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Abstract: Piezoelectric-actuated precision positioning stages are widely used in high-precision instru-
ments and high-end equipment due to their advantages of high resolution, fast response, and compact
size. However, due to the strong nonlinearity of hysteresis, the presence of hysteresis in piezoelectric
actuators seriously affects the positioning accuracy of the system. In addition, it is challenging to
identify the model parameters for hysteresis. In this paper, an adaptive backstepping time delay
control method is proposed for piezoelectric devices system with unknown hysteresis. Firstly, the
Bouc–Wen model is used to describe the hysteresis characteristics, and the model is interpreted as a
linear term and a bounded uncertain hysteresis term. Then, the time delay estimation technique is
used to estimate the hysteresis term of the Bouc–Wen model online, and the unknown parameters of
the system and hysteresis model are obtained through adaptive updating laws. Furthermore, the
stability of the control scheme is proved based on Lyapunov stability theory. Finally, the effectiveness
and superiority of the proposed control scheme are demonstrated by comparing it with two typical
hysteresis compensation control algorithms through three different sets of input signals.

Keywords: hysteresis; precision positioning stage; time delay control; adaptive control; backstepping
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1. Introduction

Actuators and sensors made from smart materials (such as piezoelectric ceramics,
magnetostriction, and shape memory alloys) are widely used in mechatronic systems
like precision instruments and high-end equipment due to their high-resolution and fast-
response characteristics. Applications include piezoelectric precision positioning mech-
anisms [1], atomic force microscopes [2], piezoelectric valves [3], and rapid tool servo
systems [4]. However, the hysteresis present in smart materials often severely degrades
the performance of mechatronic systems and can even lead to system instability [5]. More-
over, compared with traditional nonlinearities, the multivalued mapping [6], memory
effects [5], and rate-dependency [7] make its modeling and control exceptionally challeng-
ing.Therefore, over the past thirty years, the problem of modeling hysteresis characteristics
and their compensation control has attracted the attention of many scholars [8]. In the
aspect of hysteresis modeling, there are currently three main methods. The first is the
physical modeling approach, which includes the Jiles–Atherton model [9], Maxwell-slip
model [10], etc.; the second is the phenomenological modeling approach, which includes
the Bouc–Wen model [11], Preisach model [12], Prandtl–Ishlinskii model [13], etc.; the last
one is the computational intelligence-based intelligent modeling approach, which mainly
includes neural network models, fuzzy tree models [14], etc. Overall, although there
are several modeling methods for hysteresis, due to its strong nonlinear characteristics,
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modeling and parameter identification remain challenging issues. Therefore, consider-
ing situations where the hysteresis parameters are unknown and designing appropriate
controllers become important.

Based on the establishment of the hysteresis model, the compensation control of
systems with hysteresis has gradually become a hot topic in the field of nonlinear control
and has achieved a lot of results [15–19]. Roughly speaking, there are three main methods
of hysteresis compensation control, one is feedforward compensation control, the second is
feedback compensation control, and the last is feedback–feedforward compensation control.

Feedforward compensation control is a very effective and low-cost hysteresis compensa-
tion control method. After Krejci and Kuhnen [15] gave the analytical inverse of the classical
Prandtl–Ishlinskii (P-I) model for the first time, it greatly promoted the popularization and
application of this method. However, due to its open-loop mode, it depends entirely on the
accuracy of the model and is sensitive to external disturbances and model uncertainties.

