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Abstract: This paper discusses the synchronization problem of impulsive stochastic bidirectional
associative memory neural networks with a diffusion term, specifically focusing on the fixed-time
(FXT) and predefined-time (PDT) synchronization. First, a number of more relaxed lemmas are
introduced for the FXT and PDT stability of general types of impulsive nonlinear systems. A
controller that does not require a sign function is then proposed to ensure that the synchronization
error converges to zero within a predetermined time. The controllerdesigned in this paper serves
the additional purpose of preventing the use of an unreliable inequality in the course of proving the
main results. Next, to guarantee FXT and PDT synchronization of the drive–response systems, this
paper employs the Lyapunov function method and derives sufficient conditions. Finally, a numerical
simulation is presented to validate the theoretical results.

Keywords: diffusion term; impulse effect; stochastic perturbations; predefined-time synchronization;
fixed-time synchronization
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1. Introduction

Bidirectional associative memory (BAM) neural networks are a type of artificial neural
network model that can be used to recognize and classify patterns in input data. They can
be applied to tasks such as pattern recognition, image classification, speech recognition,
and signal processing [1–5]. In BAM networks, information can be stored and retrieved
bidirectionally, meaning that patterns can be associated in both forward and backward
directions [1]. BAM networks are particularly useful for establishing and retrieving associa-
tions between patterns. They can be used to build associative memory systems in which
patterns can be stored and retrieved based on their associations with other patterns [6].

The reaction–diffusion equation is a powerful tool for modeling and understanding
dynamic systems that involve both diffusion and chemical reactions. Its applications
span various scientific disciplines and have practical implications in fields such as pattern
formation, biology, chemistry, physics, and image processing [7]. In addition, the reaction–
diffusion term plays a crucial role in BAM neural networks. The reaction–diffusion term
allows for the dynamic evolution of the network’s activity, and is responsible for the learn-
ing and recall processes. For instance, the reaction–diffusion term enables the network to
store the associations between input and output patterns [8] as well as to recall them accu-
rately, making it a powerful tool in applications such as pattern recognition and associative
memory tasks. In this decade, there has been a significant amount of research on reaction-
diffusion neural networks. In one study [9], the authors focused on achieving global
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exponential synchronization in delayed BAM neural networks with reaction–diffusion
terms. Another study [10] developed an adaptive pinning controller to ensure tracking
synchronization for a specific class of neural networks with coupled reaction–diffusion
terms. Similarly, in [11] the authors examined the general decay synchronization of delayed
reaction–diffusion BAM neural networks through the use of a nonlinear controller. In [12],
the authors investigated the synchronization of delayed fractional reaction-diffusion neural
networks with mixed boundary conditions.

On the other hand, there has been growing interest among researchers in studying
how neural networks can synchronize under the influence of random disturbances. The
introduction of these disturbances enhances the network’s resilience to noise and fluctua-
tions in the input data [13]. This stochastic perturbation technique improves the network’s
capacity to generalize and make precise predictions in uncertain scenarios [14], ultimately
leading to more accurate and reliable pattern recognition outcomes. By incorporating
randomness into the system, BAM neural networks can exhibit superior performance and
adaptability across various applications [14–18].

In the natural course of motion, it is inevitable to experience abrupt changes. Changes
that occur in a very short period of time in comparison to the overall movement are
referred to as impulse effects. These effects play a vital role in the operation of BAM neural
networks. When a particular pattern is introduced to the network, it spreads through the
interconnected nodes, activating the appropriate nodes and modifying their states. This
enables the network to remember and identify similar patterns in future instances. It is
one of the key capabilities of impulsive neural networks, making them highly valuable in
various fields including image encryption, time series forecasting, and natural language
processing [19–21].

