
Citation: Li, R.; Zhao, M.; Xue, H.; Li,

X.; Deng, Y. Gradient Weakly

Sensitive Multi-Source Sensor Image

Registration Method. Mathematics

2024, 12, 1186. https://doi.org/

10.3390/math12081186

Academic Editor: Vladimir Balan

Received: 11 March 2024

Revised: 1 April 2024

Accepted: 12 April 2024

Published: 15 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Gradient Weakly Sensitive Multi-Source Sensor Image
Registration Method
Ronghua Li 1,2,*, Mingshuo Zhao 1, Haopeng Xue 1, Xinyu Li 1 and Yuan Deng 1

1 School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China;
15076568392@163.com (M.Z.); 13130494696@163.com (H.X.); 15383647416@163.com (X.L.);
dengyuan19980824@163.com (Y.D.)

2 Dalian Advanced Robot System Engineering Technology Innovation Centre, Dalian 116028, China
* Correspondence: lironghua705@163.com

Abstract: Aiming at the nonlinear radiometric differences between multi-source sensor images and
coherent spot noise and other factors that lead to alignment difficulties, the registration method of
gradient weakly sensitive multi-source sensor images is proposed, which does not need to extract
the image gradient in the whole process and has rotational invariance. In the feature point detection
stage, the maximum moment map is obtained by using the phase consistency transform to replace
the gradient edge map for chunked Harris feature point detection, thus increasing the number of
repeated feature points in the heterogeneous image. To have rotational invariance of the subsequent
descriptors, a method to determine the main phase angle is proposed. The phase angle of the region
near the feature point is counted, and the parabolic interpolation method is used to estimate the
more accurate main phase angle under the determined interval. In the feature description stage,
the Log-Gabor convolution sequence is used to construct the index map with the maximum phase
amplitude, the heterogeneous image is converted to an isomorphic image, and the isomorphic image
of the region around the feature point is rotated by using the main phase angle, which is in turn
used to construct the feature vector with the feature point as the center by the quadratic interpolation
method. In the feature matching stage, feature matching is performed by using the sum of squares of
Euclidean distances as a similarity metric. Finally, after qualitative and quantitative experiments of
six groups of five pairs of different multi-source sensor image alignment correct matching rates, root
mean square errors, and the number of correctly matched points statistics, this algorithm is verified
to have the advantage of robust accuracy compared with the current algorithms.

Keywords: multi-source sensor images; image registration; phase congruence; algorithm

MSC: 68T50

1. Introduction

The fusion of multi-source image data can obtain richer remote sensing information
and has been widely used in the field of remote sensing [1–3]. The basic task of fusing two
types of images to obtain richer information is to align them, but heterogeneous remote
sensing images exist in the scale, rotation, radiation, noise, resolution, spatial-temporal,
and phase differences, which makes it more difficult to be aligned [4,5]. Although satellite
remote sensing data provide spatial calibration information (spatial reference) such as
latitude, longitude, map grid, etc., the spatial references of different satellites or sensors are
not consistent, which can cause several pixel differences. These small differences can lead
to inaccurate feature correspondences in multi-source images, which can cause a decrease
in the accuracy of image processing results in applications such as data fusion, collaborative
classification, change detection, and image stitching. Therefore, it is particularly important
to investigate effective, general, and robust image alignment algorithms. Three challenges
need to be addressed [6]: (1) different geometric properties. For example, the side-view
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and measurement distance modes of Synthetic Aperture Radar (SAR) sensors will lead to a
series of geometric aberrations [7,8]; (2) different radiation characteristics [9]. For example,
SAR instruments are active remote sensing systems, while optical instruments are passive
systems. The brightness values change significantly due to changes in imaging conditions;
(3) spot noise generated by sensors [10], such as sensor and environmental noise, which
make feature extraction in SAR images sleepy.

