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Abstract: Recently, the task of acquiring causal directed acyclic graphs (DAGs) from empirical data
has been modeled as an iterative process within the framework of continuous optimization with a
differentiable acyclicity characterization. However, learning DAGs from data is an NP-hard problem
since the DAG space increases super-exponentially with the number of variables. In this work, we
introduce the graph topological sorts in solving the continuous optimization problem, which is
substantially smaller than the DAG space and beneficial in avoiding local optima. Moreover, the
topological sorts space does not require consideration of acyclicity, which can significantly reduce
the computational cost. To further deal with the inherent asymmetries of DAGs, we investigate the
acyclicity characterization and propose a new DAGs learning optimization strategy based on QR
factorization, named DAGOR. First, using the matrix congruent transformation, the adjacency matrix
of the DAG is transformed into an upper triangular matrix with a topological sort. Next, using the QR
factorization as a basis, we construct a least-square penalty function as constraints for optimization in
the graph autoencoder framework. Numerical experiments are performed to further validate our
theoretical results and demonstrate the competitive performance of our method.

Keywords: causal structural learning; directed acyclic graph; topological sorts; QR factorization;
graph autoencoder

MSC: 62D20

1. Introduction

Causal directed acyclic graphs (DAGs) can effectively represent the inter-relationships
between variables, which providing a powerful tool for uncertainty inference systems.
In recent years, the research of DAGs has become a popular research area in artificial
intelligence and machine learning [1–3]. Also, DAGs have been successfully applied in
many fields such as social science [4,5], biomedicine [6,7] and economics [8,9]. Before
utilizing DAGs for causal inference and uncertainty reasoning, it is important to learn the
structure of DAGs from empirical data.

The domain of causal structure learning is broadly delineated into two principal cate-
gories, that constraint-based learning and score-based learning methodologies. Constraint-
based learning methods generally apply the conditional independence (CI) tests or mutual
information to identify dependence relationships between variables, and then build DAGs
that satisfy these interactions. Typical constraint-based algorithms include Peter–Clark
algorithm (PC) [10], Recursive Autonomy Identification (RAI) [11], Optimized Zero-First-
Order Super-Structure (Opt01SS) [12], and so on. However, the constraint-based DAGs
learning process is highly sensitive to test errors, and while one CI test is wrong it can
directly influence the results of subsequent tests.

Therefore, compared to constraint-based learning methods, score-based learning meth-
ods are currently in more widespread usage. The score-based learning methods address
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the structural learning problems as model selection programs, which consist of three
components: score function, search algorithm, and search space. The score function is
used to evaluate the likelihood of the candidate structure fitting the empirical data. The
search algorithm performs a searching strategy for the highest score structure in the can-
didate structures space and it adopts the heuristic search algorithm mostly. The search
space is generally divided into three kinds: space composed of DAGs, space composed of
DAG-equivalent class, and space composed of variable topological sorts. Traditional algo-
rithms derived from the combinatorial optimization programs include K2 algorithm [13],
Minimum Description Length and Evolutionary Programming (MDLEP) [14], PC-Particle
Swarm Optimization (PC-PSO) [15], etc.

Furthermore, researchers gradually introduce deep learning methods into score-based
DAGs learning, and transform the traditional combinatorial optimization problem into a
continuous optimization process [16,17]. Search algorithms have also changed from heuris-
tic search to deep generative model. This continuous optimization approach consists of
two components: acyclicity characterization and deep generative model. On the one hand,
the matrix acyclicity characterization is a precondition for the continuous optimization of
DAGs, and mathematically, the adjacency matrix of DAG must be the nilpotent matrix. On
the other hand, within the DAGs learning continuous optimization framework, more deep
generative models are deployed for DAGs learning and show significant improvements,
such as graph neural network, generative adversarial network, reinforcement learning, and
generative flow network. But, in the face of larger data and higher accuracy requirements,
there are still some challenges:

• Most DAGs continuous optimization are performed by searching in the DAG space.
Once the number of DAG variables increases, the DAG space increases exponentially
and the generative networks with large parameters cannot find a satisfactory DAG in
finite time.

• Mathematically, the nilpotent matrix is always used to achieve the acyclicity charac-
terization. In practice, each power operation indicates that it takes a step forward
in the directed edge on the graph. However, as the graph size grows, the calculated
power number increases, the complexity of the operation rises, and the efficiency of
the model decreases.