Following the introduction of the concept of synchronization in neural networks by
Hertz et. al. [22], research in computational neuroscience has been increasingly focused
on this area. Numerous studies have been conducted on synchronization. In [23], the au-
thors carried out an investigation of general decay synchronization in time-delayed BAM
neural networks using a nonlinear feedback controller. Subsequently, other researchers
studied general decay and switching synchronization in reaction–diffusion BAM neural
networks with time-delay [11,24]. This work has been extended by incorporating stochastic
phenomena into reaction–diffusion BAM neural networks [25–27]. However, in terms of
real engineering applications, achieving synchronization in finite time is more desirable.
Recently, finite-time (FNT) synchronization, both with and without reaction–diffusion, has
gained attention among researchers [28–31]. FXT synchronization, which accomplishes
synchronization in a fixed time, has become particularly popular [32,33]. In [32], the au-
thors studied FXT synchronization for neural networks. In another reference [33], FXT
synchronization was successfully applied to impulsive neural networks with stochastic
perturbations within a predefined time. The application of fixed-time synchronization in
image encryption and machine learning can improve the security and stability of algo-
rithms. For example, in the field of image encryption, the time factor can be introduced into
the encryption process by setting a fixed time interval, making it more difficult to predict.
Additionally, fixed-time synchronization can be used to control the inference speed of the
model, ensuring that it completes the inference task within a fixed amount of time. How-
ever, in FXT synchronization it is impossible to predict the convergence time. Researchers
have made significant progress recently towards overcoming this limitation [33–37]. In [34],
the authors proposed PDT synchronization for neural networks, which guarantees conver-
gence of the error to zero within a specified time. In [36], the authors explored the FXT and
PDT lag synchronization of complex-valued BAM neural networks with random distur-
bances using the non-separation method. However, very few studies have investigated the
combined effects of reaction–diffusion terms, stochastic perturbations, and impulse effects
in BAM neural networks. These factors can greatly improve the network’s robustness
against data noise and enhance its predictive capabilities.
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In this paper, inspired by the aforementioned observations, we investigate the PDT
synchronization of stochastic impulsive reaction–diffusion BAM neural networks. The key
contributions of this study are as follows. We are the first to investigate FXT and PDT
synchronization in BAM neural networks incorporating stochastic perturbations, impulsive
effects, and reaction–diffusion terms. The reaction-diffusion term is a versatile tool for
modeling dynamic systems, finding applications in pattern formation, physics, image
processing, etc. Stochastic perturbation techniques improve network generalization and
prediction in uncertain scenarios, essential for information processing, machine learning,
and image encryption. BAM neural networks handle the abrupt changes crucial for image
encryption, time series forecasting, and natural language processing. Combining these
techniques enhances network robustness and predictive capabilities for applications in
machine learning, image encryption, etc. In addition, we propose a new controller to
design simple criteria for achieving PDT synchronization in BAM neural networks with
stochastic perturbations, reaction–diffusion terms, and general impulsive effects. Finally,
we demonstrate that the PDT synchronization approach is robust against variations in
the parameter settings and initial conditions. To effectively showcase these novel and
valuable contributions, Table 1 presents a comparative analysis of this paper with respect
to previous works, where R and C correspond to the set of real numbers and the set of
complex numbers, respectively.

Table 1. Comparative analysis with previous works.

Ref. Synchronization Type Reaction-Diffusion Term Impulse Effect Stochastic Perturbation Number Field

[11] General decay with without without R
[24] Switching with without without R
[27] Quasi with without with R
[31] FNT with without without R
[33] FXT/PDT without with with C
[36] FXT/PDT without without with C
[38] FXT with without with R

This paper FXT/PDT with with with R

We have structured the remainder of this paper as follows. Section 2 introduces
essential definitions, lemmas, and details of the considered systems. These elements are
crucial to proving the main results presented in the subsequent section. Section 3 presents
the design for a novel controller aimed at achieving PDT synchronization of impulsive
reaction–diffusion BAM neural networks with stochastic perturbations. In Section 4, an
example is provided to assess the effectiveness of the theoretical results proposed in
this paper. Finally, Section 5 provides a concise conclusion summarizing the key points
discussed in this paper.

2. Preliminaries

Throughout this paper, we define the range of indices for neurons I⃗ = {1, 2, . . . , n},
J⃗ = {1, 2, . . . , m}, H⃗ = {1, 2, . . . , l}, where n and m represent the total number of neurons
and l is the dimension of the space. We consider the following nonlinear impulsive
stochastic reaction–diffusion BAM neural networks:
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dvi(t) =
[ l

∑
h=1

Dih
∂2vi(t, x)

∂x2
h

− aivi(t, x) +
m

∑
j=1

bij f j(wj(t, x))

+ Ii

]
dt + ϱi(t, vi(t, x))dω(t),

dwj(t) =
[ l

∑
h=1

D̄jh
∂2wj(t, x)

∂x2
h

− ājwj(t, x) +
n

∑
i=1

b̄jigi(vi(t, x))

+ Jj

]
dt + ϱ̄j(t, wj(t, x))dω(t),

∆vi(tτ , x) = (ξi − 1)vi(tτ , x),

∆wj(tτ , x) = (ξ̄ j − 1)wj(tτ , x)

(1)

for i ∈ I⃗, j ∈ J⃗, and h ∈ H⃗, where τ is a positive intger, i and j are indices representing the ith
neuron and jthe neuron, respectively, the vector x = (x1, x2, . . . , xl)

