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Abstract: This work presents a novel approach for the study of the movement of droplets on inclined
surfaces under the influence of gravity and chemical heterogeneities. The developed numerical
methodology uses data-driven modeling to extend the applicability limits of an analytically derived
reduced-order model for the contact line velocity. More specifically, while the reduced-order model is
able to capture the effects of the chemical heterogeneities to a satisfactory degree, it does not account
for gravity. To alleviate this shortcoming, datasets generated from direct numerical simulations are
used to train a data-driven model for the contact line velocity, which is based on the Fourier neural
operator and corrects the reduced-order model predictions to match the reference solutions. This
hybrid surrogate model, which comprises of both analytical and data-driven components, is then
integrated in time to simulate the droplet movement, offering a speedup of five orders of magnitude
compared to direct numerical simulations. The performance of this hybrid model is quantified and
assessed in different wetting scenarios, by considering various inclination angles and values for the
Bond number, demonstrating the accuracy of the predictions as long as the adopted parameters lie
within the ranges considered in the training dataset.

Keywords: wetting hydrodynamics; droplet transport; reduced-order modeling; machine learning;
Fourier neural operator

MSC: 76T10

1. Introduction

The motion of droplets is a phenomenon that most people encounter in their everyday
lives, either in the form of vapor condensation on a cold window, water spilling on leaves
during the watering of plants, etc. It is also a phenomenon that is relevant to many
applications; from microfluidic lab-on-a-chip devices that can process a large number of
microscopic chemical or biological samples [1], to coating and 3D printing [2]. For these
reasons, there is a great need to understand and control droplet motion in these and many
other applications (see [3], for a review).

From a modeling perspective, the most intricate aspect of a moving droplet is the
description of the multiscale physical processes affecting the contact line dynamics, which
originate from the molecular interactions at the nanoscale. The contact line is defined as
the line on the periphery of a droplet, separating the solid, liquid and gas phases. The
associated local contact angle is the angle formed between the solid-liquid and the liquid-
gas interfaces and is typically dictated by the chemistry of the surface and may exhibit
spatial variations and features due to unavoidable randomness on a natural surface or
deterministic by surface design. A solid surface is considered hydrophilic when a fully
equilibrated droplet assumes angles that are smaller than 90◦, and hydrophobic when these
are larger than 90◦. When the droplet is in motion, what we observe macroscopically is
that the apparent contact angle is different from the local one, causing the displacement
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of the contact line. In surfaces with no hysteresis effects, the droplet reaches equilibrium
when both the local and apparent contact angles along the contact line match.

The focus of this study is the modeling of droplet motion on inclined, chemically
heterogeneous surfaces. This specific setting is very relevant to water harvesting, with
numerous examples in nature and relevant bio-inspired applications [4]. Droplets are
typically observed to remain stationary on the inclined surface up to a critical inclination
angle, beyond which the droplet moves downhill as it is able to overcome the surface
heterogeneities be they natural or artificial. For larger inclination angles, instabilities may
develop, leading to the formation of cusps and even droplet breakup [5,6]. The impact of
structured surface heterogeneities has also attracted interest in recent years, especially with
the advent of specialized surface fabrication technologies. Several experimental studies
focused on uncovering the influence of heterogeneous features on the critical inclination
angle and the subsequent dynamic sliding behaviour [7–12]. Going even further, Varagnolo
et al. [13] studied the influence of the shape of the hydrophobic regions, suggesting practical
criteria for surface designing in order to tune the static and dynamic behavior of droplets.
In more “exotic” applications, researchers were able to make droplets run uphill either with
a heterogeneity gradient opposing the gravity field [14], or with vibrations [15]. Moreover,
approaches based on mathematical modeling and analysis were also utilized to study
idealized geometries, typically adopting simplifying assumptions [16,17] which limited
their applicability in more realistic scenarios.

Thus, numerical modeling emerges as an attractive alternative approach to go past
the limitations of analytical results and mitigate the need for specialized equipment for
accurate experiments. Numerical studies, however, also adopt different approaches. For
example, lubrication-type models that are derived as approximations of the Navier–Stokes
equations and apply for small contact angles and negligible inertia, have been employed
to study droplets on inclined surfaces, with or without chemical heterogeneities [18–21].
Moreover, Afkhami et al. [22] conducted direct numerical simulations (DNS) to study
forced dewetting, comparing their results against Cox’s contact line velocity model [23].
Relevant computational fluid dynamics (CFD) studies emerged, studying various wetting
hydrodynamic settings for realistic apparent contact angles [24–28]. Other numerical
approaches include Lattice–Boltzmann methods [29–31], phase-field methods [32,33], and
to a lesser extent molecular dynamics [34,35], and smooth particle hydrodynamics [36].
Even though these numerical approaches offer a reliable alternative to costly experiments,
they are typically associated with high computational costs and significant runtimes.

The astounding uptake of data-driven methods in science and engineering has show-
cased the potential to accelerate numerical solutions in different disciplines. Specifically
for fluid dynamics [37], common examples of enhancing the solution efficiency through
data-driven methods include turbulence modeling through Reynolds averaged Navier–
Stokes and large eddy simulations [38,39] and super-resolution, where coarse simulations
are processed by data-driven models to infer the solution to higher resolution grids [40–42].
Typically, data-driven methods require large amounts of data to be trained and struggle
to generalize in situations where the modeling parameters are outside the distribution
of the training dataset. A promising data-driven approach that alleviates these issues to
some extent is the construction of hybrid surrogate models, which combine data-driven
and reduced-order models, provided that these are available by other means (e.g., by
employing simplifying assumptions). Characteristic examples of this approach are two
works that developed surrogate models for the prediction of the kinematics of spherical
particles [43] and bubbles [44], as well as the recent study by the present authors for the
dynamics of thin droplets on heterogeneous surfaces without gravity [45]. With this kind
of hybrid modeling, the data-driven component of the model learns to correct and extend
the applicability of an analytically derived reduced-order model using the full simulation
data as a reference solution. This approach demonstrated improved agreement with the
reference solution compared to the base reduced-order model, expanding its regime of
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applicability to tackle more complex scenarios, and also exhibited better generalizability
compared to fully data-driven models.