The feedback compensation control method does not need to construct a hysteresis
inverse model or an approximate inverse model but treats the whole hysteresis or the
nonlinear part of the hysteresis as a disturbance or an uncertainty. Therefore, the ex-
isting control theory and methods can be directly used to design feedback controllers.
For example, Ikhouane [16] decomposed the Bouc–Wen hysteresis into a linear term and a
nonlinear hysteresis term, and for the first time theoretically proved the boundedness of
the Bouc–Wen nonlinear hysteresis term. This allows the nonlinear hysteresis term to be
treated as a bounded disturbance, enabling the design of a feedback controller. Zhang [17]
addressed a class of nonlinear systems with unknown hysteresis driving by treating the
nonlinear term of Bouc–Wen hysteresis as a bounded disturbance and designed a hysteresis
compensation controller using an adaptive approach. Zheng [18] proposed a high-gain
feedback controller to eliminate the effects of hysteresis. A continuous high-order sliding
mode controller was proposed to eliminate the hysteresis disturbance, and the closed-
loop stability of the control system was proved theoretically [19]. In [20], hysteresis is
decomposed into a linear term and a bounded nonlinear term, and then the bounded
nonlinear term is estimated online by the adaptive controller. In [13], a continuous P-I
hysteretic model is decomposed into a discrete P-I model and a small bounded error term.
Then, an adaptive inverse is used to eliminate the effect of the discrete hysteresis, and the
bounded error term is compensated by an online estimation technique. Although the
feedback control method does not require the construction of a hysteresis inverse model,
and treating the nonlinear hysteresis term merely as a disturbance, the design of the feed-
back controller cannot adopt excessively high gains to suppress these factors, especially
when the hysteresis characteristic is particularly severe (for example, under high-frequency
input, the hysteresis characteristic is significantly more severe than at low frequencies).

The feedback–feedforward compensation control method [21] is to construct an inverse
model in the feedforward channel to eliminate the influence of hysteresis and design a
controller in the feedback channel to further improve the performance of systems. Chen [22]
proposed a pseudo-inverse algorithm to obtain the inverse model of P-I hysteresis to solve
the difficulty of obtaining an analytical inversion and designed an adaptive feedback
control to further improve the system performance. Fan [23] established a direct inverse of
the rate-dependent P-I hysteresis model, and designed a PI controller with a disturbance
observer, thus constructing a hybrid feedback–feedforward control algorithm to eliminate
the effect of hysteresis. Although the feedback–feedforward control method can effectively
improve the system bandwidth and control accuracy to a certain extent, the construction of
the complex hysteresis inverse model itself is a difficult thing.

Time delay control [24] was first proposed in the 1990s. Its primary concept is to
estimate the unknown dynamic characteristics and disturbances at the current moment
by using information from a very short period (artificially introduced delay time) prior to
the system’s state and its derivatives. In principle, as long as the delay time is sufficiently
short and the unknown dynamic characteristics are continuous, the estimation error can
be minimal and sometimes even negligible. Due to its clear principles and simple imple-
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mentation, time delay control has been widely applied in the design of control systems for
electric motors and industrial robots in recent years [25–27].

To sum up, how to solve the unknown parameters of the hysteresis model, and pro-
pose a compensation control method that does not require the construction of an inverse
hysteresis model such that the control method is relatively easy to implement in engineer-
ing, is still an urgent problem to be solved in hysteresis compensation control research.
This is also the starting point of this paper.

The Bouc–Wen model is a widely used hysteresis model, especially after [16] theo-
retically proved the boundedness of its nonlinear hysteresis term, which has increasingly
drawn attention to its application in control systems. Focusing on a class of piezoelectric
device electromechanical systems driven by unknown Bouc–Wen hysteresis, this paper
proposes a novel hysteresis compensation feedback control strategy based on time delay
estimation technology. This control method uses time delay estimation to online estimate
the hysteresis nonlinearity of the Bouc–Wen model, while the estimation errors introduced
by the time delay estimator are compensated through adaptive laws, thereby further
improving the control performance of the system. Subsequently, based on the adaptive
backstepping technique, the adaptive and control laws for the system and unknown hys-
teresis parameters are designed. Finally, simulation results are given to demonstrate the
effectiveness of the proposed scheme.

The main contributions of this paper can be summarized as follows:
(1) The adaptive backstepping time delay control strategy proposed in this paper

does not require the construction of a hysteresis inverse model compared to feedforward
hysteresis compensation control and feedback–feedforward hysteresis control strategies;
unlike [16], which treats the Bouc–Wen nonlinear hysteresis term as a disturbance, the con-
trol strategy presented here employs time delay estimation technology to online estimate
the hysteresis nonlinearity and incorporates it into the controller design, rather than merely
considering it a bounded disturbance.