Mainstream image alignment algorithms are currently classified into two types [11]:
region-based alignment methods and feature-based alignment methods. Region-based
methods use image grayscale to directly compare template regions concerning each other
or mutual information. Ye Yuanxin et al. [12] proposed a Histogram of Orientated Phase
Congruency (HOPC) feature descriptor and utilized a region template-based alignment
method to match feature points to achieve high accuracy in aligning optical and SAR
images, and their algorithm is not rotationally invariant but relies on geographic location
information. Xiang et al. [13] used two operators to compute the gradient of heterogeneous
images and constructed a GLOH (gradient location and orientation histogram) descriptor
for feature matching. Their algorithm is rotationally invariant and has a better alignment
effect for high-resolution optical and SAR images, but the algorithm is not universally
applicable. Its algorithm is rotationally invariant and has a good registration effect for
high-resolution optical images and SAR images, but its generalization is poor and its
algorithm copes with the environment limited to optical images and SAR images. The
feature-based approach extracts point, contour line, and region features and matches them
based on some similarity metric. For example, Chen et al. [14] proposed a Partial Intensity
Invariant Feature Descriptor (the Partial Intensity Invariant Feature Descriptor, PIIFD)
for multi-source retinal image alignment, which has intensity and rotation invariance,
but the alignment accuracy is not high. Li [15] proposed a Radiation Insensitive Feature
Transformation (RIFT) for Maximum Index Mapping (MIM) of feature description with
high-intensity invariance but poor rotational invariance.

The current multi-source sensor image registration algorithms deal with the problem of
homogenization and face poor multi-scene universality. Moreover, most of the descriptors
with rotational invariance are built based on the image gradient, which can lead to the
gradient inversion phenomenon, resulting in registration failure. Therefore, a weakly
gradient-sensitive alignment method for multi-source sensor images is proposed to adapt
to a variety of complex alignment environments. There is no need to extract the image
gradient in the whole process and it has rotational invariance, which ensures the robustness
of the present algorithm to nonlinear radiance differences and the registration accuracy
under multi-source sensors.

2. Feature Point Extraction

The number of repeatable feature points between multi-source sensor images is critical
to the success of the registration. The Harris operator can extract image corners as feature
points, but the results of using the Harris operator to directly extract corner features for
multi-source images do not have high stability and repeatability. Because phase information
is highly invariant to image contrast, brightness, scale, and other variations [16], the use of
phase information in the feature point extraction stage can detect more duplicate feature
points (i.e., points with the same name) in multi-source images [17], which provides an
a priori condition for the subsequent increase in the matching rate. In this paper, the
maximum moment map obtained after phase congruence transformation is used to replace
the intensity edge map, and the chunked Harris method is used for feature detection to
enhance its robustness. The specific alignment process is shown in Figure 1:

In Figure 1, the specific flow of the realization of this algorithm is presented. As this
paper adopts the feature alignment method, the dimensions of the reference image and the
image to be aligned need to be larger than 96 × 96.
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2.1. Phase Congruence Transformation

Phase congruence [18] is a frequency domain treatment based on phase considerations.
The phase congruence is directly proportional to the local energy, and a commonly used
step location method is based on the local energy extremes. A 2D Log-Gabor filter is used
for phase congruence transformation.

The wavelet directional response is formed using the directional properties inherent in
the 2D Log-Gabor filters [19,20] to generate the response map. The 2D Log-Gabor function
is defined as follows:

L(ρ, θ, s, o) = e
−(ρ−ρs)2

2σ2
ρ × e

−(θ−θso)2

2σ2
θ (1)

ρs = log2(n)− s (2)

θso =

{
π
no

× o s ∈ 2k + 1
π
no

× (o + 1
2 ) s ∈ 2k

(3)

(
σρ, σθ

)
= 0.996(

√
2
3

,

√
1
2
× π

no
) (4)

where (ρ, θ) denotes the logarithmic polar coordinates, no is the number of defined direc-
tions ranging from 3 to 20, which takes the value of 6 in this paper, n denotes the size, and
Equation (2) denotes the composition of the filter under n size, s and o are the scale and
the direction of Log-Gabor, k is an integer number, (ρs, θso) is the center coordinates of the
Log-Gabor filter, and σρ and σθ are the bandwidths under ρ and θ, respectively.