Specifically, the aforementioned study by [45] was a proof-of-concept study in which a
hybrid analytical/data-driven modeling approach was utilized for the first time in the con-
text of wetting hydrodynamics, which was based on training datasets that were efficiently
generated for lubrication-type models [45]. In the limit of thin droplets, the asymptotic
theory of Lacey [46] applies, which provides a reasonably accurate estimate for the normal
component of the contact line velocity. Although higher-order corrections to this result have
been obtained via analytical means [47], this study demonstrated that the data-driven route
is also applicable, especially for cases where improving upon a simplified low-order model
becomes a formidable challenge. Within this approach, the hybrid model for the contact
line velocity consisted of the superposition of Lacey’s asymptotic model, which serves as
the reduced-order model, and its data-driven counterpart to correct Lacey’s predictions,
which was then evolved using the method of lines with a standard ordinary differential
equation (ODE) solver. The model was shown to considerably shorten simulation times
compared to a full numerical simulation, and to be able to capture the dynamics accurately
even for heterogeneity profiles that were very different from the heterogeneity profiles seen
during training.

The present work expands upon this modeling framework to describe the dynamics of
droplets that are driven by the interplay of chemical heterogeneities and the gravitational
force, using (i) full DNS datasets and (ii) a reduced-order model which is based on the theory
of Cox [23] which provides estimates for the contact line velocity. Although Cox’s model
does not explicitly account for the effects of gravity it serves as a low-order approximation
to DNS, which is then corrected by adding its data-driven counterpart. In Section 2, the
mathematical and numerical framework used to generate the datasets and train the data-
driven model is described. This is followed by the presentation of the results of this study,
including the testing of the hybrid surrogate model in different settings in Section 3. Finally,
Section 4 concludes this study with a summary of the key results.

2. Governing Equations and Numerical Methods

The goal of this study is to train data-driven models to predict the droplet dynamics
for a system that is schematically shown in Figure 1. More specifically, a liquid droplet
with density ρ̂1 and viscosity µ̂1, which is surrounded by a gas phase with correspond-
ing properties ρ̂2 and µ̂2 (hats denote dimensional quantities), slides under the influence
of gravitational acceleration ĝ over a chemically heterogeneous surface with inclination
angle αi. The surface tension σ̂ of the two-fluid interface, and the chemical character
of the substrate, as expressed through the local contact angle θ∗, influence the dynamic
behaviour of the droplet and its shape. Considering the case set-up, the relevant di-
mensionless groups are the Reynolds number Re = Ûre f L̂re f ρ̂1/µ̂1, characterizing the
relative influence of inertial over viscous effects, the capillary number Ca = µ̂1Ûre f /σ̂,
characterizing the relative influence of viscous over capillary effects, and the Bond number,
Bo = ρ̂1 ĝL̂2

re f /σ̂, for capturing the relative importance of gravity to surface tension. In these

dimensionless groups, L̂re f is the characteristic length scale taken to be the domain size, and
Ûre f = (σ̂/(ρ̂1 L̂re f ))

1/2 is the characteristic velocity scale.
To generate the training dataset, a number of DNS cases are run and the evolution of

the contact line is extracted under different conditions. In all cases, an initially hemispheri-
cal droplet of radius 0.125 was placed on a solid surface at the bottom of a 1 × 1 × 1 box,
with open boundaries everywhere else. The density and viscosity ratios between the two
fluids were set to 0.1, and Reynolds and Capillary numbers to Re = 0.1, Ca = 10. The sur-
face inclination angle and the Bond number were varied within αi ∈ [0, 80◦], and Bo ∈ [0, 5]
respectively. Furthermore, the initial position of the droplet and the heterogeneity profile
on the inclined substrate were also varied, with more details provided in Section 3. The
following paragraphs provide a description of the mathematical and numerical framework
used to generate the datasets and train the data-driven models.
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Figure 1. Visualisation of a typical simulation setup, with an initially hemispherical droplet (shown
in blue with the contact line shown in red) sitting on a chemically heterogeneous inclined surface.
Darker shaded regions on the surface are more hydrophobic than lighter shaded regions.

2.1. Governing Equations for DNS

The governing equations for the wetting scenarios considered are the two-phase
Navier–Stokes equations, including the effects of surface tension and gravity. The two
different fluids (resembling a liquid and a gas) are differentiated with a colour function
C(x, t) [48]. Considering that volume Ω1(t) is occupied by fluid (1) and Ω2(t) by fluid (2),
with boundaries ∂Ω1(t) and ∂Ω2(t), respectively, the colour function is defined as

C(x, t) =

{
1 if x ∈ Ω1(t),
0 if x ∈ Ω2(t),

(1)

with the interface between the two fluids denoted by S(t) = ∂Ω1(t)
⋂

∂Ω2(t), which is
the part of the boundary that is common to both regions. The physical fluid properties in
the whole domain can be obtained as a weighted average between the fluid properties of
each phase,

ψ(x, t) = C(x, t)ψ1 + (1 − C(x, t))ψ2, (2)

where ψ is the value of a relevant property in the entire domain and subscripts “1” and “2”
indicate the property values in each phase.

Within this setting, the governing equations are recast in dimensionless form as,

∇ · u =0, (3a)
∂C
∂t

+∇ · (Cu) =0, (3b)

∂ρu
∂t

+∇ · (ρuu) =−∇p +
1

Re
∇ ·

[
µ
(
∇u + (∇u)T

)]
+

1
Re Ca

κδ(x − xs)n̂ + Boρ sin(αi). (3c)

The density and viscosity are made dimensionless using the corresponding values of
fluid (1), while the pressure scale is taken as p̂re f = ρ̂1Û2

re f . The two-fluid interface is
characterised by a unit normal vector n̂, a delta function centered on the interface located
at xs, δ(x − xs), and a local surface curvature κ.

The open source code Basilisk [49–51] is utilized to solve Equation (3), subject to ap-
propriate boundary and initial conditions (described in Section 3). Basilisk specializes in
solving partial differential equations on adaptive Cartesian meshes. The dynamics of the
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two-fluid interface (Equation (3b)) is captured by a conservative, non-diffusive geometric
volume-of-fluid method. The chemical heterogeneities on the inclined substrate are ex-
pressed through the local contact angle, which is implemented numerically using height
functions [52,53]. The discretization of viscous forces follows an implicit formulation, while
the surface tension forces are modelled using the continuous surface force method [54].
The resulting Poisson equation for the pressure is solved with a build-in iterative multigrid
solver. To further increase the efficiency of the solution, Basilisk provides the option of
using adaptive mesh refinement, based on customized criteria. In the context of the present
study, it is desired to maintain a higher spatial resolution in the vicinity of the two-fluid
interface, compared to less active regions. This leads to obtaining accurate solutions on a
discretized domain with significantly less grid nodes. The code was extensively validated
in a variety of multiphase flow problems (see http://basilisk.fr/, accessed on 12 April
2024) and is widely used in contact line studies (see, e.g., [26,27,55–57]). Specifically, in [55],
the dependence of dynamic contact lines on grid refinement was analyzed, carrying out
further analytical work to link these results to Cox’s theory [23]. The aforementioned work
demonstrated the convergence of the results when considering an effective slip in Cox’s
theory, that is associated with the grid resolution next to the contact line and the numerical
implementation of the algorithm. Moreover, in [26] the numerical results obtained with
Basilisk for a dynamic wetting problem were compared to relevant experimental obser-
vations [58] and reduced-order model predictions [59], exhibiting a generally favourable
agreement.