(2) The controlled system and hysteresis parameters considered in this paper are
unknown, and the controller design requires only one hysteresis parameter, thus making
the control strategy widely applicable and simple to implement.

(3) A time delay estimator is used to estimate the nonlinear part of the complex
hysteresis, which not only overcomes the difficulty of hysteresis compensation but also
is easier to implement in practice compared with the hysteresis inverse compensation
control schemes.

The rest of this paper is organized as follows. The problem to be tackled is stated,
and the control objective is given in Section 2. In Section 3, the controller design pro-
cess is given, and the semi-globally uniformly boundedness of the closed-loop system is
proved. In Section 4, the simulation results are presented. Conclusions are finally provided
in Section 5.

2. Problem Statement

Consider a class of electromechanical systems with hysteresis driving for piezoelectric
devices as presented in [28,29]:{

Mẍ + Dẋ + Fx = w,
w = H[u](t)

(1)

where x, ẋ, and ẍ represent the position, velocity, and acceleration, respectively; M, D, and F
denote the mass, damping, and stiffness coefficients, respectively; u is the voltage applied
to the piezoelectric actuator; and H[u](t) is the Bouc–Wen hysteresis, and its parameters
are unknown. H[u](t) can be expressed as in [16]:

w = H[u](t) = µκu + (1 − µ)κϑ = µ1u + µ2ϑ (2)
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where 0 < µ < 1 represents the weighting factor, κ is a parameter associated with the
nonlinear pseudo-natural frequency, µ1 and µ2 are constants of the same sign, and ϑ can be
expressed by a first-order differential equation [16] as follows:

ϑ̇ = u̇ − β|u̇||ϑ|n−1ϑ − χu̇|ϑ|n (3)

where β and χ are parameters that describe the shape and magnitude of the hysteresis,
respectively, while n is a parameter that controls the smoothness of the transition from the
initial slope to the asymptotic slope. It is given that β > x and n > 1. When the parameters
of the Bouc–Wen model are chosen as µ1 = 3, µ2 = 5, n = 2, β = 1, χ = 0.5, and the
input signal is u = 4 sin(2t), then the input–output relationship of the hysteresis is shown
in Figure 1.
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Figure 1. Bouc–Wen hysteresis model.

Below, two lemmas that will be used in subsequent controller designs are presented.
These lemmas have been proven in [16,30], respectively.

Lemma 1 ([16]). For piecewise continuous signals u and u̇ (bounded or unbounded), the solution

ϑ(t) of Equation (3) is bounded, with the bound given by |ϑ(t)| ≤ max{|ϑ(0)|, n
√

dx1
β+χ}, where

ϑ(0) is the initial value of ϑ.

Lemma 2 ([30]). For ε > 0 and z ∈ R, the following inequality holds:

0 ≤ |z| − z tanh(
z
ε
) ≤ kε (4)

where k is a constant that satisfies k = e−(k+1), that is, k = 0.2785.
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Remark 1. In general, the initial value of ϑ is taken as ϑ(0) = 0. According to Lemma 1, regardless
of whether the input of the hysteresis is bounded or unbounded, ϑ(t) is bounded. Therefore, in the
process of control design, the nonlinear term µ2ϑ of the Bouc–Wen hysteresis can be treated as a
bounded disturbance, which is crucial for the controller design.

The design objective of the controller presented in this paper is to design appropriate
adaptive laws and control laws such that the output displacement x of system (1) can track
the desired trajectory xd.

Assumption 1. In system (1), the velocity ẋ is measurable.

Assumption 2. The desired trajectory xd and its first and second derivatives are known and bounded.