For the first problem of super-exponential expansion of the DAG space faced by
most of the methods, this paper adopts the topological sorts space solving algorithm. By
transforming the adjacency matrix into an upper triangular matrix through a congruent
transformation guided by the topological sorts, and then the parameters update during the
training process only needs to be performed on half of the matrix elements. As the second
problem, for continuous optimization based DAGs learning using nilpotent matrices to
inscribe acyclic constraints, we decompose the adjacency matrices in training by using QR
factorization and design the least-square penalty function instead of the nilpotent matrices,
which makes the computation simpler and more efficient.

In this paper, we consider migrating the continuous optimization from the DAG
space to the topological sorts space. The space of topological sorts is significantly smaller
than the space of DAG or of the equivalence classes. Furthermore, we propose adopt
congruent transformation and QR factorization to create an optimization strategy based
on the topological sorts. In addition, we employ our method in a graph autoencoder
network framework and generate satisfactory DAGs from the data. A summary of the
main contributions of this paper is as follows:

1. We propose continuous optimization DAGs learning in the topological sorts space. We
express the topological sorts matrixically, and subsequently use a matrix congruent
transformation to convert the initial adjacency matrix into an sort-based adjacency
matrix, which enables the continuous optimization DAGs learning to be intervened
with the topological sorts.

2. Based on the topological sorts, we further improve the optimization strategy by using
QR factorization. We perform a QR factorization of the sort-based adjacency matrix
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and utilize the upper triangular attribute of the decomposed matrix to construct the
least-square penalty function as constraints for optimization.

3. We employ our DAGs learning optimization strategy in a graph autoencoder network
as the deep generative model framework. And we investigate a comparative analysis
of our proposed method against a selection of contemporary algorithms on both
synthetic datasets and real-world datasets. The results of our experiments demonstrate
the effectiveness of our proposed method.

The subsequent sections of this paper are structured as follows. In Section 2, we
introduce a thorough review of related works. Section 3 is dedicated to introducing the
foundational preliminaries underpinning our study. And in Section 4, we propose a new
DAGs learning method DAGOR. Section 5 reports our experiments and results. Finally, the
conclusions of this study are summarized in Section 6.

2. Related Works

DAGs learning based on continuous optimization has become a popular research
topic. There are two technological lines of research. One is the mathematical acyclicity
characterization for DAGs constraint, and the other is the deep generative model for DAGs
generation. The former focuses on matrix theoretical analysis for DAGs acyclicity, and the
latter adopts deep learning approaches as DAGs generative models.

For acyclicity characterization studies, NO TEARS [16] is firstly solving the combinato-
rial graph search challenge into a continuous optimization paradigm through the utilization
of trace exponential and nilpotent matrix methodologies. It is based on the gradient com-
putation of the continuous score function. However, a notable limitation of this approach is
the computationally intensive property of matrix exponential calculations, which require
O(d3) operations. In response to this high computational complexity, NO BEARS [17]
offers a different reformulation by leveraging the spectral radius of the adjacency matrix
to bound DAGs acyclicity, effectively reducing computational complexity to O(d2). Fur-
thermore, NO FEARS [18] introduces an innovative acyclicity characterization based on
absolute values, which instead the Hadamard product in NO TEARS. This facilitates a
practical solution for augmented Lagrangian optimization convergence. Building upon
this foundation, GOLEM [19] proposes a likelihood-based score mechanism augmented
with l1 regularization and soft acyclicity constraints. And NO TEARS+ [20] extends the
acyclicity characterization to accommodate nonparametric general models. LEAST [21]
presents a novel acyclicity constraint paradigm, enhancing upon NO BEARS by leveraging
least-square objectives and l1 regularization, achieving computational efficiency closer to
O(d). DAGMA [22] eliminates NO TEARS power series and introduces a log-determinant
acyclicity characterization. However, these above methods are calculating in the DAG space
and with strict limitations for acyclic characterization, which means they are always stuck
in a local optimum. But our proposed method, DAGOR, which operates in a topological
sorts space with a global modification to the hypothesis, avoids local optima and does not
require consideration of acyclicity, reducing computational costs significantly.