2.2. Reduced-Order Model

In the limit of negligible inertia and small Ca, Cox developed an asymptotic model for
the velocity normal to the contact line ûcl [23], in the form

ûcl =
σ̂

µ̂1

 G(ϑ∗)− G(ϑ)

ln
(

λ

c0

)
+

Qo

g(ϑ)
− Qi

g(ϑ∗)

 (4a)

where ϑ and ϑ∗ are the apparent and local contact angles, respectively,

G(θ) =
∫ θ

0

dx
g(x)

, (4b)

and

g(x) =
2 sin(x)

[
q2(x2 − sin2 x

)
+ 2q

(
x(π − x) + sin2 x

)
+
(
(π − x)2 − sin2 x

)]
q
(

x2 − sin2 x
)
(π − x + cos x sin x) +

(
(π − x)2 − sin2 x

)
(x − cos x sin x)

. (4c)

In Equation (4a), c0 is the azimuthally averaged droplet radius, and q = µ2/µ1 in
Equation (4c) is the viscosity ratio between the two fluids. In this formulation, ϑ is derived
from the solution to the Young–Laplace equation for specified contact line shape.

In Cox’s approach, ucl was based on an asymtptotic expansion into the vicinity of
the contact line by assuming a wedge-like geometry, with the details of the dynamics
in the bulk of the droplet and the dynamics of the entire flow field in the vicinity of
the contact line being encoded by the parameters Qo and Qi, respectively. These, in
addition to the parameter λ, which corresponds to the slip length, were fitted to the DNS
data to best approximate the output of the simulations. To that end, four preliminary
simulations were carried out, describing the spreading of an initially hemispherical droplet
on homogeneous substrates with local contact angles of ϑ∗ = 45◦, 75◦, 105◦, and 135◦,
which span a broad spectrum of local contact angles. The simulations were conducted
for 3 dimensionless time units, within which the droplets spread on the substrate, but
are still far from equilibrium so that contact line velocities do not become vanishingly
small. For carrying out the fitting of DNS data with Equation (4a), an explicit expression

http://basilisk.fr/
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for ϑ is used (see Equation (A13)), and contact line snapshots were collected at intervals of
0.1 dimensionless time units. Using least-squares fitting for the contact line velocity, the
values obtained were λ = 0.220, Qo = 1.94 and Qi = 0.537, with a mean relative deviation
∑N

i=1

∣∣∣(ucox
i − udns

i

)
/udns

i

∣∣∣/N = 11.1%, where N = 120 is the total number of contact line
snapshots considered. These parameters were held constant for all tests presented in
this study.

The only difficulty in using Equation (4) for chemically heterogeneous substrates is the
calculation of the apparent contact angles θ. To overcome this bottleneck, an approximation
to the contact angle model is obtained in Appendix A, see Equation (A16). This model is
based on a perturbation expansion to the Young–Laplace equation, assuming a spherical
and a circular contact line at leading order, and it naturally deviates from the expected
solution as the contact line deformation becomes larger (see Figure A3 for the mean absolute
error estimation). Nonetheless, due to the parameter ranges considered in the present study
(described in Section 3), contact line deformations are generally weak and the approximate
contact angle model yields sufficiently accurate results to be used for the training of the
data-driven models.

2.3. Data-Driven Method

The aim of the data-driven modeling procedure is to approximate a mapping GΘ
between an input and an output function space, i.e., O = GΘ[I ], where I is an instance
of the input function space, O is an instance of the output function space, and Θ are the
model parameters. Kovachki et al. [60] presented a formulation based on neural operators,
approximating this mapping as,

GΘ = Q ◦ σ(WL +KL) ◦ · · · ◦ σ(W2 +K2) ◦ σ(W1 +K1) ◦ P . (5)

Within this approach, the input is first lifted to a higher parameter space with operator
P . Then, a local linear operator W1 and an integral kernel operator K1 are applied, fol-
lowed by the activation function σ. This last operation is applied L times with different
Wn and Kn operators, before operator Q projects the output back to the solution space.
Choosing Fourier transforms to construct the integral kernel operators, leads to the Fourier
neural operator (FNO) architecture [61], where each σ(Wn +Kn) operator called a Fourier
layer, and

Kn Ĩ = F−1[RnF
[
Ĩ
]]

. (6)

In the above expression, operator F transforms the input Ĩ to the Fourier space, where
the weights of the Fourier modes Rn are learned during training. Then, the inverse
Fourier transform F−1 transforms the result back to the physical space. Overall, the model
parameters Θ consist of the elements of Q, P , Ri and Wi, for i = 1, . . . , L. The interested
reader is referred to the contribution by Li et al. [61] for more details.

The role of FNO-based models in the present work is correcting Cox’s reduced-order
model presented in Section 2.2 in order to approximate the DNS solution. As previously
mentioned, this approach is an extension of a previous work by Demou and Savva [45] that
developed a data-driven workflow for wetting hydrodynamics in the limit of very small ap-
parent contact angles, without gravity effects. In the referred study, the data-driven model
provided higher order corrections to the reduced-order model. These corrections were
approximately independent from the chemical heterogeneities on the substrate, leading to
data-driven models were able to generalize well even for cases with significantly different
heterogeneity profiles. A different approach is required in the present study because the
droplets migrate mainly due to the gravity force, but their movement is also affected by the
presence of the chemical heterogeneities on the substrate. As the effects of gravity are not
incorporated in Cox’s reduced-order model, the developed data-driven model will focus
on correcting Cox’s predictions with respect to the gravity induced translation motion.
Therefore, the trained model will provide the correction to the first Fourier harmonic of
the velocity normal to the contact line (i.e., translational droplet motion) and will be com-
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bined with Cox’s reduced-order model for the prediction of the higher Fourier harmonics
(i.e., droplet spreading).