3. Controller Design

From Assumption 1, and by substituting Equation (2) into system (1), Equation (1) can
be rewritten as: {

ẋ1 = x2,
Mẋ2 = µ1u + Γ − Dx2 − Fx1

(5)

where x1 = x, x2 = ẋ, Γ = µ2ϑ.
Based on the backstepping design methodology, the process of designing an adaptive

backstepping time delay controller is as follows.
Step 1 Since the control objective is a tracking problem, we first define the generalized

tracking error

z1 = x1 − xd. (6)

Then, taking the derivative of Equation (6), we obtain

ż1 = x2 − ẋd. (7)

From (7), it is known that x2 can be regarded as a virtual control input, and the virtual
control law is designed as

α1 = −c1z1 + ẋd (8)

where c1 is a positive parameter to be designed. Next, we define the error variable

z2 = x2 − α1. (9)

Therefore, from (6)–(9), we can derive:

z1ż1 = −c1z2
1 + z1z2. (10)

Step 2 From (5)–(9), we have:

Mż2 = Mẋ2 − Mα̇1

= µ1u + Γ − Dx2 − Fx1 − Mα̇1. (11)

The design of the adaptive backstepping time delay controller is as follows:{
u = ξ̂α2
α2 = −z1 − c2z2 − Γ̂ + D̂x2 + F̂x1 + M̂α̇1 − B̂tanh( z2

ε )
(12)

where c2 is a positive parameter to be designed, and ξ̂, Γ̂, D̂, F̂, and M̂ are estimates
of parameters 1

µ1
, Γ, D, F, and M, respectively. B̂ is an estimate of the bound of the
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time delay estimation error. And the bound of the time delay estimation error B will be
introduced below.

In the design of the controller, unlike traditional feedback hysteresis compensation
methods that treat the nonlinear term u2ϑ of the Bouc–Wen hysteresis as a bounded
disturbance, this paper employs time delay estimation techniques to online estimate the
nonlinear term of the hysteresis. Therefore, according to the principle of time delay
estimation, from Equations (1) and (5), we obtain:

Γ̂(t) = Γ(t − h)
= µ2ϑ2(t − h)
= Mẋ2(t − h) + Dx2(t − h) + Fx1(t − h)− µ1u(t − h)
= w(t − h)− µ1u(t − h)

(13)

where h represents a sufficiently small delay time. In practical implementation, h is gen-
erally set to the unit sampling time. It should be noted that both Γ and Γ̂ are functions of
time; they were not explicitly identified earlier for the sake of convenience and to maintain
a consistent style in the formulas. Where it would not lead to confusion, we have often
dropped the time argument (t) of variables. According to the principle of time delay control,
as long as h is sufficiently small, it follows that Γ(t) ∼= Γ(t − h) = Γ̂(t). However, unless h
is taken to be zero, there usually exists a time delay estimation error:

ed(t) = Γ(t)− Γ̂(t). (14)

Therefore, we use B to represent the bound of the time delay estimation error, that is,
|ed(t)| ≤ B.

Remark 2. According to Assumption 2, the desired state xd and its first and second derivatives
are known and bounded. This implies that the variables z1 and z2, which are typically used in
backstepping control system design, are also known and bounded. This is a prerequisite for the
successful design of the virtual controller and the overall control system.

Remark 3. From Lemma 1, we know that µ2ϑ2(t − h) is bounded; thus, it is reasonable for us to
assume that the time delay estimation error is bounded. Moreover, in practical execution, by taking
h as the unit sampling time, all values of the system from the previous sampling time are known.
Therefore, from (13), the time delay estimation Γ̂ can be calculated using the following method: if w
is measurable, then

Γ̂(t) = w(t − 1)− 1
ξ̂

u(t − 1). (15)

Otherwise, it can be calculated by the following equation:

Γ̂(t) = M̂ẋ2(t − 1) + D̂x2(t − 1) + F̂x1(t − 1)− 1
ξ̂

u(t − 1). (16)

The adaptive update law for the parameters is designed as follows:

˙̂ξ = −γξ(z2α2 + σξ ξ̂) (17)

˙̂D = −γD(z2x2 + σDD̂) (18)

˙̂F = −γF(z2x1 + σF F̂) (19)

˙̂M = −γM(z2α̇1 + σM M̂) (20)
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˙̂B = γB(z2tanh(
z2

ε
)− σB B̂) (21)

where ξ̃ = ξ − ξ̂, D̃ = D − D̂, F̃ = F − F̂, M̃ = M − M̂, B̃ = B − B̂, and γξ , γD, γF, γM, γB,
σξ , σD, σF, σM and σB are positive parameters to be designed.