As for the DAGs deep generative models, CGNN [23] firstly represents an integration
of continuous optimization for DAG learning with neural networks. Subsequent innova-
tions include Graphite [24], which employs a generative neural network framework to
reconstruct DAGs parameterized by weighted adjacency matrices. But its initial output
is an undirected graph. SAM [25] introduces adversarial training strategies to optimize
end-to-end DAG learning, enhancing model robustness. DAG-GNN [26] integrates neu-
ral network functions and black-box variational inference into DAGs learning methods,
leveraging evidence lower bound (ELBO) [27,28] as the score criterion. Expanding upon
this paradigm, GAE [29] extends DAG-GNN formalisms to a graph autoencoder frame-
work, facilitating the incorporation of non-linear structural interactions and vector-valued
variables. RL-BIC [30] adopts a reinforcement learning approach to DAGs learning and
causal discovery, where the reward function consists of a BIC scoring function and an
acyclic constraint function with a penalty term. In addition, DAG-GAN [31] devises an
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adversarial framework for DAGs structure detection. DAG-GFlowNet [32] proposes to
use the generative flow networks for approximating the posterior distribution over the
structure of DAGs. GraN-DAG [33] learns the conditional independent relationship of the
neural network model between variables and transforms the problem into the maximum
likelihood optimization problem. It utilizes a multilayer perceptron and a continuous
acyclic constraint function as a loss function to constrain its acyclicity.

In particular, we investigate the characteristics of the above methods in Table 1, as
they are the latest advancements in the domain of DAGs learning. We also compare them
to the above deep generative models, including NOTEARS, GraN-DAG, DAG-GNN, and
RL-BIC. DAGOR has an efficient performance because after the topological sorts based
upper triangularization, the adjacency matrix in training only needs to be updated with
half of the parameter values.

Table 1. Methods description: Type I represents researching mathematical acyclicity characterization
for DAGs constraint; Type II indicates utilizing deep generative model for DAGs generation.

Method Year Type Data Acyclicity Output

NOTEARS 2018 I Low Yes DAG
CGNN 2018 II Low Yes DAG

Graphite 2019 II Low/Medium No UG
SAM 2019 II Low/Medium Yes DAG

DAG-GNN 2019 II Low Yes DAG
GAE 2019 II Low Yes DAG

NOBEARS 2019 I Low/Medium/High Yes DAG
NOFEARS 2020 I Low Yes DAG

GOLEM 2020 I Low Yes DAG
RL-BIC 2020 II Low Yes DAG

GraN-DAG 2020 II Low Yes DAG
NOTEARS+ 2020 I Low Yes DAG

LEAST 2020 I Low/Medium/High Yes DAG
DAG-GAN 2021 II Low Yes DAG

DAG-GFlowNet 2022 II Low Yes DAG
DAGMA 2022 I Low/Medium/High Yes DAG

According to the above analysis, we conclude mostly DAGs learning research con-
centrates on acyclicity characterization and deep generative models. However, precisely
learning DAGs from data is still a challenging problem.

3. Preliminaries
3.1. Directed Acyclic Graphs

A graph is fundamentally composed of vertices and edges, and the edges establish
connections between pairs of vertices. The vertices can also represent a myriad of entities,
which are linked together in pairs through the intermediary of edges. In the directed
graphs, each edge possesses a distinct orientation, which represents a directional flow from
one vertex to another. Formally, a path within a directed graph comprises a sequence of
edges, where each subsequent edge commences from the vertex of its predecessor. It is
worth noting that directed acyclic graphs are characterized by the absence of cycles or
closed loops, distinguishing them as structures devoid of cyclical dependencies.

As for directed graphs, the notion of reachability between vertices assumes significance.
A vertex v is reachable from another vertex u if there exists a path originating at u and
concluding at v. It follows that if a vertex can traverse a nontrivial path to reach itself,
then this path necessarily constitutes a cycle. Consequently, an alternative characterization
of DAGs emerges: the graphs wherein no vertex can traverse a nontrivial path to reach
itself [34].
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In addition, the DAG is a significant tool for portraying causal effects and causality.
The directed edges represent vertices from cause to effect, which reflects causal effects
cannot be bidirectional.

3.2. Topological Sorts

A DAG can be topologically sorted by arranging its vertices in a sequence, which
ensures a logical flow of information and makes it easier to understand the relationships
between the vertices. In the graph theory, a discernible characteristic of a topological
sort is its inherent prohibition of cycles, as the directional orientation of edges makes a
unidirectional flow that precludes the existence of cycles. Conversely, every DAG has at
least one topological sort. Hence, the presence of a topological sort emerges as an equivalent
criterion for DAGs. It is important to acknowledge that the uniqueness of this sort is not
universal; a DAG owns a singular topological sort exclusively when it has a directed path
encompassing all vertices. In such instances, the sequential arrangement of vertices within
the topological sort reflects their sort along the aforementioned path, thereby illuminating
a distinct correlation between the topology of the graph and the linear arrangement of its
vertices [35].

Moreover, the family of DAGs topological sorts coincide with the family of linear
extensions derived from its reachability relation [36], which representing the intrinsic
relationship between the structural properties of the graphs and the resultant arrangements
yielded by their topological sorts.