More specifically, the inputs to the data-driven model are the physical space represen-
tation of the first Fourier harmonics of the apparent contact angle, F−1[F1[ϑ]](ϕ), the local
contact angle, F−1[F1[ϑ∗]](ϕ), which are essentially low-pass filters of ϑ(ϕ) and ϑ∗(ϕ), and
the gravity component which is approximately normal to the contact line, ĝ sin αi sin ϕ. All
three inputs are functions of the azimuthal angle, ϕ, that parametrizes the contact line in
a moving coordinate system centred at the centroid of the wetted area. The output of the
model is expected to approximate the first Fourier harmonic of the difference between the
velocities normal to the contact line as predicted by the DNS and the reduced-order model,
uAI

cl ≈ F−1[F1[uDNS
cl − uCOX

cl ]](ϕ). The model is trained with Ntot = Ntrain + Ntest contact
line snapshots from the DNS cases, therefore the training error is defined as,

Etrain =
1

Ntrain

Ntrain

∑
n=1

∥∥On
AI −On

ref

∥∥
2∥∥On

ref

∥∥
2

, (7)

where, OAI is the output of the data-driven model and Oref is the corresponding reference
solution. The testing error, Etest, is similarly estimated using Ntest samples. In all snapshots
considered in the training and testing datasets, the DNS solution and Cox reduced-order
model prediction never exactly match. Therefore, Oref, which quantifies their difference,
never vanishes and the summands in Equation (7) never diverge. This is even true for DNS
snapshots for which the droplets are at equilibrium, since, due to the estimation errors in
the contact angle, ûcl does not vanish. Once the data-driven model is successfully trained,
the data-driven velocity predictions are added to the predictions of Cox’s reduced-order
model to form the hybrid contact line velocity model, uh

cl = uCOX
cl + uAI

cl . This hybrid model
is then used to evolve the solution in time using standard time integration schemes that are
typically adopted for the numerical solution of ODEs.

Many variations of the training procedure described above were tested in order to
identify the best available approach to model droplet dynamics on inclined heterogeneous
surfaces. These preliminary training approaches included (i) different forms of the loss
function, (ii) different activation functions, (iii) retaining more Fourier harmonics in the
input and output of the AI model, (iv) including the contact line shape and the gravity
component normal to the inclined substrate as input to the AI model, among other attempts.
The training procedure described above emerged as the best approach that balances both
accuracy and robustness in predicting the future state of a moving droplet in the wide
range of tests presented in Section 3.

2.4. Error Measure Based on the Fréchet Distance

The accuracy of the developed model must also be assessed on its ability to predict
the contact line position at a given time, a measure that is not provided by Equation (7)
as it is based on the difference between the predicted and reference contact line velocities.
Therefore, a more relevant error measure is utilized, defined at any specific time instance of
a simulation as,

EFr(t) = dF(cAI(t), cDNS(t))
√

π

4ADNS(t)
. (8)

Here, cAI(t) and cDNS(t) are the contact line positions as predicted by the AI and the DNS
at time t respectively, and dF(cAI(t), cDNS(t)) is the Fréchet distance, characterising the
similarity between two curves [62]. This similarity measure takes into account both the
location and ordering of the points along the curves. By normalizing the Fréchet distance
with a characteristic diameter (derived from the area ADNS of the wetted region), this error
measure becomes equal to 100% for two externally tangent circles of the same radius. In
the following sections, the progress of the training and testing of the data-driven models is
monitored using Etrain and Etest (defined in Equation (7)), which, as previously mentioned,
express the capacity of the resulting hybrid model in predicting the contact line velocity.
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On the other hand, the model performance in accurately predicting the contact line position
in representative demonstration cases is quantified upon deployment by querying EFr at
specific times.

3. Results
3.1. Modeling Parameters

All DNS cases consider a single droplet moving on a chemically heterogeneous in-
clined surface, in a setup that is illustrated in Figure 1. As mentioned in Section 2, the
computational domain is a 1 × 1 × 1 box, with the solid surface at the bottom and open
boundaries everywhere else. An initially hemispherical droplet of radius 0.125 was placed
with the center of its contact line at some random location (xc, yc) towards the middle upper
half of the domain, where xc ∈ [0.45, 0.55] and yc ∈ [0.2, 0.25]. The gravity field was given
by g = g(sin αiŷ − cos αi ẑ), where ŷ and ẑ are the unit vectors along the y- and z-directions,
and αi ∈ [0, 80◦]. The density and viscosity ratios between the two fluids are set to 0.1.
Considering the scales introduced in Section 2.1, the adopted values for the dimensionless
groups are Re = 0.1, Ca = 10 and Bo ∈ [0, 5], where the Bond number varies randomly to
produce different values for g. These dimensionless groups were selected instead of the
arguably more physical choice of employing droplet-based dimensionless groups using,
e.g., the initial droplet radius and the contact line velocity as the length and velocity scales,
leading to Red, Cad, and Bod, because the contact line velocity is not available a priori.
Scrutinizing the simulations, a typical contact line velocity is in the order of 0.01, leading to
droplet-based dimensionless groups in the order of Red ∼ 10−3, Cad ∼ 0.1 and Bod ≲ 0.1.
Considering the small Cad and Bod values, it is expected that the droplets will assume
weakly perturbed spherical cap shapes as they slide on the inclined surface, such that the
approximate contact angle model in Equation (A16) can provide reliable estimates.

The bottom surface assumes heterogeneity profiles generated by the multiparameter
function

Θ(x, y) = π/2 + p1 tanh
[
p2 cos

(
p3(x̃ sin p5 + ỹ cos p5)

)
cos
(

p4 x̃
)]

, (9)

where x̃ = x cos p6 − y sin p6 and ỹ = x sin p6 + y cos p6. Parameters p1, . . . , p6 are uni-
formly distributed random numbers within the ranges,

p1 ∈ [0, π/36], p2 ∈ [−5, 5], p3, p4 ∈ [0, 20], p5 ∈ [−π/2,+π/2], p6 ∈ [−π,+π].

A similar function was also adopted in our previous study [45], validating that the rich
distribution of heterogeneity profiles enhances the diversity of the training samples that
will be subsequently used for the data-driven model training.