The 2D Log-Gabor belongs to the frequency domain filters and its corresponding
spatial domain can be obtained by the inverse Fourier transform. In the spatial domain, the
2D Log-Gabor can be expressed as:

L(x, y, s, o) = Leven(x, y, s, o) + iLodd(x, y, s, o) (5)

In Equation (5), Leven(x, y, s, o) and Lodd(x, y, s, o) represent even-symmetric and odd-
symmetric filters of size 3 × 3, respectively, and both have good local and directional
characteristics.
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Setting I(x, y) represents a two-dimensional image signal. The image I(x, y) is con-
volved with even-symmetric and odd-symmetric filters to obtain the response compo-
nents Eso(x, y) and Oso(x, y):

[Eso(x, y), Oso(x, y)] =
[

I(x, y)× Leven(x, y, s, o),
I(x, y)× Lodd(x, y, s, o)

]
(6)

I(x, y) amplitude component Aso(x, y) and phase component ϕ at scale s and orienta-
tion o:

Aso(x, y) =
√

Eso(x, y)2 + Oso(x, y)2 (7)

ϕso(x, y) = arctan(
Oso(x, y)
Eso(x, y)

) (8)

Considering the results of the analyses in all directions and introducing the noise
compensation term T, the final 2D phase congruency transformation model is:

PC(x, y) =
∑
s

∑
o

ωo(x, y)×⌊Aso(x, y)× ∆ϕso(x, y)− T⌋

∑
s

∑
o

Aso(x, y) + ξ
(9)

In Equation (9), ωo(x, y) is a weighting function; ξ is a small value taken as 0.001;
and operation ⌊ ⌋ prevents the closure quantity from obtaining a negative value and takes
zero when the closure quantity is negative. ∆ϕso(x, y) is the phase deviation function
with Aso(x, y), and the product can be expressed as:

Aso(x, y)× ∆ϕso(x, y) = (Eso(x, y)ϕE(x, y) + Oso(x, y)ϕO(x, y))−
∣∣Eso(x, y)ϕO(x, y)− Oso(x, y)ϕE(x, y)

∣∣ (10)

In Equation (10),

ϕE(x, y) = ∑
s

∑
o

Eso(x, y)
C(x, y)

(11)

ϕO(x, y) = ∑
s

∑
o

Oso(x, y)
C(x, y)

(12)

C(x, y) =
√
(∑

s
∑
o

Eso(x, y))2
+ (∑

s
∑
o

Oso(x, y))2 (13)

2.2. Maximum Moment Map Feature Point Extraction

Based on Equation (9), very accurate response values can be obtained, i.e., the phase
consistency value PC(x, y). However, the effect of orientation changes on phase coherence
measurements is neglected. To obtain a relationship between phase coherence measure-
ments and orientation changes, an independent phase coherence response value equal
to PC(θo) is calculated for each orientation o, where θo is the angle of the orientation o.
Calculate the maximum moments of these phase coherence plots and analyses the variation
of moments with orientation.

According to the moment analysis algorithm, the magnitude of the maximum moment
usually reflects the uniqueness of the line features. Three intermediate quantities are
computed before the maximum moment MΨ is computed:

a = ∑
o
(PC(θo) cos(θo))

2 (14)

b = 2∑
o
(PC(θo) cos(θo))(PC(θo) sin(θo)) (15)

c = ∑
o

PC(θo) sin (θo)
2 (16)
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The maximum moment MΨ is given by the following equation:

MΨ =
1
2
(c + a +

√
b2 + (a − c)2) (17)

Ψ =
1
2

arctan(
b

a − c
) (18)

In Equation (18), Ψ is the angle of the principal axis and MΨ is the value of the
maximum moment concerning the direction, which corresponds to reflecting the edge
characteristics of the image.

Due to the better radiation distortion resistance of the edge structure information, the
maximum moment MΨ is used to detect the edge feature points. Chunked Harris feature
detection using pair MΨ is equivalent to dividing the image to be detected into N × N
non-overlapping square image blocks, calculating the Harris feature value of each pixel
within the image block, and taking the first m points with the largest feature values within
the image block as feature points.