3.3. Determine Acyclicity Based on DAGs Adjacency Matrix

The DAG consists of its vertex set V(G) and edge set E(G), where the elements of
E(G) are all binary subsets of V(G). Let (A)ij represents the (i, j)-position element of
matrix A. For a graph G with n vertices, its adjacency matrix AG is an n × n matrix whose
elements are defined as

(AG)ij =

{
1, ij ∈ E(G),
0, ij /∈ E(G).

(1)

Based on the attributes of DAGs, the adjacency matrix AG has the following three
properties:

• The diagonal coefficients of matrix AG are all zeros;

(AG)ij = 0, s.t. i = j

• Matrix AG is an asymmetric matrix;

AG
T ̸= AG

• Matrix AG is a nilpotent matrix.

AG
n = [0]n×n

Specifically, each exponentiation of the adjacency matrix AG symbolizes a singular
step in the vertex transition process within the graph. Consequently, the resultant nilpotent
matrix signifies a state wherein all elements of AG

n are rendered as zeros after taking
n consecutive power operations. This denotes that the vertices within the graph fail to
cyclically return to their initial states following n steps of transition, thereby unequivocally
indicating the absence of any closed-loop structures within the graph.

4. Proposed Method

In this section, we introduce our method DAGOR. In this method, we firstly conduct
adjacency matrix congruent transformation based on the topological sort vector. Sec-
ondly, we perform the QR factorization of the transformed adjacency matrix and propose
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a least-square penalty function with the upper triangular matrix as constraints for the
DAGs learning process. Finally, we employ the DAGOR algorithm with a graph autoen-
coder framework.

Learning DAGs using topological sorts and QR factorization is carried out because we
fin that during the training process of learning DAGs based on deep generative models,
the adjacency matrix is normally the one that needs to be updated iteratively for all matrix
elements. This is very inefficient for complex datasets with more vertices. Therefore,
we consider designing a topological sorts based contract matrix transformation to upper
triangularize the adjacency matrix so that only half of the matrix parameters need to be
updated for each training. Further, we find that upper triangular matrices also exist in
QR factorization, which is consistent with the adjacency matrix in training. Therefore,
we introduce QR factorization into the training objective to construct least-square penalty
function as constraints for optimization.

4.1. Adjacency Matrix Congruent Transformation with Topological Sorts

In the context of graph theory, a topological sort for a directed graph G is a partial
ordering denoted as ≺ on its vertex set V = [p]. This sort corresponds to the condition that
for any vertices Xi and Xj in V, the presence of a directed edge from Xi to Xj (Xi → Xj)
implies i ≺ j. The symbol Xi → Xj denotes the existence of an edge between vertices i
and j.

A topological sort, denoted by ≺, defines a permutation π on the vertex set V of graph
G. This permutation assigns π(i) to the vertex at the i-th position in the ordering specified
by ≺. Importantly, a topological sort yields a unique arrangement of vertices in G.

π = [i], i ∈ {1, 2, · · · , n}
s.t. i ≺ j; Xi → Xj in G.

(2)

Moreover, a directed graph is acyclic if and only if it possesses a topological sort. It is
important that the topological sort need not be unique for a given acyclic directed graph.
Thus, the existence of a topological sort serves as a decisive criterion for identifying the
acyclic characterization of a directed graph, emphasizing its key role in graph theory.

In mathematics, the congruence of two square matrices, denoted as A and B, defined
over a field, is established when there exists an invertible matrix P over the same field. This
congruence relationship is expressed as

PTAP = B, (3)

where PT denotes the transpose of the matrix P.
Therefore, we conduct the DAGs adjacency matrix congruent transformation with

topological sorts. For each permutation π on the set [p] := {1, 2, · · ·, p}, we correspondingly
establish a permutation matrix Pπ , with its i-th row being denoted as eTπ (i). Given a vector
v = (vπ(1), · · ·, vπ(p))

T, we observe that the operation Pπv results as:

Pπv = vπ = (vπ(1), . . . , vπ(p))
T, (4)

signifying that Pπ systematically rearranges the entries of vector v in accordance with the
permutation π and PT

π Pπ = I. Thus, we perform a congruent transformation of the original
adjacency matrix W0 of AG, let

Wπ := PπW0PT
π . (5)

Subsequently, the matrix Wπ takes on the form of a strictly upper triangular matrix
if and only if π represents the topological sort of the directed acyclic graph G, denoted
by i ≺ j in π for j ∈ ΠG

i . A visual representation is provided in Figure 1 for enhanced
clarity. Consequently, the acyclicity condition on W0 translates to the requirement that Wπ
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assumes a strictly upper triangular form for a specific permutation sort π. And we can
further utilize Wπ for next DAGs optimization.