As mentioned in Section 2.1, the simulations were carried out with Basilisk, using a
Courant–Friedrichs–Lewy (CFL) criterion of CFL = 0.8, and an adaptive Cartesian grid that
is dynamically modified in the visinity of the two-fluid interface. More specifically, the
grid is locally refined or coarsened in an octree structure, by monitoring the discretisation
error of the indicator function C, as estimated by wavelet transforms. The present study
adopted maximum and minimum grid spacing values of ∆xmax = 2−5 and ∆xmin = 2−8

respectively. To verify the accuracy of the solutions with such a grid, Figure 2 shows a
comparison against a higher resolution grid with ∆xmax = 2−6 and ∆xmin = 2−9. Even
though the higher resolution simulations used 4 times more CPU cores, the wall time was
approximately 6 times longer compared to the lower resolution simulations. Nonetheless,
the final solutions predicted with the two different grids are in satisfactory agreement,
with an error based on the Fréchet distance of 4.8% after 60 dimensionless time units. This
small deviation highlights the fact that, with ∆xmax = 2−5 and ∆xmin = 2−8 the available
computational resources can be efficiently utilised to generate a significant sample size,
without a considerable adverse effect on the solution accuracy.
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Figure 2. Comparison between coarse simulations on an adaptive Cartesian grid with ∆xmax = 2−5

and ∆xmin = 2−8 (red dashed lines) and finer simulations with ∆xmax = 2−6 and ∆xmin = 2−9 (black
lines), at different time instances. The errors based on the Fréchet distance are 2.4% at t = 30 and
4.8% at t = 60. The background shading describes the heterogeneity profile on the substrate.

Overall, 160 DNS cases were carried out for an average duration of 50 dimension-
less time units. Cases that either reached the domain boundaries or got pinned on the
heterogeneity patterns were ended prematurely, while cases that still exhibited droplet
movement far from the boundaries were run beyond 50 time units. These simulations
provided over 80,000 snapshots, taken at intervals of 0.1 dimensionless time units, to be
used as training and testing samples. Each snapshot was post-processed to extract the
contact lines and parametrise them in terms of 128 uniformly distributed points along the
azimuthal direction ϕ. These contact line profiles were subsequently used to calculate:
(i) the velocities normal to the contact line uDNS

cl (ϕ, t) using finite differences, (ii) the local
contact angles along the contact line from Equation (9), i.e., ϑ∗(ϕ, t) = Θ(xcl(ϕ, t), ycl(ϕ, t)),
and (iii) the apparent contact angles ϑ(ϕ, t) from Equation (A16). Overall, each sample
(corresponding to a snapshot in time) comprised of

• input data: [ϑ∗(ϕ), ϑ(ϕ), g sin αi sin ϕ], where the last term corresponds to the compo-
nent of the acceleration of gravity on the xy-plane which is approximately normal to
the contact line, and

• target data: uDNS
cl (ϕ)− uCOX

cl (ϕ)

In total, 64,000 samples were used for training (i.e., 80% of the total sample size)
and the remaining 16,000 for testing. The training lasted for 500 epochs, adopting a
Rectified Linear Unit (ReLU) as the activation function, a batch size of 20 samples, and
an initial learning rate of 10−3, which was halved every 50 epochs. Taking advantage of
the use of Fourier transforms, the trained model was structured to retain only the first
Fourier harmonic which can be interpreted as providing corrections to Cox’s reduced
order model only for the translation motion of the droplet, as opposed to local spreading
which is expected to be captured by Cox’s model fairly accurately. The remaining FNO
hyperparameters, i.e., the width w of the channel space after the application of the lifting
operator P , and the number of Fourier layers FL, were tuned after a series of preliminary
experiments, considering values w = {32, 64, 128, 256} and FL = {1, 2, 4, 8}. Table 1
presents the testing errors Etest for all these preliminary trained models, revealing that
the values w = 64 and FL = 8, lead to the best performing model, with 173,121 learning
parameters, requiring approximately 20 h of training on a A100 Nvidia GPU. As expected,
increasing the number of Fourier layers increases the expressiveness of the trained models,
up to FL = 8. Conversely, increasing the width of the channel space did not appreciably
impact model performance, mainly because the width of the channel space of the input is
already quite narrow and raising it to w = 32 or 64 provides enough channel space width
to facilitate the learning process. With these choices, the network balances expressiveness
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and generalizability, while safeguarding against overfitting. Adopting the best performing
set of hyperparameters, Figure 3 shows the evolution of the training and testing errors
as a function of the training epochs, considering two different sample sizes. The final
testing error for the smaller sample size is 16.4%, approximately 1.5% larger than the larger
sample size. This observation suggests that further increasing the sample size will only
have a small impact on the model accuracy. Admittedly, such testing errors may appear
relatively large in the context of data-driven surrogate models. Nonetheless, the role of
this data-driven model is to correcting an existing reduced-order model which, in some
cases, provides predictions that are close to the target solution, with very small correction
margins and, therefore, large relative errors.

Table 1. Test errors for the different FNO-related hyper-parameters, namely the width w of the
channel space after the application of the lifting operator P , and the number of Fourier layers FL.
The lowest testing error is highlighted with gray background.

w FL = 1 FL = 2 FL = 4 FL = 8

32 0.203 0.183 0.164 0.153
64 0.203 0.182 0.165 0.149

128 0.204 0.174 0.164 0.151
256 0.205 0.169 0.163 0.152

0 100 200 300 400 500
0.1

0.2

0.4

0.6

0.8
1.0

epoch

𝐸

𝑁train = 64, 000
𝑁test = 16, 000
𝑁train = 32, 000
𝑁test = 8000

Figure 3. Training and testing errors as a function of the number of epochs. Two different sample sizes
are considered, with Ntot = 40,000 (red lines; Ntrain = 32,000 and Ntest = 8000) and Ntot = 80,000
(black lines; Ntrain = 64,000 and Ntest = 16,000). Dashed and solid curves show the training errors
Etrain and testing errors Etest, respectively.

Figure 4, shows the velocity contributions from the reduced-order model and the
data-driven model, as well as a comparison between the overall model prediction and the
reference DNS solutions for two cases, considering the same Bond number but different
inclination angles, specifically αi = 40◦ and 80◦ in Figures 4a and 4b respectively. As
clearly shown, in these two cases the reduced-order model cannot predict the large-scale
translational motion of the droplet, as explained in Section 2.3. This observation provided
the motivation to combine the reduced-order model, which describes the spreading motion
relatively accurately, with an AI model that focuses on the translational motion and does
not interfere with spreading. As expected, the reference contact line velocities in the
large inclination angle case are significantly larger than the small inclination angle case,
requiring the AI contribution to bridge the gap between reduced-order model and the DNS
solution. In both cases, the predictions of the overall model follow the DNS solution closely,
which can be used in a method-of-lines time integration procedure to predict the droplet
position in time. Within this framework, the whole numerical integration takes a few
seconds on a typical laptop computer, as opposed to days of runtime on high-performance
computing resources for the corresponding DNS run (approximately 2000 CPU hours per
run), amounting to a speedup of at least five orders of magnitude.
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Figure 4. Azimuthal distribution of different velocity components under (a) Bo = 5 and αi = 40◦,
and (b) Bo = 5 and αi = 80◦. The trajectory followed by the droplet and the heterogeneity profile
used in these cases are depicted in Figure 7a,c respectively. The distributions presented in this figure
correspond to t = 5. The predicted solution (red line) is calculated by summing the reduced order
model prediction (blue line) and the AI model prediction (red dashed line).