Figure 2 shows the results of feature detection; the green points in the figure are the
detected feature points, and the more feature points, the greater the number of correct
matching points for subsequent alignment. Figure 2a is a pair of heterogeneous remote
sensing images and the comparison can be seen that the two images are very different,
especially the SAR image by the noise interference, which is heavier. Figure 2b is the
original map directly with the Harris feature detection results, and the results appear to
fall into the phenomenon of local extremes. Since the map repeats the feature points less,
it is difficult to ensure the accuracy of the alignment. Figure 2c is the maximum moment
mapping map, and Figure 2d,e is the maximum moment mapping using the Harris and the
chunked Harris operator feature detection results, respectively. Comparing Figure 2b,d, it
is found that the Harris detector, a conventional feature detector based on image intensity,
is very sensitive to nonlinear radial distortion, and the results do not have a large number
of repeating feature points, whereas the maximum moment map obtained by the phase
coherence transform has a good resistance to nonlinear radial distortion. By using the same
Harris detector for the maximum moment map, a large number of reliable feature points
can be obtained. As can be seen from Figure 2d,e, the feature points detected using the
chunked Harris operator are more uniform. Therefore, replacing the maximum moment
feature with the intensity edge map and using the chunked Harris operator for feature
detection ensures the high repeatability of the features and provides a priori conditions for
subsequent feature matching.
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3. Feature Point Description
3.1. Determination of the Main Phase Angle

In existing methods, their algorithms are guaranteed to have rotational invariance
by calculating a local second-order gradient to assign a principal direction [0, 2π] to each
feature point. However, due to the large nonlinear radiometric variation of the image, the
principal direction extracted with the gradient is inherently inaccurate, and in multi-source
sensor images, the gradient of the corresponding part of the image will sometimes change
the direction by exactly 180◦, which is very common and is called gradient inversion. To
bypass the gradient information when extracting the principal direction and to suppress
the gradient inversion phenomenon, the principal phase angle [0, 2π] is used instead of the
principal direction, thus making the descriptor rotationally invariant. The phase angle ϕ of
each pixel point in the image is obtained from Equation (8), and since the closer the feature
point is to the neighborhood of the feature point the greater the impact on the feature
matching, the phase angle of the circular region with a radius of 48 near each feature point
is Gaussian-weighted and counted with a histogram of the phase angle, which divides the
360◦ into 24 columns, each of which is 15◦. The histogram statistics of the phase angle in
the region near a feature point in the image are shown in Figure 3, where the horizontal
coordinate is the angle and the vertical coordinate is the number of statistics.
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Figure 3. Phase angle statistics near a feature point in the plot. (a) No smoothing operation;
(b) smooth operation.

The histogram statistics of the phase angle in the region near a feature point in the
image are shown in Figure 3, Figure 3a, to determine the interval in which the main phase
angle is located, since at this point, bin is a discrete parabolic interpolation which is needed
based on the value near the maximum bin. (b) obtained after Gaussian smoothing in (a),
which is intended to facilitate subsequent interpolation to estimate a more accurate main
phase angle and to prevent sudden changes, thus using parabolic interpolation to estimate
the main phase angle. The histogram of the smoothed phase angle is shown in Figure 3,
and it can be concluded that the smoothing will not change the results of the interval
where binmax is located, and it will be easier and more accurate to fit the local parabola.

Setting binmax as the vertex of the parabola gives the following:

binmax =
1
2

(
bin2

2 − bin2
3
)

g1 +
(
bin2

3 − bin2
1
)

g2 +
(
bin2

2 − bin2
3
)

g3

(bin2 − bin3)g1 + (bin3 − bin1)g2 + (bin1 − bin2)g3
(19)
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bin2,1,3 denote the statistically maximal direction as well as the two directions around
the maximal direction, and g2,1,3 are the number of corresponding vertical coordinates
of b2,1,3. For example, in Figure 3b, bin1 = 13, bin2 = 14, and bin3 = 15, and the binmax esti-
mate can be found by substituting into Equation (19).