We select the following Lyapunov function:

V =
1
2

z2
1 +

1
2

Mz2
2 +

µ1

2γξ
ξ̃2 +

1
2γD

D̃2 +
1

2γF
F̃2 +

1
2γM

M̃2 +
1

2γB
B̃2. (22)

Taking the time derivative of V and using Equations (10) and (11), we obtain

V̇ = −c1z2
1 + z1z2 + z2Mż2 − µ1

γξ
ξ̃ ˙̂ξ − 1

γD
D̃ ˙̂D

− 1
γF

F̃ ˙̂F − 1
γM

M̃ ˙̂M − 1
γB

B̃ ˙̂B

= −c1z2
1 + z1z2 + z2(µ1u + Γ̂ + ed − Dx2

−Fx1 − Mα̇1)− µ1
γξ

ξ̃ ˙̂ξ − 1
γD

D̃ ˙̂D

− 1
γF

F̃ ˙̂F − 1
γM

M̃ ˙̂M − 1
γB

B̃ ˙̂B.

(23)

Note the following fact:

µ1u = µ1ξ̂α2 = α2 − µ1ξ̃α2

z2ed ≤ |z2|B.

Substituting (12) into (23), we have

V̇ = −c1z2
1 − c2z2

2 + z2[−D̃x2 − F̃x1 − M̃α̇1]

+|z2|B − z2B̂tanh( z2
ε )− z2µ1ξ̃α2 − µ1

γξ
ξ̃ ˙̂ξ

− 1
γD

D̃ ˙̂D − 1
γF

F̃ ˙̂F − 1
γM

M̃ ˙̂M − 1
γB

B̃ ˙̂B

(24)

Substituting (17)–(21) into (24), we obtain

V̇ = −c1z2
1 − c2z2

2 + |z2|B − z2Btanh( z2
ε )

+σξ ξ̃ ξ̂ + σDD̃D̂ + σF F̃F̂

+σM M̃M̂ + σB B̃B̂

(25)

Note that

D̃D̂ = D̃(D − D̃) = D̃D − D̃2

D̃D ≤ 1
2 D̃2 + 1

2 F2

Therefore, the following inequality holds:

D̃D̂ ≤ −1
2

D̃2 +
1
2

D2 (26)
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Similarly, we have

F̃F̂ ≤ −1
2

F̃2 +
1
2

F2 (27)

M̃M̂ ≤ −1
2

M̃2 +
1
2

M2 (28)

B̃B̂ ≤ −1
2

B̃2 +
1
2

B2 (29)

ξ̃ ξ̂ ≤ −1
2

ξ̃2 +
1
2

ξ2 (30)

Applying Lemma 2 to (24) and substituting (4), (16)–(30) into (25), we obtain

V̇ ≤ −c1z2
1 − c2z2

2 −
1
2 ξ̃2 − 1

2 D̃2 − 1
2 F̃2 − 1

2 M̃2

− 1
2 B̃2 + 0.2785Bε + 1

2 ξ2 + 1
2 D2 + 1

2 F2

+ 1
2 M2 + 1

2 B2

≤ −cV + ζ

(31)

where

c = min(2c1, 2c2,
γξ

µ1
, γD, γF, γM, γB) (32)

ζ = 0.2785Bε + 1
2 ξ2 + 1

2 D2 + 1
2 F2

+ 1
2 M2 + 1

2 B2. (33)

Theorem 1. For system (1), where the hysteresis model is described by (2) and (3), under the
Assumptions 1 and 2, the adaptive backstepping time delay controller composed of the control law
(8) and (12), the adaptive update laws (17)–(21), and the time delay estimate (13) can ensure that
the closed-loop system is semi-globally uniformly bounded, all signals in the closed-loop system are
bounded, and the system tracking error z asymptotically converges to the following compact set:

Ω := {z1 ∈ R||z1| ≤
√

Z} (34)

where Z = 2(V(0) + ζ
c ), with c, ζ are given by (32) and (33).