3.2. Tests

To assess the accuracy of the hybrid surrogate model in different wetting scenarios,
this section presents a series of test cases adopting heterogeneities that were not encoun-
tered during training. First, Figure 5 shows comparisons between the hybrid surrogate
model predictions and the corresponding DNS solutions for different heterogeneity pro-
files, considering αi = 60◦ and Bo = 5. Figure 5a uses a homogeneous profile with
Θ(x, y) = 80◦, while panels (b) and (c) of the same figure assume profiles that are de-
fined by specific parameter choices in Equation (9). For the homogeneous case, Cox’s
reduced-order model plays a minor role in the contact line velocity prediction since the
contact line quickly assumes a constant shape and the droplet descends with constant
speed throughout the simulation. Hence, to a large extend, the movement of the droplet is
described by the AI component of the hybrid model. The hybrid surrogate model results in
a 2.9% Fréchet-based error, which attests to the capability of the AI component to provide a
reliable estimation of the translation motion of the droplet, at least on simple homogeneous
substrates. In Figure 5b, the droplet experiences pinning and depinning states as it moves
over the horizontal striped features, altering the contact line shape and the apparent contact
angles, therefore the importance of Cox’s reduced-order model contribution is elevated.
Still, in this scenario the predictions of the hybrid surrogate model exhibit an error as low
as 4.8% compared to the reference DNS solution. Finally, Figure 5c exhibits a case where
the droplet is quickly pinned due to the configuration of the chemical heterogeneities, in
which case the hybrid surrogate model excellently reproduces the dynamics. It is worth
noting that in all cases presented in Figure 5, the trajectory of the centroid of the wetted
area is accurately reproduced by the hybrid surrogate model.

Figure 6 shows various droplet snapshots in time, for a wetting scenario with a more
intricate dynamical behavior, considering the same inclination angle and Bond number
as before. The presence of diagonal striped features influences the droplet descent on
the inclined substrate, where the centroid of the wetted area follows a curved trajectory.
Initially, the droplet shifts to the left until the contact line meets a more hydrophobic
stripe (darker shaded) at the left side of the bubble, somewhere between t = 10 and
20. Afterwards the droplet moves diagonally, following the stripes configuration until
t = 40–50, when the right part of the droplet lies completely on a more hydrophobic stripe.
At that point, the droplet movement aligns with the gravity force until it becomes diagonal
once again. This complicated movement, where the droplet is significantly influenced
by both the gravity force and the chemical heterogeneities, is accurately captured by the
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hybrid surrogate model, exhibiting an error of only 4.3%, compared to DNS solution at the
end of the simulation.

00.20.40.60.81.0

0

0.2

0.4

0.6

0.8

1.0

(a)

𝑦

00.20.40.60.81.0

(b)

00.20.40.60.81.0

(c)

Figure 5. Comparisons between the predictions of the hybrid surrogate model (red lines) and DNS
solutions (semi-transparent blue regions) at the final time step of the simulations t f = 60. The initial
conditions are also shown, centered approximately around (0.5, 0.2). The trajectories of the centroid
of the wetted area are shown with black and red-dashed lines for the DNS and the hybrid surrogate
model solutions respectively. The heterogeneity profile in (a) assumes a uniform value of 80◦. The
heterogeneity profiles in all other figures are described by Equation (9), with specific parameters,
{p1, . . . , p6} = (b) {π/36, 5, 10, 0, 0, 0}, and (c) {π/36, 5, 10, 10, 0, 0}. In all cases αi = 60◦ and Bo = 5.
The errors based on the Fréchet distance are (a) 2.9%, (b) 4.8%, and (c) 1.1%. The background follows
the same shading convention as Figure 2.

To quantify the sensitivity of the hybrid surrogate model on the characteristics of
the gravity force, Figure 7 shows comparisons against DNS solutions for different values
of the inclination angle and the Bond number. As expected, keeping a constant Bond
number value of Bo = 5 and increasing the inclination angle (panels (a)–(c)) increases the
distance travelled by the droplet within the 80 time units considered for the simulation.
Similar to Figure 6, the centroid follows a curved trajectory, guiding the droplet towards
the left side, in accordance to the structure of the chemical heterogeneities. Quantifying
the agreement between predicted and reference solutions, the errors based on the Fréchet
distance increase from 8.2% at αi = 40◦ to 16.6% at αi = 60◦ and remain relatively unaffected
to 14.1% at αi = 80◦. Furthermore, Figure 7d–f shows cases considering a fixed inclination
angle αi = 60◦ and a varying Bond number. For the lowest Bond number, the droplet
barely moves and soon gets pinned on the heterogeneity features. By increasing the
Bond number, the droplet is able to overcome the heterogeneity barriers and induce a
downhill sliding motion, with a corresponding increase of the Fréchet-based error, noting a
maximum error of 25.6% for the largest Bond number considered. A major reason behind
this significant error is the that Bo = 8 is outside the Bond number ranges used to train this
model and, therefore, the data-driven model is trying to extrapolate beyond the training
distribution. Another source of error is that the increasing Bond number can be thought
of as an equivalent increase in g, something that influences the three-dimensional droplet
shape and has an impact on the assumption of a weakly perturbed spherical cap used to
develop the approximate contact angle model in Equation (A16). Overall, the errors of
the hybrid surrogate model increase with increasing inclination angle and Bond numbers,
while the model exhibits a satisfactory performance as long as the adopted parameters are
within the ranges considered during training.
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Figure 6. Similar to Figure 5, with different panels (a–f) corresponding to different time instances
t = 10–60 with an increment of 10 time units. The heterogeneity profile adopted is described by
Equation (9), with specific parameters, {p1, . . . , p6} = {π/36, 2, 0, 10, 0,−π/6}. The error based on
the Fréchet distance at the final time is 4.3%.