3.2. Creating the Phase-Amplitude Maximum Index Map

The phase-amplitude maximum index (PAMI) map is constructed from Log-Gabor
convolutional sequences. The convolution sequence is obtained at the phase coherence
detection stage. The first layer of the Log-Gabor convolution sequence is the convolution
result in the 0

◦
direction (the initial layer of the convolution sequence), the second layer

is 30
◦
, and until the sixth layer is the convolution result in the 150

◦
direction. Figure 4

shows the construction flow of PAMI.
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The convolution sequence utilized in Figure 4 is constructed as follows: first, given an
image I(x, y), I(x, y) is convolved with a two-dimensional Log-Gabor filter (filter size
3 × 3) to obtain the response components Eso(x, y) and Oso(x, y); second, the ampli-
tude Aso(x, y) at scale s and orientation o is then computed, and different scales of the same
orientation are summed to obtain the Log-Gabor convolution layer Ao(x, y):

Ao(x, y) =
Ns

∑
n=1

Aso(x, y) (20)

Finally, the Log-Gabor convolution sequence is obtained by arranging the Log-Gabor
convolution layers in the order of direction, which belongs to the multi-channel convolution
mapping {Aω

o (x, y)}No
1 , where N0 is the number of directions and ω = 1, 2, . . . , No denotes

the different channels of the Log-Gabor convolution sequence. From the convolution
results, for pixel (xi, yj), a dimensional array

{
Aω

o (xi, yj)
}No

1 can be obtained, after which
the maximum value Amax in the array is found corresponding to the position channel ωmax,
and ωmax is set to the pixel value of position (xi, yj) in PAMI.
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3.3. Creating the PAMI Descriptor

After obtaining the PAMI and the main phase angle, a 96 × 96 area is rotated with the
feature point as the center, the angle of rotation is the main phase angle, and the rotated
coordinates can be derived from the following equation:[

x′

y′

]
=

[
cos φ − sin φ
sin φ cos φ

][
x
y

]
(21)

Because the rotated coordinates are not integer points, a quadratic interpolation is
required to find the index value in PAMI corresponding to the rotated coordinates.

As shown in Figure 5, the red arrow indicates the phase angle counted, and this phase
angle serves to be able to suppress rotational differences in the same region of different
images; the blue grid region is the image coordinate information; the green circle indicates
the extraction of the main phase angle region; and the yellow region is the post-rotation
coordinate information. It can be observed that assuming that the rotation of the circular
region of the 45◦ rotation will not result in the loss of the rotating, but the rotating coordinate
points and the image coordinate points do not overlap, due to the image as an indexed
value image, which cannot be directly estimated to be the nearest point, it is necessary
to carry out a quadratic interpolation to calculate the index value corresponding to the
coordinates of the change. The formula is as follows:

indx = (1 − ∆y)× (∆x × indx1 + (1 − ∆x)× indx0 ) + ∆y × (∆x × indx3 + (1 − ∆x)× indx2 ) (22)

In Equation (22), indx denotes the corresponding index value in (x, y) coordinates, ∆y de-
notes the vertical coordinate y − y0, and ∆x denotes the horizontal coordinate x − x0.
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Figure 5. Schematic diagram of transforming the coordinates near the feature point using the main
phase angle.

For this time, the region 96 × 96 is divided into 36 small regions of 16 × 16 and the
histogram is used to count the number of indexes in each region, constituting 6 × 6 × 6
feature vectors.

Figure 6 shows that, to visualize the descriptors, we visualized the descriptors ex-
tracted from the area around a feature point (red), with the horizontal coordinates indicating
the six directions and the vertical coordinates indicating the number of statistics, and each
small histogram represents a PAMI statistic for a 16 × 16 area. Finally, the descriptors are
normalized to increase the similarity between the descriptors, and finally, a 216-dimensional
feature vector is formed.
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4. Feature Matching and Outlier Removal

Feature matching is conducted by calculating the similarity between the feature vectors
to derive the correspondence between the feature points. Here, the sum of squares of
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Euclidean distances (SSD) is used to measure the extracted feature vectors. Using the sum
of squares of Euclidean distances (SSD), it is calculated as follows:

S =
O

∑
i=1

(Dr(xr, yr)− Ds(xs, ys))
2 (23)

In Equation (23), S is the SSD value of the PAMI feature vector Dr(xr, yr) at the
reference image feature point (xr, yr) and the PAMI feature vector Ds(xs, ys) at the image
feature point (xs, ys) to be aligned, and O is the vector dimension.

