) followed by
a totally geodesic embedding ψ : S2 → Sn is a proper f -biharmonic curve γ̃ = ψ ◦ γ : (a, b) → Sn

for f = c1

(
C5 cos(2s) + C6 sin(2s) +

√
1 + C2

5 + C2
6

)3/2
.

(2) If u′(s) ̸= ±1 solves the following ODE

u′′(s)− (1 − u′2) +
√

1−u′2

C1e2s+C2e−2s+
√

4C1C2−1 = 0, (17)
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then the curve γ : (a, b) → (H2, du2 + e2udv2) with γ(s) = (u(s),
∫ √

1−u′2
eu ds) followed by a

totally geodesic embedding ψ : H2 → Hn is a proper f -biharmonic curve γ̃ = ψ ◦ γ : (a, b) → Hn

for f = c1
(
C1e2s + C2e−2s +

√
4C1C2 − 1

)3/2.
(3) If x′(s) ̸= ±1 solves the following ODE

x′′(s) + 4C3
√

1−x′2
16+C2

3(s+C4)2 = 0, (18)

then the planar curve γ : (a, b) → (R2, dx2 + dy2) with γ(s) = (x(s),
∫ √

1 − x′2ds) followed by
a totally geodesic embedding ψ : R2 → Rn is a proper f -biharmonic curve γ̃ = ψ ◦γ : (a, b) → Rn

for f = c1

(
4C3

16+C2
3(s+C4)2

)−3/2
.

Proof. Let γ : (a, b) → (S2, dρ2 + cos2 ρdϕ2), γ(s) = (ρ(s), ϕ(s)) be a proper f -biharmonic
curve parametrized by arc length. It follows from Statement (i) of Theorem 1 that the curve
γ has the geodesic curvature as

κ1(s) = 1
C5 cos(2s)+C6 sin(2s)+

√
1+C2

5+C2
6
.

Suppose that θ is the angle between the curve γ and Rho curves. Therefore, applying
Liouville’s formula for the geodesic curvature of curves on the surface S2 in R3 yields

θ′(s)− sin θ tan ρ(s) = κ1(s), (19)

which, together with Rho′ = cos θ and ϕ′ cos ρ = sin θ, implies

ρ′′ + (1 − ρ′2) tan ρ + κ1
√

1 − ρ′2 = 0,

and hence, ϕ(s) =
∫ √

1−ρ′2

cos ρ ds. Since κ1(s) ̸= 0, we can check that sin θ ̸= 0, and hence,
cos θ ̸= ±1 and ρ′ ̸= ±1. Hence, using Statement (i) of Theorem 1 and Remark 3, we obtain
Statement (1).

Similar to Statement (1), we can obtain Statements (2) and (3). Summarizing all the
above results, we obtain the proposition.

We can apply Statement (3) of Proposition 3 to construct infinitely many examples of
proper f -biharmonic curves in Rn.

Example 1. A family of planar curves γ̃(s) = (
4 ln |

√
16+C2

3 s2+C3s|
C3

,
√

16+C2
3 s2

C3
, 0, . . . , 0) in Rn

are proper f -biharmonic curves for f = c1(
4C3

16+C2
3 s2 )

−3/2, where c1 and C3 are positive constants.

Moreover, the curvature κ1 = 4C3
16+C2

3 s2 and the torsion κ2 = 0. The example recovers the family of

proper f -biharmonic curves found in [3].

In fact, in the case of C3 > 0 and C4 = 0, one finds x(s) = 4 ln |
√

16+C2
3 s2+C3s|

C3
to be a solution

of (18), and hence, y(s) =
∫ √

1 − x′2ds =
√

16+C2
3 s2

C3
. Note that the curvature κ1 = 4C3

16+C2
3 s2 and

the torsion κ2 = 0. Therefore, we apply Statement (3) of Proposition 3 to obtain the example.

We give a family of proper f -biharmonic general helixes in R3.

Proposition 4. If x′(s) ̸= ± sin ω solves the following ODE

x′′(s) +
√

sin2 ω−x′2
sin ω

4C3
16(1+c2

3)+C2
3(s+C4)2 = 0, (20)



Mathematics 2024, 12, 1184 7 of 16

where sin ω cos ω ̸= 0 and c3 = cos ω
sin ω are constants, then a general helix γ : (a, b) → R3 with

γ(s) = (x(s),
∫ √

sin2 ω − x′2ds, s cos ω) followed by a totally geodesic embedding ψ : R3 → Rn

is a proper f -biharmonic curve γ̃ = ψ ◦ γ : (a, b) → Rn for f = c1(
4C3

16(1+c2
3)+C2

3(s+C4)2 )
−3/2.