Figure 1. Here is an example DAG G, along with its coefficient matrix W0 and a permutation
sort π. The matrix Wπ is obtained by permuting the columns and rows of W0, and it is strictly
upper triangular.

4.2. QR Factorization for the Transformed Adjacency Matrix

A recognized matrix factorization refers to a linear transformation that analyses an
acknowledged matrix into a product of two or three matrices, typically of standard types.
One prominent instance of such factorization is the QR factorization. This factorization
entails breaking down the matrix into the product of an orthogonal matrix and a triangular
matrix. Specifically, the QR factorization of a real square matrix A is characterized by
the expression

A = QR. (6)

In this factorization, Q represents an orthogonal matrix with columns comprising
orthogonal unit vectors, denoted by QT = Q−1, and R is an upper triangular matrix. In the
case of a nonsingular matrix A, this factorization is uniquely determined. Conversely, for a
complex square matrix A, an analogous factorization A = QR exists, but with Q being a
unitary matrix, characterized by the property that its conjugate transpose, denoted as Q†,
is equal to its inverse, i.e., Q† = Q−1.

Various methodologies exist for computing the QR factorization, including the Gram–
Schmidt process [37], Householder transformations [38], and Givens rotations [39]. In
our DAGOR framework, we employ the Gram–Schmidt process. The procedure involves
considering the vectors to be processed as columns of the matrix A. That is,

A =

[
a1 a2 · · · an

]
. (7)
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Then,

u1 = a1, e1 =
u1

||u1||
,

u2 = a2 − (a2 · e1)e1, e2 =
u2

||u2||
,

uk+1 = ak+1 − (ak+1 · e1)e1 − · · · − (ak+1 · ek)ek, ek+1 =
uk+1

||uk+1||
.

(8)

Note that || · || is the l2 norm. The resulting QR factorization is

A =
[

e1 e2 · · · en
]


a1 · e1 a2 · e1 · · · an · e1
0 a2 · e2 · · · an · e2
...

...
. . .

...
0 0 · · · an · en

 = QR. (9)

Note that once we find e1, · · ·, en, it is not hard to write the QR factorization.
In the training phase of the depth generation model, the resultant adjacency matrix is

denoted as W. Following the acquisition of the topological sort π∗ through the topological
sorts learning methods [40,41], a matrix π is introduced to represent Pπ∗ , and a contracted
matrix operation is applied:

Wπ∗ = Pπ∗WPT
π∗ . (10)

The primary objective of the training process is to ensure that W accurately reflects the
adjacency matrix of DAGs, while Wπ∗ is specifically represented as the upper triangular
matrix. Based on the QR factorization, the adjacency matrix

W = QR, (11)

where Q is the orthogonal matrix and R is the upper triangle matrix. By the definition of
an orthogonal matrix Q, an orthogonal matrix must be an invertible matrix:

QQT = QQ−1 = I. (12)

Then we can also express the upper triangle matrix R as follows:

R = Q−1W. (13)

Thus, when W → Wπ∗ , Q converges to the unit matrix, i.e. Q → I. Therefore, we
propose to set the training optimization satisfying

h(W) =
1

2n
∣∣|PπWPT

π − Q−1(PπWPT
π )|
∣∣2; h(W) → 0. (14)

4.3. Algorithm with the Graph Autoencoder Framework

We use a deep generative model based on graph autoencoder (GAE) as a generative
model framework. The GNNs framework for DAGs generation is designed as a variational
autoencoder (VAE),

Z = f2((I − WT) f1(X))

X̂ = f4((I − WT)−1 f3(Z)).
(15)

Here, f1 can represent any parameterized graph neural network such as Graph Con-
volutional Network (GCN), Multilayer Perceptron (MLP), etc. Because a simple MLP is
sufficiently effective for the generation of fitting data distributions, more complex models



Mathematics 2024, 12, 1198 9 of 16

are not necessary. We define the MLP as f1 and the identity mapping as f2. Let f4 be the
MLP and f3 be the constant mapping of the generative model.

Z = (I − WT)MLP1(X, ω1)

X̂ = MLP2((I − WT)−1Z, ω2),
(16)

where ω1 and ω2 are the parameters of the neural network. By aggregating the samples
X = (X1, . . . , Xn) to assess the distributional specification of Z, the Kullback–Leibler (KL)
divergence serves as a metric for quantifying the disparity between the variational distri-
bution q(Z|X) and the true posterior distribution p(Z). Consequently, this methodology
enables the inference of the generative model for the DAGs by maximizing the lower bound
of evidence, known as the Evidence Lower Bound (ELBO).