It should be noted that in the process of reducing the model complexity through ana-
lytically derived and AI-based approaches, each component of the hybrid model inevitably
introduces sources of error. First, even though Cox’s theory is based on rigorous physical
arguments, the performance of this reduced-order model is affected in the case of highly
heterogeneous features due to the simplifying assumptions that have been invoked in its
derivation. Moreover, in the present study, the apparent contact angle required in Cox’s
reduced-order model is provided by an approximate model, whose accuracy becomes more
limited for strongly deformed contact lines (see Appendix A). Furthermore, we saw that the
data-driven model essentially introduces the effects of gravity through the first harmonic
of the contact line velocity. While this approach was proven to be effective when coupled to
the analytical model and stable during the temporal integration of the contact line velocity,
we note that it disregards the influence of gravity on the higher-order harmonics of the
contact line velocity, introducing further errors to the workflow. However, despite the
intricate interplay that may exist between all these sources of error, the results herein
presented demonstrate that the model is able to approximate the DNS solutions reasonably
well, even for wetting scenarios that were not encountered during training.
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Figure 7. Similar to Figure 5, with different panels corresponding to different values of the inclination
angle αi and Bond number Bo. The comparison is documented at t = 80, except panel (f) where t = 40
is used. The heterogeneity profile adopted is described by Equation (9), with specific parameters,
{p1, . . . , p6} = {π/72, 2, 5, 10, π/4, π/3}. The errors based on the Fréchet distance are (a) 8.2%,
(b) 16.6%, (c) 14.1%, (d) 5.1%, (e) 7.6%, and (f) 25.6%.

4. Conclusions

In this study, a new approach was proposed to model droplet dynamics on inclined,
chemically heterogeneous surfaces, a type of process that, up to this point, could only be
simulated through DNS. The proposed approach is a hybrid surrogate model for the contact
line velocity, comprising of both analytically derived reduced-order model and data-driven
components. The reduced-order model by Cox, coupled to a developed approximate model
for the apparent contact angle, is able to model the effects of the chemical heterogeneities,
but it does not include the effects of gravity. To complement the reduced-order model,
the data-driven component was trained to capture the effects of gravity by modeling the
large-scale translation motion of the droplet, using DNS datasets. In this way, the hybrid
surrogate model is able to extend the applicability of the reduced-order model by Cox to
gravity-driven droplet scenarios. As the hybrid surrogate model predicts the contact line
velocities, the predictions are integrated in time (similar to an ODE solver) to simulate the
droplet movement much more efficiently compared to the corresponding DNS.

To assess the performance of the hybrid surrogate model a number of different wetting
scenarios were considered. The model was found to accurately capture the droplet move-
ment on different heterogeneity profiles that are within the distribution used during the
training phase. Nonetheless, the hybrid model exhibited increased errors as the inclination
angle and the Bond number increased, but a reasonable agreement was observed as long as
the model did not extrapolated to scenarios that were outside the training distribution.
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As with all data-driven methods, an inherent challenge in developing such models
is the computational cost associated with generating data and training the models. In
our study, the parameters of the physical problem were chosen to keep the cost of each
simulation at reasonable levels in order to facilitate the generation of a sufficiently large
dataset. Adopting more realistic density and viscosity ratios would certainly increase the
resolution requirements of the DNS runs, with a significant increase of the computational
resources required per simulation. In practice, such added cost is likely to be compensated if
the trained model is to be repeatedly utilized (e.g., during the design process of customized
heterogeneous substrates for specific applications), as it is orders of magnitudes faster than
a typical CFD solution.

This approach can be further refined to improve its accuracy and generalizability in the
near future. For example, the approximate model for the calculation of the apparent contact
angle can be replaced by the full calculation of the Young–Laplace equation (e.g., by using
Surface Evolver [63]), but doing so is likely to add a substantial computational overhead.
In a similar manner, we may separately improve the current contact angle approximation
with an another data-driven model in order to better match the Young–Laplace solution.
The improved hybrid surrogate model can then be extended to other settings of specific
engineering interest. As an example, incorporating phase change dynamics in the form of
evaporation and condensation, can prove beneficial in a range of industrial applications
such as desalination [64], water harvesting [65], biomedical applications [66], printing,
coating and cooling [67], among others.

In closing, it is emphasized that the present approach may be applied in other contexts
beyond wetting hydrodynamics as long as a sufficiently accurate low-order surrogate
model is available by other means, to improve upon or to extend its range of applicability.
The present study also demonstrates that by utilizing such hybrid models that are able to
encode at least part of the underlying physics, we may generally anticipate that smaller
datasets will suffice in producing data-driven models that exhibit better generalizability
properties than data-driven models that are based solely on simulation data.
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Abbreviations
The following abbreviations are used in this manuscript:

ReLU rectified linear unit
PDE partial differential equation
ODE ordinary differential equation
CFD computational fluid dynamics
DNS direct numerical simulations
FNO Fourier neural operator
CFL Courant–Friedrichs–Lewy
AI artificial intelligence

Appendix A. Derivation of an Approximation to the Apparent Angle

Assume a droplet of volume v that rests on a horizontal surface that is pinned along a
nearly circular contact line and in the absence of gravity. Its free surface is described by
F(r, θ, ϕ) = 0 as a perturbation from a spherical cap of radius a, namely

F(r, θ, ϕ) = r − f (θ, ϕ) = 0, with f (θ, ϕ) = a + ϵ f̃ (θ, ϕ), (A1)

which is cast in the spherical coordinate system (r, θ, ϕ). Here, r is the radial distance,
0 ≤ θ ≤ π is the polar angle and 0 ≤ ϕ < 2π the azimuthal angle. The parameter
ϵ ≪ 1 is treated as an order parameter for the purpose of developing the perturbative
scheme to determine the function f̃ (θ, ϕ), which is then set to unity with the understanding
the smallness of ϵ is absorbed in f̃ itself. The perturbation expansion is applied to the
Young–Laplace equation, which reads (in dimensionless units)

∇ · n̂ = p0, (A2)

where n̂ = ∇F/|∇F| is the unit outward normal and p0 is a dimensionless pressure
scaled by surface tension, which is determined by the volume of the droplet. Plugging
Equation (A1) in Equation (A2), and matching powers of ϵ, O(1) terms require p0 = 2/a,
whereas O(ϵ) terms require that f̃ satisfies

2 f̃ +
∂2 f̃
∂θ2 + cot θ

∂ f̃
∂θ

+
1

sin2 θ

∂2 f̃
∂ϕ2 = 0. (A3)