Proof. Let a general helix γ : (a, b) → R3 with γ(s) = (x(s), y(s), s cos ω) be a proper
f -biharmonic curve parametrized by arc length, where constant cos ω ̸= 0. By Corollary 1,
the helix has the curvature κ1(s) =

4C3
16(1+c2

3)+C2
3(s+2C4)2 ̸= 0 and the torsion κ2 = c3κ1(s) ̸= 0.

Since γ′(s) = (x′(s), y′(s), cos ω) and |γ′(s)|2 = x′2(s) + y′2 + cos2 ω = 1, we may assume
that x′(s) = sin ω cos θ(s), y′ = sin ω sin θ. Therefore, we have

γ′ = (cos θ sin ω, sin θ sin ω, cos ω), γ′′ = θ′ sin ω(− sin θ, cos θ, 0),
γ′′′ = θ′′ sin ω(− sin θ, cos θ, 0)− θ′2 sin ω(cos θ, sin θ, 0).

(21)

It follows that

κ1(s) = sin ωθ′, κ2 = (γ′ ,γ′′ ,γ′′′)
κ2

1
= cos ωθ′, and hence c3 = cos ω

sin ω . (22)

Combining these, together with κ1(s) ̸= 0 and κ2 ̸= 0, we have sin ω cos ω ̸= 0 and
x′ ̸= ± sin ω. A direct computation gives x′′(s) = − sin ωθ′ sin θ = −θ′y′ = −θ′

√
sin2 ω − x′2.

Substituting this into the first equation of (22), we obtain (20). Clearly, y =
∫ √

sin2 ω − x′2ds.
From these and using Remark 3, the proposition follows.

We will look for some special solutions of (20).

Example 2. A family of helixes γ(s) = (
4 ln |

√
32+C2

3 s2+C3s|
C3

,
√

64+2C2
3 s2

2C3
,
√

2
2 s) in R3 with

the curvature κ1 = 4C3
32+C2

3 s2 and the torsion κ2 = 4C3
32+C2

3 s2 are proper f -biharmonic curves for

f = c1(
4C3

32+C2
3 s2 )

−3/2, where c1 and C3 are positive constants. Moreover, a family of curves

γ̄(s) = (
4 ln |

√
32+C2

3 s2+C3s|
C3

,
√

64+2C2
3 s2

2C3
,
√

2s
2 , 0, . . . , 0) in Rn are also proper f -biharmonic

curves for f = c1(
4C3

32+C2
3 s2 )

−3/2.

In fact, by taking sin ω = cos ω =
√

2
2 , c3 = 1 and C4 = 0, (20) becomes

x′′(s) +

√
1
2−x′2
√

2
2

4C3
32+C2

3 s2 = 0. (23)

If C3 > 0, one finds that x(s) =
4 ln |

√
32+C2

3 s2+C3s|
C3

is a solution of (23), and hence,

y(s) =
∫ √

1/2 − x′2ds =

√
64+2C2

3 s2

2C3
. Clearly, the curvature κ1 = 4C3

32+C2
3 s2 and the torsion

κ2 = 4C3
32+C2

3 s2 in this case. Thus, we apply Proposition 4 to obtain the example.

2.2. f -Biharmonic Isometric Immersions and Biharmonic Conformal Immersions of a Developable
Surface into R3

The equation for f -biharmonic hypersurfaces in a space form can be stated as follows:

Lemma 2 (see, e.g., [3,10]). A hypersurface ϕ : Mm → Nm+1(C) in a space form of constant
sectional curvature C with mean curvature vector field η = Hξ is f -biharmonic if and only if the
function H satisfies the following equation:{

∆( f H)− ( f H)[|A|2 − mC] = 0,
A (grad ( f H)) + m

2 ( f H)grad H = 0,
(24)
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where RicN : TqN → TqN is the Ricci operator of Nm+1(C) defined by ⟨RicN (Z), W⟩ =

RicN(Z, W) and A is the shape operator of the hypersurface Mm with respect to the unit normal
vector field ξ.

We are ready to give a characterization of proper f -biharmonic cylinders in R3.

Theorem 2. Let X : (M2, g) → (R3, h = dx2 + dy2 + dz2), X(s, v) = a(s) + vb be a cylinder
with the mean curvature function H, where b is a unit constant vector in R3 and a(s) is an im-
mersed regular curve in R3 parametrized by arc length with the geodesic curvature κ1(s) satisfying
h(a′, b) = 0. Then, X is a proper f -biharmonic cylinder iff one of the following cases happens:
(1) κ1 is a nonzero constant, and the directrix a(s) of the cylinder is (a part of) a circle with radius

1
|κ1|

. Moreover, the mean curvature H = κ1
2 and the function f = d1eκ1v + d2e−κ1v, where d1 and

d2 are some constants, or
(2) κ1(s) is nonconstant, and the directrix a(s) of the cylinder has the geodesic curvature
κ1(s) = κN(s, K) given by (31) and the geodesic torsion κ2 = 0, where K is a constant. Fur-
thermore, the function H = κN(s,K)

2 and the function f = ψ(v, K)κ−3/2
N (s, K), where ψ(v, K),

given by (30).