LELBO = −DKL(q(Z|X)||p(Z)) + Eq(Z|X) log p(Z). (17)

The encoder module operates by transforming a given sample denoted as X̂k into a
representation characterized by the probability density function p(X̂k|Z). Subsequently,
the decoder module endeavors to reverse this process by reconstructing the original data
XK from the latent variable Z, with the probability density q(Z|XK). The objective is to
ensure that the generated sample X̂ is virtually indistinguishable from the true data X.

In this goal, the iterative training of the generative model is performed, facilitating
the generation of synthetic data X̂ that closely approximates the true distribution X. This
iterative generative training process ultimately culminates in the derivation of a highly sat-
isfactory DAG adjacency matrix denoted as W. The matrix W encapsulates the relationships
and dependencies within the data, thereby providing a robust and accurate representation
of the underlying data structure. The model architecture is shown as Figure 2.

Figure 2. Model architecture for our proposed method with graph autoencoder.

Hence, the final optimization problem is to minimize the reconstruction error of the
GAE (with l1 penalty) within the least-square penalty function based on QR factorization
as constraints:

min
W,θ

F(W, θ) = −LELBO + λ∥W∥1

s.t. h(W) =
1

2n
∣∣|PπWPT

π − Q−1(PπWPT
π )|
∣∣2 = 0.

(18)

Further derive its Lagrange function as

L(W, θ, α) = −LELBO + λ∥W∥1 + α(
1

2n
∣∣|PπWPT

π − Q−1(PπWPT
π )|
∣∣2), (19)

α is the Lagrange multiplier, so its dual function is

g(α) = inf
W,θ

L(W, θ, α). (20)

Therefore, by iteratively descending the gradient to further solve its dual function,
the solution of the original problem can be obtained. And as the GAE’s empirical default
settings, we keep the coefficient λ to 1.0.
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5. Experiments

To assess the effectiveness of our proposed methodology, we systematically evaluate its
performance through comparative analyses with established DAGs learning approaches on
meticulously constructed simulated synthetic datasets and on benchmark datasets obtained
from the Bayesian Network (BN) repository (https://www.bnlearn.com/bnrepository/,
accessed on 6 February 2024).

In this section, the compared methods include NOTEARS [16], GraN-DAG [33], DAG-
GNN [26] and RL-BIC [30]. NOTEARS firstly conduct continuous optimization on acyclic
constraint, and GraN-DAG algorithm is an improvement of NOTEARS based on the neural
network model. Similar to GraN-DAG, DAG-GNN is an enhancement of the NOTEARS
algorithm based on variational inference and graph neural networks. And the RL-BIC
algorithm is the first model to introduce reinforcement learning into DAG learning domain.

In Section 5.2, we conduct experiments on the simulated synthetic datasets, which
include linear Gaussian SEM datasets from an Erdős–Rényi (ER) graph and non-linear
multilayer perceptron (MLP) SEM datasets from a scale-free (SF) graph. Evaluation metrics
include True Positive Rate (TPR), precision, F1 score, and Structural Hamming Distance
(SHD), which is used to determine the gap between learned and true structure.

In Section 5.3, we analyse the capability of our model on the benchmark datasets,
including SACHS [42], INSURANCE [43], ALARM [44], and HAILFINDER [45]. We
specially compared all methods with groundtruth. We further utilize the Bayesian Dirichlet
equivalent uniform (BDeu), Bayesian Information Criterion (BIC) scores as evaluation
criteria to judge the ability of the DAGOR model to search for optimally DAGs structure.

All algorithms are implemented and executed in Pytorch in a PC with 12th Gen Intel(R)
Core(TM) i9-12900H @2.50 GHz, 64 bits, and 16.0 GB of memory. The code can be found at
https://github.com/haozuo17/DAGOR, accessed on 6 February 2024.

5.1. Experiment Details
5.1.1. Datasets

Erdős–Rényi (ER) graph: Let 0 ≤ p ≤ 1 be the probability value and let n be a positive
integer. The undirected graph on n vertices, with an edge (v, w) connecting each pair of
vertices v, w with probability p, is defined as the graph G(n, p).

Scale-free (SF) graph: A scale-free network is a connected graph wherein the number
of links, denoted as k, emanating from a specific vertex follows a power-law distribution,
represented as P(k) ∼ k−γ. The construction of a scale-free network involves the iterative
addition of vertices to an existing network. In the procedure, connections are added
to vertices that already have preferred attachment, making sure that the likelihood of
connecting to a certain vertex i is exactly proportional to the quantity of links that vertex
already has, ki, i.e.,

P(linking to vertex i) ∼ ki

∑j k j
.