The proof of this theorem is as follows. From Equation (31), we know that the closed-
loop system is semi-globally uniformly bounded, and the signals z1, z2, ξ̃, D̃, F̃, M̃, and B̃
are bounded. Therefore, the estimated signals ξ̂, D̂, F̂, M̂, B̂ are also bounded. Based on
Assumption 1 and Equation (5), the states x1, x2 are similarly bounded. Further, from
Equations (8) and (12), we can see that α1 and α2 are also bounded.

Next, we prove the convergence domain of z1. By multiplying both sides of
Equation (31) by ect, we have:

V̇ect ≤ −cVect + ζect. (35)

According to (35), we obtain

d
dt
(Vect) ≤ ζect. (36)

By integrating Equation (36), we obtain

V ≤ (V(0)− ζ

c
)e−ct +

ζ

c
≤ V(0) +

ζ

c
. (37)
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Regarding z1, it holds that

1
2

z2
1 ≤ V(0) +

ζ

c
. (38)

Therefore, from (38), we can derive

|z1| ≤
√

Z. (39)

where Z = 2(V(0) + ζ
c ). With this, the proof of Theorem 1 is complete.

Remark 4. Regarding the issue of parameter design in controllers, the following rules can be
followed: (1) The constants c1 and c2 in the virtual controllers can enhance the system’s static
performance, but excessively large values may cause system oscillation. It is necessary to make a
reasonable choice and strike a balance between static and dynamic performance as in [31]. (2) As
with other adaptive backstepping controls, the parameters in the adaptive update law (17)–(21) are
generally designed to be small. (3) For the time delay estimator (13), the smaller the value of h,
the better. In practical engineering, it is usually set to the sampling period of the control system.

4. Simulation Study

For the system shown in (1)–(3), the following nominal system parameters are chosen:
D = 0.15 Ns/m, M = 1 Kg, F = 1 M/m, µ1 = 2, µ2 = 3, n = 2, β = 1, χ = 0.5.
The initial state of the system is x(0) = 0.6. The desired trajectory for the control objective is
xd1 = 5sin(0.5πt). This simulation is conducted in a Matlab environment, with the control
law and adaptive update law parameters chosen as follows: c1 = 18, c2 = 12, γξ = 0.02,
γD = 0.02, γF = 0.02, γM = 0.02, γB = 0.015, σξ = 0.0049, σD = 0.01, σF = 0.01, σM = 0.01,
σB = 0.01, ε = 0.01. The initial states for the update law parameters are ξ(0) = 0.55,
D(0) = 0.2, F(0) = 1.2, M(0) = 0.8, and B(0) = 1. The estimated time delay for the time
delay estimate is h = 0.001.

To demonstrate the effectiveness of the proposed control strategy, a comparison is
made between the method presented in this paper and time delay-control-based con-
trol methods [25], as well as traditional hysteresis compensation control methods [32].
As shown in Figure 2, the system output tracking performance of the algorithm proposed
in this paper is given. Clearly, the system’s output can track the desired trajectory well.
From Figure 3, it can be seen that the control method proposed in this paper has a smaller
tracking error compared to the other two control methods. This demonstrates the supe-
riority of the proposed control method in reducing tracking errors, thereby proving its
effectiveness. Figure 4 shows the estimation of the hysteresis uncertainty term obtained
using the time delay estimation technique. Since the model parameters of the controlled ob-
ject are unknown, and the time delay estimator is derived from Equation (16), the estimator
will also have a response process. It takes about 0.15 s to achieve a better estimate. Figure 5
shows the input–output relationship of the Bouc–Wen hysteresis under steady-state condi-
tions when applying the algorithm proposed in this paper. It is apparent that the hysteresis
phenomenon is clearly present and remains essentially stable and unchanged during the
steady-state period.