Proof. A straightforward computation gives

Xs = a′(s), Xv = b, Xss = a′′(s), Xsv = 0, Xvv = 0,
N = Xs×Xv

|Xs×Xv | = a′ × b, |a′′(s)| = κ(s),

where κ is the curvature of the curve a(s). By a further computation, the first fundamental
form I and the second fundamental form I I of the cylinder are given by

I = g = ds2 + dv2, I I = κN(s)ds2,

where κN is the normal curvature of a(s). It follows that {e1 = ∂
∂s , e2 = ∂

∂v , ξ = N}
forms an orthonormal frame adapted to the cylinder with the normal vector field ξ,
A(e1) = I I(e1, e1)e1 + I I(e1, e2)e2 = κNe1, A(e2) = I I(e2, e1)e1 + I I(e2, e2)e2 = 0, and
H = κN

2 . Substituting these into the f -biharmonic Equation (24) with m = 2 and C = 0,
we have{

κ2
N

∂ ln f
∂s = − 3

2 κ′N(s)κN ,

κ′′N(s)− κ3
N + κN [

∂2 ln f
∂s2 + ∂2 ln f

∂v2 + ( ∂ ln f
∂s )2 + ( ∂ ln f

∂v )2] + 2 ∂ ln f
∂s κ′N(s) = 0.

(25)

If κN = 0, i.e., H = 0, then the surface is harmonic and hence biharmonic, not proper
f -biharmonic. From now on, we assume that κN ̸= 0. If κN is a nonzero constant, then (25)
turns into

∂ ln f
∂s = 0, −κ2

N + ∂2 ln f
∂v2 + ( ∂ ln f

∂v )2 = 0, (26)

which is solved by f = d1evκN + d2e−vκN , where d1 and d2 are constants. Note that the
curve a(s) can be viewed as (a part of) a circle of radius 1

|κN | .
We now assume that κ is nonconstant and apply the first equation of (25) to have

ln f = −3
2

ln |κN(s)|+ ln ψ(v), and hence f = ψ(v)κ−3/2
N (s), (27)

where ψ(v) is a positive function. Substituting (27) into the second equation of (25) and
simplifying the resulting equation, we obtain

−2κNκ′′N(s) + 3κ′2N(s)− 4κ4
N + 4κ2

N(s)
ψ′′(v)
ψ(v)

= 0. (28)

Equation (28) implies that for any s, v, we have

3κ′2N(s)− 2κNκ′′N(s) = 4κ2
N(κ

2
N − K) and ψ′′(v)

ψ(v) = K, (29)
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where K is a constant. The second equation of (29) is equivalent to ψ′′(v) = Kψ(v),
solved by

ψ(v) = ψ(v, K) =


d5 sin(

√
−K v) + d6 cos(

√
−K v), for K < 0,

d3v + d4, for K = 0,

d1e
√

K v + d2e−
√

K v, for K > 0,

(30)

where di, i = 1, 2, . . . , 6, are some constants.
An interesting thing is that the first equation of (29) happens to be the type of ODE (8)

in Proposition 2 when A = 1 and C = K, which is solved by

κN(s) = κN(s, K) =


1

C1e2
√
−K s+C2e−2

√
−K s+

√
4C1C2+

1
K

, for K < 0,

4C3
16+C2

3(s+C4)2 , for K = 0,
1

C5 cos(2
√

K s)+C6 sin(2
√

K s)+
√

1
K +(C2

5+C2
6)

, for K > 0,

(31)

where Ci, i = 1, 2, . . . , 6, are some constants.
It is not difficult to check that ∇e1 e1 = κNe3, ∇e1 e3 = −κNe1, and ∇e1(−e2) = 0, and

hence {e1, e3 = N, −e2} forms the Frenet frame along the curve a(s). This implies that the
curve a(s) has the geodesic curvature κ1 = κN and the geodesic torsion κ2 = 0.

Summarizing all the above results, we complete the proof of the theorem.

Remark 4. Theorem 2 recovers the classification result of proper f -biharmonic cylinders with
constant mean curvature in [3].

Corollary 2. Let X : (M2, g) → R3 be a cylinder with X(s, v) = a(s) + vb and nonconstant
mean curvature function H, where b is a unit constant vector in R3 and a(s) is an immersed regular
curve in R3 parametrized by arc length with the geodesic curvature κ1(s) satisfying h(a′, b) = 0.
Then, X is proper f -biharmonic if and only if the directrix a(s) is a proper f̄ -biharmonic curve in
a 2-space form N2(K) ⊂ R3 with constant Gauss curvature K for f̄ = c1κ−3/2

1 , where c1 > 0

is a constant and κ1(s) = κN(s, K) given by (31). Moreover, the function f = ψ(v,K)
c1

f̄ =

ψ(v, K)κ−3/2
N (s, K), where ψ(v, K), given by (30).