This is a linear partial differential equation, and its solution may be obtained via separation
of variables in terms of the following eigenfunction expansion

f̃ (θ, ϕ) = ∑
m

′
am tanm θ

2
(cos θ + m)eimϕ, (A4)

where am are complex coefficients to be determined. Here the summation with a prime
is taken for m ≥ 1 and with its imaginary part discarded, so that f̃ captures only non-
spherically symmetric perturbations. Determining the leading radius a and the constants
am requires imposing the associated boundary conditions. These require that the the
droplet rests on the plane lifted by a distance ℓ from the origin along the vertical axis. The
plane intersects F(r, θ, ϕ) = 0 along the curve of the contact line, whose representation in
spherical coordinates is parametrized in terms of ϕ so that ( f (θc(ϕ), ϕ), θc(ϕ), ϕ). Thus, θc,
ℓ and f and the contact line shape R(ϕ) are related through (see Figure A1)

f (θc(ϕ), ϕ) sin θc(ϕ) = R(ϕ) (A5)

f (θc(ϕ), ϕ) cos θc(ϕ) = ℓ, (A6)
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where both R(ϕ) and θc(ϕ) are assumed to be constant at leading order in ϵ, so that

R(ϕ) = c0 + ϵ ∑
m

′
cmeimϕ (A7)

and θc = θ̄c + ϵθ̃c. Combining the latter with Equation (A6), and matching O(1) and O(ϵ)
terms gives

cos θ̄c =
ℓ

a
, (A8)

and

θ̃c =
cot θ̄c

a ∑
m

′
am tanm θ̄c

2
(
cos θ̄c + m

)
eimϕ, (A9)

respectively. Likewise, substituting Equations (A7) and (A9) in Equation (A5), allows us to
obtain ℓ, a and am in terms of the contact line harmonics and θ̄c, namely

ℓ = c0 cot θ̄c, a =
c0

sin θ̄c
, am =

cm sin θ̄c

tanm θ̄c

2
(
cos θ̄c + m

) . (A10)

Hence, using Equation (A10), f̃ is specified in terms of the harmonics of the contact line
and θ̄c, which corresponds to the average apparent contact angle and it is the same as that of
a spherical cap of base radius c0, formed out of a sphere of radius a.

𝜃𝑐

𝑥

𝑦

𝑧

𝑅

𝓁
𝑓

𝜙

Figure A1. Schematic of a droplet of a nearly circular contact line resting on a plane, which is
lifted by a distance ℓ along the vertical axis. The surface of the droplet is described by r = f (θ, ϕ);
the position vector in spherical coordinates of a point along the contact line, R(ϕ), is given by
( f (θc(ϕ), ϕ), θc(ϕ), ϕ).

To determine θ̄c, we consider the volume of the droplet, which satisfies

v =
πc3

0

3 sin3 θ̄c

(
1 − cos θ̄c

)2(2 + cos θ̄c
)
+ O(ϵ2). (A11)

In order to determine θ̄c for given c0 and v, we write the right-hand-side of Equation (A11)
in terms of tan(θ̄c/2)

6v
πc3

0
= tan

θ̄c

2

(
3 + tan2 θ̄c

2

)
. (A12)

We observe that tan(θ̄c/2) satisfies a depressed cubic equation. Its only physically relevant
solution may be obtained explicitly resulting into a closed form expression for θ̄c,

θ̄c = 2 arctan

[
2 sinh

(
1
3

arcsinh
3v

πc3
0

)]
. (A13)
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The derivation of the approximation to the apparent contact angle, ϑ, follows from

cos ϑ = n̂ · ẑ = cos θc − sin θcnθ , (A14)

where nθ = −ϵc−1
0 ∂ f̃ /∂θ + O(ϵ2) is the θ-component of n̂. Since θc = θ̄c + ϵθ̃c, ϑ may be

cast as

ϑ = θ̄c + ϵ

(
θ̃c −

1
c0

∂ f̃
∂θ

(θ̄c, ϕ)

)
+ O(ϵ2). (A15)

By evaluating this expression, the following approximation to the apparent contact angle
may be obtained, which retains the linear terms in the non-axisymmetric components of
the contact line,

ϑ ≈ θ̄c + ∑
m

′ cm

c0

(
sin2 θ̄c

m + cos θ̄c
+ cos θ̄c sin θ̄c − m

)
eimϕ, (A16)

where we set ϵ = 1 assuming that its smallness is absorbed within the smallness of the ratios
cm/c0. It should be noted that the denominator m + cos θ̄c can become zero only when we
simultaneously have m = 1 and cos θ̄c ≡ −1, namely for non-wetting droplets, where the
radius of the contact line diminishes.The approximation in Equation (A16) also reveals its
limits of applicability; in the large-m limit, the correction is dominated by the mcmeimϕ/c0
terms, which scale with the derivative of R−1∂R/∂ϕ. Hence, for this approximation to hold,
in addition to having nearly circular contact lines |cm| ≪ |c0|, we must also have weakly
varying ones, i.e., we must have m|cm| ≪ |c0|.

Figure A2 shows comparisons between the approximate contact angle calculated by
Equation (A16) and reference solutions obtained using the surface evolver (SE) [63]. SE is a
code that calculates the minimal energy surfaces in the presence of constraints and other
physical effects such as gravity. It therefore provides an accurate estimation of the apparent
contact angle, at a computational cost that is much larger compared to the approximate
contact angle calculated by Equation (A16). Considering different contact line shapes of the
form r = 1+w1 sin(m1ϕ)+w2 cos(m2ϕ), the figure clearly shows that the approximation is
not only affected by the amplitude of the perturbation (w1 and w2), but also its wavenumber
(m1 and m2). This deviation is quantified in Figure A3, where the mean absolute error and
mean relative error (considering a mean contact angle of 90◦) are presented in terms of the
perturbation amplitude and wavenumber, where w1 = w2 = w and m1 = m2 = m.
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Figure A2. Comparison between the contact angle approximation given by Equation (A16) and
reference results obtained by Surface Evolver (SE) [63], considering a droplet of dimensionless volume
v = 2π/3 and contact line shapes of the form r = 1 + w1 sin(m1ϕ) + w2 cos(m2ϕ). (a) w1 = 0.15,
w2 = 0.1, m1 = 2 and m2 = 3, with a mean absolute error of 1.8◦. (b) w1 = w2 = 0.1, m1 = 7 and
m2 = 5, with a mean absolute error of 4.4◦.
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Figure A3. Mean absolute and relative errors as a function of the wavenumber m, for different
amplitudes w, considering droplets of dimensionless volume v = 2π/3 and contact line shapes of
the form r = 1 + w sin(mϕ) + w cos(mϕ).
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