5.1.2. Metrics

True Positive Rate (TPR) denotes the proportion of samples that were actually positive
classes that were correctly predicted to be positive classes.

Precision indicates the ratio of the total number of positive pairs to the total number
of positive pairs predicted.

F1 score can be seen as a kind of reconciled average of model precision and TPR.
Structure Hamming distance (SHD) is a common metric for measuring structure

learning and it counts the total number of additions, deletions, and reversals of edges that
are required to transform the estimated graph into the genuine graph.

 https://www.bnlearn.com/bnrepository/
https://github.com/haozuo17/DAGOR
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5.1.3. Score Functions

Bayesian Information Criterion (BIC) score: The likelihood estimate of the probability
distribution P(D|G) given the observed data and the BIC score function added penalties
regarding the complexity of the model to the likelihood estimates:

SBIC =
n

∑
i=1

( rΩi

∑
j=1

ri

∑
k=1

mijklogθijk −
rΩi (ri − 1)

2
logm

)
.

where mijk denotes the number of times the random variable Xi in the observed data D
takes the k-th value and its parent set of vertices takes the j-th combination of values.

Bayesian Dirichlet equivalence uniform (BDeu) score: When the prior distribution
of the parameters P(θG |G) is assumed to satisfy the product Dirichlet distribution, the
following can be derived:

SBDeu =
n

∑
i=1

 rΩi

∑
j=1

ri

∑
k=1

log
Γ
(
∑ αij∗

)
Γ
(
∑(αij∗ + nij∗)

) + ri

∑
k=1

log
Γ
(

αijk + nijk

)
Γ(αijk)

.

where Γ denotes the gamma function, n denotes the number of random variables, rΩi
denotes the number of possible values of the set of parents of the i-th random variable
Xi, ri denotes the number of possible values of the random variable Vi, nijk denotes the
number of samples when the random variable Vi is taken to be k, and the set of parents of
the random variable Vi is taken to be j, and αijk is the Dirichlet parameter.

5.2. Synthetic Datasets Experiments
5.2.1. Linear Datasets Experiments

For linear structural equation models, it can be expressed as

Xi = w⊤
i Xi + Zi, (21)

where W = [w1 | · · · | wd] ∈ Rd×d is the weighted adjacency matrix, and Zi ∈ R represents
the Gaussian noise.

Then, considering the ground-truth DAG derived from an ER2 graph, which en-
compasses d vertices and 2d edges, we assigned independent edge weights from a uni-
form distribution of ([−2,−0.5] ∪ [0.5, 2]) to create a weight matrix W. Gaussian noise,
Zi ∼ N (0, 1), ∀i ∈ [d]. Under these conditions, we generated random linear datasets
X ∈ Rn×d. Each simulation involved generating n = 1000 samples and conducting experi-
ments on four graph sizes d ∈ {10, 20, 40, 60}.

As illustrated in Figure 3, we find that DAGOR performs at a moderate level on the
synthetic linear Gaussian SEM ER2 dataset. In the TPR figure, at 10 vertices, DAGOR has a
high value, but as the number of vertices increases to 20, 40, 60, the performance of DAGOR
begins to fluctuate and generally decreases. Moreover, the precision of DAGOR is not high,
which suggests that there are some edges that are misdirected. For the F1 score, DAGOR
has better performances than the reinforcement learning based algorithm RL-BIC and the
neural network based algorithm GraN-DAG.

The reason why our DAGOR gets negative performance on ER2 graphs is because the
performance of the DAGOR algorithm partially depends on the reliability of the topological
sorts. If the topological order is not exact, it will have an impact on the DAGOR search
algorithm. However, in the ER2 graphs structure, there are a lot of juxtaposed vertices,
which disturbing to the topological sorts and resulting a fuzzy search space. This always
reduces the ability of DAGOR to discover DAGs from the vertex topological sorts.
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Figure 3. Comparison of metrics with different network sizes on the linear Gaussian SEM
ER2 datasets.

5.2.2. Non-Linear Datasets Experiments

For non-linear structural equation models, we simulate as

Xi = fi(Xpa(i)) + Zi, (22)

where fi represents a multilayer perceptron (MLP) that has been randomly initialized, one
hidden layer, size 100, and sigmoid activation. Xpa(i) represents the set of parent vertices
and Zi ∼ N (0, 1) is a standard Gaussian noise.