Proof. From the proof of Theorem 2 and Statement (i) of Proposition 1, together with the
assumption that H is nonconstant, one sees that the directrix a(s) on the surface has the
geodesic torsion κ2 = 0 and nonconstant geodesic curvature κ1 = κN = 2H solving the 1st
equation of (29) which is a proper f̄ -biharmonic curve equation in a space form of constant
sectional curvature K for f̄ = c1κ−3/2

1 , where constant c1 > 0. This implies that the directrix
a(s) can be viewed as a proper f̄ -biharmonic curve in a 2-space form N2(K) of constant
Gauss curvature K. Note that f = ψ(v,K)

c1
f̄ , where ψ(v, K) given by (30).

Proposition 5. There is neither a proper f -biharmonic cone nor a tangent surface in R3.

Proof. Let b(s) be a curve on a unit sphere parametrized by arc length (i.e., a spheri-
cal curve). Consider a cone X : (M2, g) → (R3, h = dx2 + dy2 + dz2) into R3 with
X(s, v) = a + vb(s) , where a is a constant vector. A simple computation, we obtain the first
and the second fundamental forms I and I I of the cone as

I = g = v2ds2 + dv2, I I = vw(s)ds2,

where w(s) = b′′ · (b′ × b). One can check that {e1 = 1
v

∂
∂s , e2 = ∂

∂v , ξ = b′ × b} consti-
tutes an orthonormal frame adapted to the surface with ξ being normal to the surface.
By a straightforward computation, we have A(e1) = I I(e1, e1)e1 + I I(e1, e2)e2 = w

v e1,
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A(e2) = I I(e2, e1)e1 + I I(e2, e2)e2 = 0, and H = w(s)
2v . Substituting these into the second

equation of (24) and simplifying the resulting equation yields

H[3e1(H) + 2He1(ln f )] = 0, He2(H) = H
∂

∂v

(
w(s)
2v

)
= 0. (32)

The second equation of (32) implies that −H2

v2 = 0 and hence H = 0, i.e., the cone has
to be minimal. It follows that any f -biharmonic cone in R3 has to be harmonic and hence
biharmonic but not proper f -biharmonic.

For a tangent surface in R3, let a(s) be a curve parametrized by arc length and let
X : (M2, g) → R3 be a tangent surface with X(s, v) = a(s) + va′(s). By simple computation,
the first and the second fundamental forms I and I I of the tangent surface are as follows:

I = g = (1 + v2κ2)ds2 + 2dsdv + dv2, I I = −vκτds2. (33)

Here, κ = κ(s) and τ = τ(s) denote the curvature and torsion of a(s), respectively.
One can easily check that {ε1 = 1√

1+v2κ2
∂
∂s , ε2 = 1

vκ
√

(1+v2κ2
∂
∂s −

√
1+v2κ2

vκ
∂

∂v ,

ξ = a′′×a′
κ } forms an orthonormal frame adapted to the surface with the normal vector

field ξ. Suppose that A(ε1) = k1e1 + k12ε2 and A(ε2) = k21ε1 + k2ε2. A direct computation
gives k1 = I I(ε1, ε1) = − vκτ

1+v2κ2 , k2 = I I(ε2, ε2) = − τ
vκ(1+v2κ2)

and k12 = k21 = I I(e1, e2) =

− τ
1+v2κ2 . It follows that the mean curvature H = k1+k2

2 = − τ
2vκ and k1k2 = τ2

(1+v2κ2)2 . Note
that H = 0 is equivalent to τ = 0; then, the surface is not proper f -biharmonic in this case.

Hereafter, assume that H ̸= 0. Let {e1 = cos θε1 + sin θε2, e2 = − sin θε1 + cos θε2, ξ}
be another orthonormal frame adapted to the surface with the normal vector field ξ such
that A(e1) = λ1e1 and A(e2) = λ2e2, where θ is the angle between e1 and ε1. Since the tan-
gent surface is flat, it follows from the Gauss equation of the tangent surface that λ1λ2 = 0.
Without a loss of generality, we may suppose that λ2 = 0 and hence λ1 = 2H ̸= 0. We can
easily conclude that k1 = 2H cos2 θ, k2 = 2H sin2 θ, k12 = 2H sin θ cos θ, cos2 θ = v2κ2

1+v2κ2 ,
and sin2 θ = 1

1+v2κ2 . If the tangent surface is f -biharmonic, by (24) with m = 2 and C = 0,
we have