For multi-source images, there may be a large number of mismatched points in the
initial matching, and the mismatched points are called outer points, which are all over
the feature point set and need to be eliminated to leave the stable inner points. Calculate
the distance between all feature points between the reference image feature points and
the feature points of the image to be aligned, set to C. Firstly, select the first M (M is
20 in the experiment) feature distance minimum points in C to form Csample. At this
time, Csample contains the matching relationship between the optimal feature points of the
two images. Secondly, randomly select four feature points from M at a time to compute the
affine matrix, and affine transform its corresponding matching points. The area ratio of the
four triangles is formed by the four points, and if the area ratio changes, the correspondence
is wrong. After traversing to find the feature points that can satisfy the constant area ratio
(at least four), use C to count the number of internal points (the root mean square error of
the computation of the feature points after the affine transformation and the corresponding
reference image feature points is less than the threshold value of five, i.e., it is an internal
point) in the current affine model, and the more internal points there are, the higher the
confidence level of the current affine model is. Finally, the affine model with the highest
confidence level is obtained after a continuous cycle.

5. Experiences

In this paper, the correct matching rate CMR, root mean square error RMSE, and
running time are used to quantitatively evaluate the alignment results, respectively. The
RMSE and CMR are calculated as follows:

RMSE =

√√√√ 1
Nc

Nc

∑
i=1

[(
xi

1 − xi
2
)2

+
(
yi

1 − yi
2
)2
]

(24)

CMR =
Nc

N
(25)

In the equation, N is the number of matching pairs; (xi
1, yi

1) and (xi
2, yi

2) are the
coordinates of matching point pairs; (xi

2, yi
2) are the coordinates transformed by affine

transformation matrix H; and NC is the number of correct matching pairs. It is stipulated
that the distance between the points with the same name after affine transformation is less
than five pixels, which is the correct match.

The data used in the experiments are multi-source image pairs of six scenes, labeled
a to f, with both multi-sensor images and multi-temporal images of the same sensor,
including hyperspectral images (HSI), multi-spectral (MSI), SAR, optical images, infrared
images, depth maps, and rasterized maps (Map). These selected experimental data contain
all the problems in multi-source image alignment, including large resolution differences,
severe radiometric distortion, spatial distortion, rotation, content detail differences, and
image noise. The alignment results of the gradient weakly sensitive alignment method for
images in different scenarios are shown in Figure 7, where the red center point and the
green center point are the stable feature points in the reference image and the image to
be aligned, and the yellow line is the established match. From the alignment results, the
method in this paper can overcome the problems in multi-source image alignment with
strong robustness. The matching performance of the gradient weakly sensitive multi-source
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sensor alignment method can be adapted to a wide range of scenarios for the following
reasons: (1) This method uses the maximum moment map instead of the image gradient
edge map for feature detection, and takes into account the feature repetition rate and the
number of features, which lays the foundation for subsequent matching. (2) The main
phase angle is introduced to bypass the process of finding the gradient. The more accurate
main phase angle is estimated in a certain interval by parabolic interpolation so that the
final descriptor has rotational invariance. (3) This method constructs PAMI to convert
heterogeneous images into homogeneous ones, which has good resistance to nonlinear
radiation differences and ensures the robustness of this method.
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Figure 7. Results of gradient weakly sensitive alignment method for different classes of im-
ages. (a) optical–optical; (b) optical–infrared; (c) depth–optical; (d) map–optical; (e) optical–SAR;
(f) HSI–MSI.

To qualitatively verify the effectiveness of the proposed gradient weakly sensitive
alignment method, six groups of five different multi-source image data pairs each are used
to test the robustness and generality of the proposed algorithm, and four multi-source
alignment algorithms are selected for comparative CMR comparison, including SIFT, LSS,
MS-PIIFD, and HPACG, which are not considered in the comparison because HOPC needs
to provide the latitude/longitude information of the image disguised as a coarse alignment.