In this part, we take scale-free (SF) graph as ground-truth DAG derivation. Similar to
linear experiments, we generate datasets X ∈ Rn×d from SF2, with n = 1000 i.i.d. samples
and graph size d ∈ {10, 20, 40, 60}.

As presented in Figure 4, our method DAGOR has a really favorable performance
on the non-linear synthetic MLP SEM SF2 datasets, and in particular, DAGOR shows
a high level in TPR metrics. For the TPR metrics, our method DAGOR achieves better
performance than the other four algorithms on all the different vertex datasets. But in terms
of the precision, the performance of DAGOR is not that good. For example, DAGOR’s
precision is lower than the other four algorithms at 40 and 60 vertices SF2 datasets. But for
F1 score metrics, DAGOR performs generally well, which means the DAGs learning ability
of DAGOR is still promising.

In particular, the efficiency of our method DAGOR does not decrease obviously in the
case of higher number of vertices in SF2. These results further prove that DAGOR can be
used in discovering more realistic nonlinear causal relationships.
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Figure 4. Comparison of metrics with different network sizes on the non-linear MLP SEM SF2
datasets.

5.3. Benchmark Datasets Experiments

We also demonstrate the DAGOR model on four discrete real datasets: SARCH, IN-
SURANCE, ALARM, and HAILFINDER. Table 2 describes the details about four datasets.

Table 2. The statistics of the benchmark datasets.

Datasets Vertices Edges Average Degree Maximum in-Degree

SACHS 11 17 3.09 3
INSURANCE 27 52 3.75 3

ALARM 37 46 2.49 4
HAILFINDER 56 2656 3.54 4

The results in Table 3 show our model’s DAGs structure attains a superior BIC score
comparing with the other four alternative methods, which means our method is effective
on these four real datasets.

Table 3. BIC scores of the algorithms on benchmark datasets.

Datasets NOTEARS GraN-DAG DAG-GNN RL-BIC DAGOR

SACHS −89,689.1890 −91,492.0830 −80,400.6366 −75,755.7475 −73,393.3803
INSURANCE −172,398.5148 −209,095.8312 −215,748.3429 −142,541.3019 −132,670.8996

ALARM −149,468.1578 −195,862.0969 −125,510.0427 −106,664.5271 −96,735.5799
HAILFINDER −559,955.9584 −645,828.4366 −577,215.7237 −559,604.4484 −469,238.9180
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In addition, the results in Table 4 further prove the findings, where the BDeu score
of DAGOR exhibiting superiority over other methods. This outperformance reflects the
effectiveness of our model in structure learning to the causality of the discrete real data.

Table 4. BDeu scores of the algorithms on benchmark datasets.

Datasets NOTEARS GraN-DAG DAG-GNN RL-BIC DAGOR

SACHS −89,682.8663 −91,488.9172 −80,341.4775 −75,575.0589 −73,235.1207
INSURANCE −172,332.5778 −209,095.8312 −215,809.0844 −142,083.4768 −131,250.0165

ALARM −149,468.1578 −195,980.7651 −125,224.9439 −105,564.1670 −95,107.4008
HAILFINDER −557,558.2384 −645,312.3031 −574,989.1839 −549,179.3662 −464,266.7738

Furthermore, Figure 5 shows the results of the Structural Hamming distances associ-
ated with DAGs learnt by various methods across the four benchmark datasets. We find
that DAGOR can perform well on SACHS, INSURANCE and ALARM, but the performance
on HAILFINDER is worse than other algorithms, which suggests that DAGOR fails to
get a good structure when dealing with very large networks. However, most real world
networks do not have such large vertices and edges, which means using our DAGOR is
enough in most cases.

Figure 5. Comparison of Structural Hamming Distance with different methods on the discrete
real-world datasets.

6. Conclusions

In this study, we introduce a new method for learning directed acyclic graphs named
DAGOR, which based on the combination of topological sorts and QR factorization. Firstly,
we establish topological sorts through matrix congruent transformations applied to ad-
jacency matrices. Next, the subsequent step involves QR factorization of the adjacency
matrix with the obtained topological sorts. Leveraging the upper triangular properties of
the decomposed matrix, we construct a least-square penalty function, which serves as a set
of constraints for optimization. This innovative DAGs learning optimization strategy is
integrated into a graph autoencoder network, where the Evidence Lower Bound serves
as the training optimization objective. The performance of DAGOR is tested through
extensive experiments conducted on both discrete and continuous datasets, which show its
robust generalization capabilities and stability across diverse data modalities. These results
demonstrate the potential of DAGOR as an effective tool for DAGs learning.
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