∆( f H)− 4 f H3 = 0, 2He1( f H) + f He1(H) = 0, f He2(H) = 0, (34)

which implies that e2(H) = 0. Therefore, we obtain [− sin θε1 + cos θε2](H) = 0, i.e.,
sin2 θ(ε1(H))2 − cos2 θ(ε2(H))2 = 0. A further computation gives

0 = sin2 θ[ε1(− τ
2vκ )]

2 − cos2 θ[ε2(− τ
2vκ )]

2

= 1
1+v2κ2

(
1√

1+v2κ2(s)
∂
∂s (

τ
2vκ )

)2
− v2κ2

1+v2κ2

(
1

vκ
√

(1+v2κ2
∂
∂s (

τ
2vκ )−

√
1+v2κ2

vκ
∂

∂v (
τ

2vκ )

)2

= − ( τ
κ )

2

4v4 − [( τ
κ )

2]′(s)
4v3(1+v2κ2)

.

(35)

It is easy to check that (35) implies that

τ2(s) v2 + [( τ
κ )

2]′(s) v + ( τ
κ )

2(s) = 0, (36)

which, together with any s, v, implies that τ = 0. This contradicts the assumption that
τ ̸= 0. Combining these, any f -biharmonic tangent surface in R3 is harmonic but not
proper f -biharmonic.

Summarizing all the above results, the proposition follows.

Applying Theorem 2 and Proposition 5, we have
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Corollary 3. A proper f -biharmonic developable surface in R3 exists only in the case when the
developable surface is either a circle cylinder or a cylinder containing a directrix with nonconstant
geodesic curvature κ1(s) = κN(s, K) given by (31) and the geodesic torsion κ2(s) = 0.

We will construct a family of proper f -biharmonic cylinders whose directrices are
proper f̄ -biharmonic curves in R2, where f = d3v+d4

c1
f̄ , and d3, d4 and c1 are constants.

Example 3. A family of cylinders X : (M2, g = ds2 + dv2) → R3, X(s, v) = (
4 ln |

√
16+C2

3 s2+C3s|
C3

,√
16+C2

3 s2

C3
, v) are proper f -biharmonic for f =

c1(d3v+d4)(16+C2
3 s2)3/2

(4C3)3/2 , where d3, d4, c1, and C3 are

positive constants. This family of cylinders followed by a totally geodesic embedding ϕ : R3 → Rn

are proper f -biharmonic submanifolds ϕ ◦ X : (M2, g) → Rn.

In fact, it is easy to check that X(s, v) = a(s) + vb, where a(s) = (
4 ln |

√
16+C2

3 s2+C3s|
C3

,√
16+C2

3 s2

C3
, 0) are a family of curves in R2 ⊂ R3 and b = (0, 0, 1) is a unit constant vector in

R3. Clearly, |a′|2 = 1 and h(a′, b) = 0. Therefore, by Example 1, any curve a(s) is a proper
f̄ -biharmonic curve in R2 ⊂ R3 for f̄ = c1(

4C3
16+C2

3 s2 )
−3/2, where c1 > 0 is a constant. Then,

applying Corollary 2, we obtain the example.

We know from [3] that a map ϕ : (M2, g) → (Nn, h) is f -biharmonic iff the conformal
immersion ϕ : (M2, f−1g) → (Nn, h) is a biharmonic map. Therefore, applying Theorem 2
and Proposition 5, we have the following corollaries:

Corollary 4. Under the same assumptions as in Theorem 2, we have the following:
(1) If κ1 is a nonzero constant and f = d1eκ1v + d2e−κ1v > 0, where d1 and d2 are constants, then
the conformal immersion X : (M2, f−1(ds2 + dv2)) → R3 with X(s, v) = a(s) + vb is proper
biharmonic, or
(2) If κ1(s) = κN(s, K) and ψ(v, K) given by (31) and (30), respectively, and f = ψ(v, K)κ−3/2

N (s, K),
where K is a constant, then the conformal immersion X : (M2, f−1(ds2 + dv2)) → R3 with
X(s, v) = a(s) + vb is proper biharmonic.

Corollary 5. We have the following:
(1) There cannot exist a proper biharmonic conformal immersion of a cone or a tangent surface
into R3.
(2) A conformal immersion of a developable surface into R3 is proper biharmonic iff the surface is
either a circle cylinder or a cylinder containing a directrix with nonconstant geodesic curvature
κ1(s) = κN(s, K) given by (31) and the torsion κ2(s) = 0.

Remark 5. Corollary 5 recovers the result in [9] which states that there is not a proper biharmonic
conformal immersion of a circular cone into R3.