To further validate the effectiveness of the adaptive backstepping time delay controller, this
paper also conducted simulation tests on the following two relatively complex desired input
trajectories: xd2 = 2sin(t) + 1.2cos(πt), xd3 = sin(t) + 0.6cos(πt) + 0.3cos(3πt) + 0.4cos(2πt).
The simulation results are shown in Figures 6–11. From Figures 6 and 9, it can be seen
that the proposed control method achieves good tracking performance for complex input
signals. This indicates that the control method possesses strong adaptability and maintains
good control performance when faced with complex inputs. As seen from Figures 7 and 10,
the tracking error of the control method presented herein shows a significant advantage
compared to the other two control methods. This demonstrates that the proposed method
is effective in reducing tracking errors and improving control precision. Figures 8 and 11
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illustrate the comparison between the time delay estimation values and the actual values. It
is clear that after a short transition period, the time delay estimator can accurately estimate
the uncertain part of the hysteresis, which is crucial for compensating for the hysteresis
phenomenon in control systems.

Overall, the summary of the simulation results is shown in Table 1. In Table 1, we list
the characteristics and control effects of three comparison algorithms. Clearly, the tracking
error of the controller proposed in this paper is the smallest, and it achieves the best control
performance. The results above lead to the conclusion that the proposed control method
is effective. This method can address the issue of compensation control for unknown
hysteresis, enhancing the control performance and precision of the system.

Table 1. Summary of simulation results (based on Figures 6–11).

Serial
Number

Control Method Control Characteristics Control Effect

1 Control method
in [25]

Using classic time delay estimation tech-
nique, no need to construct an inverse hys-
teresis model

Medium tracking
error

2 Control method
in [32]

Treating the hysteresis term as a distur-
bance, no need to construct an inverse hys-
teresis model

Maximum tracking
error

3 The proposed
method

Using time delay estimation technology
with error compensation; no need to con-
struct an inverse hysteresis model

Minimum tracking
error

Figure 2. System tracking performance (the desired trajectory is xd1).
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Figure 3. Tracking error of the comparative control strategies (the desired trajectory is xd1).

Figure 4. Estimation of hysteresis uncertainty term (the desired trajectory is xd1).
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Figure 5. Input–output relationship of the Bouc–Wen hysteresis model in steady state (the desired
trajectory is xd1).

Figure 6. System tracking performance (the desired trajectory is xd2).
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Figure 7. Tracking error of the comparative control strategies (the desired trajectory is xd2).

Figure 8. Estimation of hysteresis uncertainty term (the desired trajectory is xd2).
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Figure 9. System tracking performance (the desired trajectory is xd3).

Figure 10. Tracking error of the comparative control strategies (the desired trajectory is xd3).
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Figure 11. Estimation of hysteresis uncertainty term (the desired trajectory is xd3).

5. Conclusions

For a class of second-order piezoelectric devices with unknown system parameters
and hysteresis parameters, an adaptive control strategy based on time delay estimation
technology is proposed in this paper. The control method primarily addresses three issues.
Firstly, it achieves precise compensation control for hysteresis without the need to construct
an inverse model of the hysteresis. Secondly, it tackles the control problem when both
system parameters and hysteresis parameters are unknown, enhancing the adaptability of
the controller. Thirdly, the control method is easily implementable in engineering due to
the adoption of the mechanism of time delay estimation. Through simulations comparing
with two representative control algorithms under three different input signals, the results
demonstrate that the algorithm proposed in this paper has the smallest tracking error and
achieves the best control performance. This further validates the effectiveness, superiority,
and adaptability of the proposed control method.
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