T
represents the spatial

location within a bounded compact set Ω, which has a smooth boundary ∂Ω, the transpose
T denotes the vector’s transpose operation, vi(t, x) ∈ R and wj(t, x) ∈ R correspond to
the state variables of the ith neuron and jth neuron at time t and space x, respectively, Dih
and D̄jh represent the diffusion coefficients, the positive constants ai and āj represent the
self-inhibition rates, the constants bij and b̄ji represent the synaptic connection weights, the
variables Ii and Jj represent the bias of the neurons, νi and ν̄j are the input of the ith neuron
and jth neuron, respectively, the functions hi(·) and gj(·) are the activation functions of
the neurons, the functions ϱi(t, ·) : R+ × R → Rk and ϱ̄i(t, ·) : R+ × R → Rk stand for the
noise intensity functions, ω(t) is the k-dimensional Brownian motion introduced in [33],
and ξi > 0 and ξ̄ j > 0 are constants. For all τ ∈ N, vi(t−τ , x) = limt→tτ−0 vi(t, x) =
vi(tτ , x), vi(t+τ , x) = limt→tτ+0 vi(t, x), τ ∈ N, wi(t−τ , x) = limt→tτ−0 wi(t, x) = wi(tτ , x),
wi(t+τ , x) = limt→tτ+0 wi(t, x) are the impulse jumps occurring at the impulse moment tτ

and {tτ , τ = 1, 2, . . . } is a strictly increasing sequence satisfying tτ → +∞ when τ → +∞.
The initial boundary conditions of System (1) are as follows:{

vi(0, x) = v0
i (x),

wj(0, x) = w0
j (x),

for x ∈ Ω,

{
vi(t, x) = 0,

wj(t, x) = 0
for (t, x) ∈ (t0,+∞)× ∂Ω,

for i ∈ I⃗ and j ∈ J⃗, where v0
i (·) and w0

j (·) are bounded continuous functions. The construc-
tion of the dynamical system is shown in Figure 1.
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Figure 1. Construction of a stochastic impulsive BAM neural network.

Now, we focus on the response system for the drive system in (1):
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dṽi(t) =
[ l

∑
h=1

Dih
∂2ṽi(t, x)

∂x2
h

− ai ṽi(t, x) +
m

∑
j=1

bij f j(w̃j(t, x))

+ Ii + ui(t, x)
]
dt + ϱi(t, ṽi(t, x))dω(t), t ̸= tτ ,

dw̃j(t) =
[ l

∑
h=1

D̄jh
∂2w̃j(t, x)

∂x2
h

− ājw̃j(t, x) +
n

∑
i=1

b̄jigi(ṽi(t, x))

+ Jj + ūj(t, x)
]
dt + ϱ̄j(t, w̃j(t, x))dω(t), t ̸= tτ ,

∆ṽi(tτ , x) = ṽi(t+τ , x)− ṽi(t−τ , x) = (ξi − 1)ṽi(tτ , x),

∆w̃j(tτ , x) = w̃j(t+τ , x)− w̃j(t−τ , x) = (ξ̄ j − 1)w̃j(tτ , x),

(2)

where ṽi(t, x) ∈ R and w̃j(t, x) ∈ R are the state variables of System (2). In the upcoming
section, the controllers (referred as ui(t, x) and ūj(t, x)) are designed, where i ∈ I⃗, j ∈ J⃗.
The initial-boundary conditions of System (2) are provided by{

ṽi(0, x) = ṽ0
i (x),

w̃j(0, x) = w̃0
j (x),

for x ∈ Ω,

{
ṽi(t, x) = 0,

w̃j(t, x) = 0
for (t, x) ∈ (t0,+∞)× ∂Ω,

for i ∈ I⃗ and j ∈ J⃗, where ṽ0
i (·) and w̃0

j (·) are bounded continuous functions. Letting i ∈ I⃗

and j ∈ J⃗, the following assumptions hold throughout this paper.

Assumption 1. The activation functions f j(·) and gi(·) of the neurons satisfy the Lipschitz

condition; in other words, for any real numbers x1 and x2 there exist L f
j > 0 and Lg

i > 0 such that

| f j(x1)− f j(x2)| ≤ L f
j |x1 − x2|,

|gi(x1)− gi(x2)| ≤ Lg
i |x1 − x2|.

Assumption 2. There exist ηi > 0 and η̄j > 0, and the noise intensity functions ϱi(t, ·) and
ϱ̄j(t, ·) satisfy the following inequalities:

[ϱi(t, x1)− ϱi(t, x2)]
T [ϱi(t, x1)− ϱi(t, x2)] ≤ ηi(x1 − x2)

2

[ϱ̄j(t, x1)− ϱ̄j(t, x2)]
T [ϱ̄j(t, x1)− ϱ̄j(t, x2)] ≤ η̄j(x1 − x2)

2

for all real numbers x1 and x2.