Adopting the same notations as in Example 3 and applying Example 3 and Corollary 4,
we have the following:

Example 4. The conformal immersions of a family of cylinders X : (M2, f−1(ds2 + dv2)) → R3,

X(s, v) = (
4 ln |

√
16+C2

3 s2+C3s|
C3

,
√

16+C2
3 s2

C3
, v) are proper biharmonic with

f =
c1(d3v+d4)(16+C2

3 s2)3/2

(4C3)3/2 .

3. f -Biharmonic Riemannian Submersions from 3-Dimensional Riemannian Manifolds

In this section, we study f -biharmonicity of a Riemannian submersion from a 3-
dimensional Riemannian manifold by using the integrability data of an adapted frame of
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the Riemannian submersion. We also construct a family of proper f -biharmonic Riemannian
submersions from Sol space.

Recall that if an orthonormal frame {e1, e2, e3} is adapted to a Riemannian submersion
π : (M3, g) → (N2, h) with vertical vector field e3, then we immediately have (see [4])

[e1, e3] = κ1e3, [e2, e3] = κ2e3, [e1, e2] = f1e1 + f2e2 − 2σe3,
∇e1 e1 = − f1e2, ∇e1 e2 = f1e1 − σe3, ∇e1 e3 = σe2,
∇e2 e1 = − f2e2 + σe3, ∇e2 e2 = f2e1, ∇e2 e3 = −σe1,
∇e3 e1 = −κ1e3 + σe2,∇e3 e2 = −σe1 − κ2e3,∇e3 e3 = κ1e1 + κ2e2,

(37)

where f1, f2, κ1, κ2, and σ ∈ C∞(M) are called the integrability data of the adapted frame
of π. The bitension field of the map π is given by

τ2(π) = [−∆Mκ1 − f1e1(κ2)− e1(κ2 f1)− f2e2(κ2)− e2(κ2 f2)
+κ1κ2 f1 + κ2

2 f2 + κ1{−KN + f 2
1 + f 2

2 }]ε1 + (−∆Mκ2 + f1e1(κ1)
+e1(κ1 f1) + f2e2(κ1) + e2(κ1 f2)− κ1κ2 f2 − κ2

1 f1 + κ2{−KN + f 2
1 + f 2

2 })ε2,
(38)

where dπ(ei) = εi, i = 1, 2.

Proposition 6. Let π : (M3, g) → (N2, h) be a Riemannian submersion with the adapted frame
{e1, e2, e3} and the integrability data { f1, f2, κ1, κ2, σ}. Then, π is f -biharmonic iff

−∆M( f κ1)− 2
2
∑

i=1
fiei( f κ2)− f κ2

2
∑

i=1
(ei( fi)− κi fi) + f κ1

(
−KN +

2
∑

i=1
f 2
i

)
= 0,

−∆M( f κ2) + 2
2
∑

i=1
fiei( f κ1) + f κ1

2
∑

i=1
(ei( fi)− κi fi) + f κ2

(
−KN +

2
∑

i=1
f 2
i

)
= 0,

(39)

where KN = e1( f2)− e2( f1)− f 2
1 − f 2

2 denotes the Gauss curvature of (N2, h).

Proof. A straightforward computation using (37) gives

τ(π) = ∇π
ei

dπ(ei)− dπ(∇M
ei

ei) = −dπ(∇M
e3

e3) = −κ1ε1 − κ2ε2,

∆M f =
3
∑

i=1
eiei( f ) + f1e2( f )− f2e1( f )− κ1e1( f )− κ2e2( f ),

2∇π
grad f τ(π) = −2{⟨grad f , gradκ1⟩+ κ2 f1e1( f ) + κ2 f2e2( f )}ε1

−2{⟨grad f , gradκ2⟩ − κ1 f1e1( f )− κ1 f2e2( f )}ε2.

(40)

Substituting (40) and (38) into (2) and simplifying the resulting equation yields

0 = τ2, f (π) = −Jπ( f τ(π))

= f τ2(π) + (∆M f )τ(π) + 2∇π
grad f τ(π)

= [−∆M( f κ1)− f1e1( f κ2)− e1( f κ2 f1)− f2e2( f κ2)− e2( f κ2 f2)
+ f κ2(κ1 f1 + κ2 f2) + f κ1{−KN + f 2

1 + f 2
2 }]ε1,

+[−∆M( f κ2) + f1e1( f κ1) + e1( f κ1 f1) + f2e2( f κ1) + e2( f κ1 f2)
− f κ1(κ1 f1 + κ2 f2) + f κ2{−KN + f 2

1 + f 2
2 }]ε2.

from which the proposition follows.

Remark 6. By taking grad f = δe3, the authors in [5] derived an f -biharmonic equation for a Rie-
mannian submersion π : (M3, g) → (N2, h) by using the integrability data { f1, f2, κ1, κ2, σ, δ}
(i.e., Theorem 2 in [5]). Note that grad f = e1( f )e1 + e2( f )e2 + e3( f )e3 is not always parallel to
the vertical vector field e3. So, our Proposition 6 recovers Theorem 2 in [5].