In Figure 8, five methods are shown in six sets of multimodal images CMR metric, and
the smaller the difference in the imaging mechanism between images, the higher the correct
rate of the response of the methods based on the gradient extraction of features, but the
correct rate is difficult to be guaranteed if the image difference is large, such as SAR–optical,
depth–optical, and map–optical. The method proposed in this paper does not involve the
image gradient information, so it can maintain the strong robustness in multimodal images,
especially in the existence of temporal differences between optical–optical, and can also
maintain a high correct matching rate, and from the overall curve of the 1–5 group, there
are no large fluctuations, which further indicates that the algorithm in this paper is robust.
However, in the HSI–MSI group experiments in this paper, although the second and third
trials obtained a high correct matching rate, large-scale differences can be seen from the
subsequent experiments, due to the experimental image, so this paper’s algorithm detects
fewer feature points.
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As shown in Figure 9, which shows the RMSE metrics of five methods in six sets
of multimodal images, the corresponding RMSE values are not shown in the histograms
because some of the alignment methods are not successfully aligned in the multi-source
images so that the computed affine matrices will get a large RMSE value. From the RMSE
values, it can be concluded that the algorithm in this paper not only has the advantage of
robustness compared to other algorithms, but also has a high accuracy, especially to cope
with the gradient reversal phenomena in images such as map–optical, depth–optical, and
SAR–optical. From the optical–optical experiments, due to the existence of images 3, 4,
and 5 in the experiments, there are some differences in the timing of the images. From
Figure 7a, it can be seen that the timing differences lead to some scene changes, but this
paper’s algorithm in the process of aligning such images did not lead to the root mean
square error being too large because of the timing differences, from 1–5 as a whole, and
compared with the current algorithm. This paper’s algorithm also has a stronger resistance
to the timing differences.
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Figure 9. RMSE metrics in different groups of images: (a) optical–optical; (b) infrared–optical;
(c) SAR–optical; (d) depth–optical; (e) map–optical; (f) HSI–MSI.

To visualize the robustness of this paper’s algorithm, we have quantitatively counted
the number of correct matches for map–optical, depth–optical, SAR–optical, and HSI–MSI
experimental groups Nc as shown in Figure 10:
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Figure 10. Statistics on the number of correctly aligned points: (a) map–optical; (b) depth–optical;
(c) SAR–optical; (d) HSI–MSI.

As shown in Figure 10, which shows the quantitative statistics of the five methods in
four groups of multimodal image Nc, it can be seen from the map–optical, depth–optical,
and SAR–optical groups of images that this paper’s algorithm can screen the largest
number of correct matching points in the case of heterogeneous images, which ensures
the robustness of the alignment algorithm. However, since the algorithm in this paper
does not have strong scale invariance, the correct matching points screened in the face of
the HSI–MSI group will be weaker than the current MS-PIIFD and HPACG algorithms.
However, since the method in this paper is fundamentally a feature matching method, it
will have excellent performance for images with not large-scale differences, such as three in
HSI–MSI.

6. Conclusions

Aiming at the problem of heterogeneous remote sensing images, such as the existence
of nonlinear intensity differences and other issues that lead to the difficulty of alignment,
we propose a gradient weakly sensitive alignment method for multi-source sensor images.
In this paper, the algorithm resists the nonlinear radiation differences between multi-source
sensor images due to the use of the maximum moment map for feature point detection,
uses the frequency domain information instead of the spatial domain information for
feature detection, ensures the number of repetitive feature points between the images, and
estimates the main phase angle by quadratic interpolation to estimate the phase angle in
the 98 × 98 range near the feature points, thus making its algorithm rotationally invariant.
Secondly, the conversion of heterogeneous images into isomorphic images increases the
similarity between images and increases the SSD metric for feature descriptors to a certain
extent in the feature matching stage, to establish more reliable alignment relationships. In
the experimental stage, it is confirmed that the algorithm of this paper, regardless of the
homogeneous images optical–optical with temporal differences, or SAR, depth, and map
images with nonlinear radial differences, shows strong alignment robustness and accuracy.
After qualitative and quantitative experiments, the algorithm in this paper achieves the
most correct matching points and the most stable root mean square error as long as the
experimental subjects do not have large-scale differences.

7. Foresight

Currently, in this paper, the algorithm solves the multimodal image alignment problem,
but its qualitative and quantitative experimental verification, from the experimental results,
still have some shortcomings, such as in the alignment of HSI. As some HSI images will
have large-scale differences, if you seek to make the algorithm with scale invariance needs
to be integrated into the scale invariance module, and the subsequent research will focus
on processing, and based on the existing improvement, will ensure accuracy along with
scale invariance.
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