When the integrability data κ2 = 0, we have the following corollary.
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Corollary 6. Let π : (M3, g) → (N2, h) be a Riemannian submersion with the adapted frame
{e1, e2, e3} and the integrability data { f1, f2, κ1, κ2, σ} with κ2 = 0. Then π is f -biharmonic iff{

−∆M( f κ1) + f κ1{−KN + f 2
1 + f 2

2 } = 0,
2 f1e1( f κ1) + 2 f2e2( f κ1) + f κ1{e1( f1) + +e2( f2)} − f κ2

1 f1 = 0.
(41)

Example 5. For any positive constants A, B and the function f = Ae
√

2z + Be−
√

2z, the Rie-
mannian submersion π : (R3, gSol = e2zdx2 + e−2zdy2 + dz2) → (R2, e−2zdy2 + dz2) with
π(x, y, z) = (y, z) is proper f -biharmonic from Sol space.

In fact, it is not difficult to find that the frame {e1 = ∂
∂z , e2 = ez ∂

∂y , e3 = e−z ∂
∂x} on Sol

space is an adapted frame of the Riemannian submersion with e3 being vertical. A straightforward
computation gives

[e1, e3] = −e3, [e2, e3] = 0, [e1, e2] = e2, f1 = κ2 = σ = 0, − f2 = κ1 = −1,
(and hence) KN = e1( f2)− e2( f1)− f 2

1 − f 2
2 = −1.

(42)

Substituting (42) into (41) yields

fzz + e−2z fxx − 2 f = 0, fy = 0. (43)

We find f = Ae
√

2z + Be−
√

2z to be a special solution of (43), where A and B are positive
constants. The bitension field τ2(π) = −2 ∂

∂z ̸= 0 implies that π is not biharmonic. Thus, we
obtain the example.

4. f -Biharmonic Riemannian Submersions from 3-Space Forms

A biharmonic Riemannian submersion from a 3-space form into a surface has to be
harmonic (cf. [4]). We want to know if there exists a proper f -biharmonic Riemannian
submersion from a 3-space form. Let π : (M3(c), g) → (N2(c), h) be a Riemannian
submersion from a 3-space form with constant sectional curvature c onto a surface with
constant Gauss curvature c. It follows from Lemma 3.2 in [4] that we can choose an
orthonormal frame {e1, e2, e3} adapted to the Riemannian submersion with the integrability
data { f1, f2, κ1, κ2, σ} and κ2 = 0 such that

e1(σ)− 2κ1σ = 0, e1(κ1) + σ2 − κ2
1 = c, e3(σ) = κ1 f1 = 0, KN − 3σ2 = c,

e3(κ1) = e2(σ) = e2(κ1) = 0, σ2 − κ1 f2 = c, KN = e1( f2)− e2( f1)− f 2
1 − f 2

2 .
(44)

Remark 7. Note that for κ1 = κ2 = 0, π is harmonic and hence biharmonic. We now suppose
that κ1 ̸= 0, κ2 = 0 and the Gauss curvature of the base space KN = c. A simple computation
using (44) gives

κ1 ̸= 0, σ = f1 = e2(κ1) = e3(κ1) = 0,
κ1 f2 = −c, e1(κ1) = κ2

1 + c, KN = e1( f2)− f 2
2 = c.

(45)

Here, a Riemannian submersion π : (M3(c), g) → (N2(c), h) may be the map as πU :
(M3(c) ⊇ U, g) → (V ⊆ N2(c), h) from a subset M3(c) ⊇ U to a subset V ⊆ N3(c). In
spite of this, we denote the map πU : (M3(c) ⊇ U, g) → (V ⊆ N2(c), h) as π : (M3(c), g) →
(N2(c), h) later in the rest of this section by abuse of notations.

Theorem 3. Let π : (M3(c), g) → (N2(c), h) be a Riemannian submersion with an adapted frame
{e1, e2, e3} and the integrability data f1, f2, κ1, σ and κ2 = 0. Then, π is proper f -biharmonic iff

−∆M( f κ1) + f κ1(−c + c2/κ2
1) = 0,

ce2( f ) = 0,
−∆M(κ1) + κ1(−c + c2/κ2

1) ̸= 0.

(46)
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Proof. Since the Gauss curvature of the base space KN = c, κ2 = 0 and the assumption
that π is proper f -biharmonic, then we have κ1 ̸= 0. From these and Remark 7, we
conclude that f2 = −c/κ1 and hence e2( f2) = 0. Substituting this and (45) into (41), we
have −∆M( f κ1) + f κ1(−c + c2/κ2

1) = 0 and ce2( f ) = 0. It is not difficult to check that the
bitension field τ2(π) = [−∆M(κ1) + κ1(−c + c2/κ2

1)]ε1. Combining these, we conclude
that π is proper f -biharmonic iff (46) holds, from which we obtain the theorem.

Applying Theorem 3 with c = 0, we obtain the following:

Proposition 7. For the positive function f = ρ, the Riemannian submersion π : (R3\{0}, dρ2 +
dz2 + ρ2dθ2) → (R2\{0}, dρ2 + dz2), π(ρ, z, θ) = (ρ, z) is proper f -biharmonic.

Proof. It is easy to find that the frame {e1 = ∂
∂ρ , e2 = ∂

∂z , e3 = 1
ρ

∂
∂θ } on (R3\{0}, dρ2 +

dz2 + ρ2dθ2) is adapted to the Riemannian submersion π with dπ(e3) = 0 and dπ(ei) = εi,
i = 1, 2. Here, {ε1 = ∂

∂ρ , ε2 = ∂
∂z} is an orthonormal frame on (R2\{0}, dρ2 + dz2). A

straightforward computation gives

[e1, e3] = − 1
ρ e3, [e2, e3] = 0, [e1, e2] = 0, f1 = f2 = σ = κ2 = 0, κ1 = − 1

ρ ̸= 0. (47)

Using (37) and (47) with c = 0, (46) reduces to

∆
(

f
ρ

)
= 0. (48)

Clearly, f = ρ is a special solution of (48). Thus, we obtain the proposition.

Applying Theorem 3 with c = −1, we have the following:

Proposition 8. For any positive constants C1, C2 and the function f = C1e(1+
√

3)ρ +C2e(1−
√

3)ρ,
the Riemannian submersion π : (H3, dρ2 + e−2ρdz2 + e−2ρdθ2) → (H2, dρ2 + e−2ρdz2),
π(ρ, z, θ) = (ρ, z) is proper f -biharmonic.

Proof. One can check that the frame {e1 = ∂
∂ρ , e2 = eρ ∂

∂z , e3 = eρ ∂
∂θ } on (H3, dρ2 +

e−2ρdz2 + e−2ρdθ2) forms an adapted frame of the Riemannian submersion π, with e3
being vertical. A simple computation yields

[e1, e3] = e3, [e2, e3] = 0, [e1, e2] = e2, f1 = σ = κ2 = 0, κ1 = f2 = 1. (49)

By (37) and (49), together with c = −1, (46) reduces to

−∆M f + 2 f = 0, e2( f ) = 0. (50)

We can easily check that f = C1e(1+
√

3)ρ + C2e(1−
√

3)ρ satisfies (50), where C1 and C2
are positive constants. Thus, we obtain the proposition.

As an application of Theorem 3 with c = 1, we have the following:

Proposition 9. For a positive function f = f (ρ) defined on an open interval I ⊂ (0, π
2 ) that

solves the following ODE

f ′′ +
2 cos 2ρ − 4

sin 2ρ
f ′ +

1 + 2 sin2 ρ

sin2 ρ
f = 0, (51)

then the Riemannian submersion π : (S3 ⊃ I × S1 × S1, dρ2 + cos2 ρdz2 + sin2 ρdθ2) → (S2 ⊃
I × S1, dρ2 + cos2 ρdz2), π(ρ, z, θ) = (ρ, z) is proper f -biharmonic.
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Proof. One can easily check that {e1 = ∂
∂ρ , e2 = 1

cos ρ
∂
∂z , e3 = 1

sin ρ
∂
∂θ } on (I × S1 × S1, dρ2 +

cos2 ρdz2 + sin2 ρdθ2) is an adapted frame of the Riemannian submersion π, with e3 being
vertical. A direct computation gives

[e1, e3] = − cot ρe3, [e2, e3] = 0, [e1, e2] = tan ρe2,
f1 = σ = κ2 = 0, κ1 = − cot ρ, f2 = tan ρ.

(52)

It is easy to check that −∆M(κ1) + κ1(−1 + 1/κ2
1) = 1+sin2 ρ cos 2ρ

sin3 ρ cos ρ
̸= 0. Substituting

(52) and c = 1 into (46), then we have

−∆M(− f cot ρ)− f cot ρ(−1 + tan2 ρ) = 0 and e2( f ) = 0. (53)

We now consider a special solution of (53) as the form f = f (ρ). Substituting this,
(37), and (52) into (53) and simplifying the resulting equation, we obtain (51). By the theory
of ODE, we conclude that there exists a local solution to (51). Moreover, one finds that if y
is a solution of (51) on I ⊂ (0, π

2 ), then −y is also a solution of (51) on I. It follows that there
is a positive function solution f = f (ρ) to (51) on I. Thus, we obtain the proposition.
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