The error system between the drive–response systems in (1) and (2) can be expressed as

dei(t) =
[ l

∑
h=1

Dih
∂2ei(t, x)

∂x2
h

− aiei(t, x) +
m

∑
j=1

bijFj(ε j(t, x))

+ ui(t, x)
]
dt + ρi(t, ei(t, x))dω(t), t ̸= tτ ,

dε j(t) =
[ l

∑
h=1

D̄jh
∂2ε j(t, x)

∂x2
h

− ājε j(t, x) +
n

∑
i=1

b̄jiGi(ei(t, x))

+ ūj(t, x)
]
dt + ρ̄j(t, ε̃ j(t, x))dω(t), t ̸= tτ ,

∆ei(tτ , x) = ei(t+τ , x)− ei(t−τ , x) = (ξi − 1)ei(tτ , x),

∆ε j(tτ , x) = ε j(t+τ , x)− ε j(t−τ , x) = (ξ̄ j − 1)ε j(tτ , x),

(3)
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where

ei(t, x) = ṽi(t, x)− vi(t, x),

ε j(t, x) = w̃j(t, x)− wj(t, x),

Fj(ε j(t, x)) = f j(w̃j(t, x)− f j(wj(t, x)),

Gi(ei(t, x)) = gi(ṽi(t, x)− gi(vi(t, x)),

ρi(t, ei(t, x)) = ϱi(t, ṽi(t, x))− ϱi(t, vi(t, x)),

ρ̄j(t, ε j(t, x)) = ϱ̄j (t, w̃j(t, x))− ϱ̄j(t, wj(t, x))

for i ∈ I⃗ and j ∈ J⃗.
Before delving into the main results, we first consider the following system:

dΦ(t) = Υ(t, Φ(t))dt + ρ(t, Φ(t))dω(t), t ̸= tτ ,

Φ(0) = Φ0,

∆Φ|t=tτ = Λ(tτ , Φ(tτ)), tτ ∈ N,

(4)

where Φ(t) denotes the state vector of the system in the set of real numbers Rn. The func-
tions Υ : R+ × Rn → Rn and ρ : R+ × Rn → Rnare continuous and predetermined, with the
condition that Υ(0, Φ(0)) = 0 and ρ(0, Φ(0)) = 0. Finally, Λ : R+ × Rn = Rn is a function
that is both continuously differentiable and locally Lipschitzian, and satisfies the condition
Λ(t, 0) = 0.

Definition 1 ([39]). Let Nκ(t1, t2) denote the number of impulsives happening in the time interval
(t1, t2), and assume that there exist N0 > 0 and ντ such that

t2 − t1

ντ
− N0 ≤ Nκ(t1, t2) ≤

t2 − t1

ντ
+ N0.

Then, ντ is the average impulse interval of impulses in the sequence κ = {tτ}τ∈N .

Definition 2 ([40]). The zero solution of System (4) is considered to be stochastic FXT stable if the
solution Φ(t, Φ0) with initial condition Φ0 ∈ Rn satisfies the following conditions:

1. Pro{T(Φ0, κ) < ∞} = 1 holds for any non-zero initial condition Φ0 ∈ Rn, where
T(Φ0, κ) = inf{t|Φ(t, Φ0) = 0} is an ST function;

2. For any µ ∈ (0, 1) and τ > 0, there exists a δ = δ(µ, τ) > 0 such that Pro{|Φ(t, Φ0)| ≤ τ
for all t ≥ 0} ≥ 1 − µ for any case where |Φ0| < δ;

3. E(T(Φ0, κ)) ≤ Tε for any Φ0 ∈ Rn, where E(T(Φ0, κ)) is the expected valued of T(Φ0, κ)
and Tε is a positive constant.

After explaining the conditions for FXT stability as stated in Definition 2, we now
proceed to introduce the definition of PDT stability.

Definition 3 ([41]). The zero solution of System (4) is called PDT stable in probability if it is
FXT stable in probability for any initial value Φ0 ∈ Rn and satisfies T(Φ0, κ) ≤ Tc for any given
positive constants Tc.

In Definition 3, Tc is the pre-assigned time, κ is defined in Definition 1, annd T(Φ0)
is an ST function introduced in Definition 2. Next, we introduce several lemmas that are
beneficial for the main results.

Lemma 1 ([42]). Assume that 0 < p ≤ 1, q > 1, and µl > 0 for l = 1, 2, . . . , k; then, the
following inequalities hold true:
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k

∑
l=1

µ
p
l ≥ (

k

∑
l=1

µl)
p,

k

∑
l=1

µ
q
l ≥ k1−q(

k

∑
l=1

µl)
q.

Lemma 2 ([33,43]). If there is a Lyapunov function V(t, ϕ(t)) such that it satisfies the following:

1. ε1∥ϕ(t)∥2 ≤ V(t, ϕ(t)) ≤ ε2∥ϕ(t)∥2 , ∀t ∈ R+, ϕ ∈ Rn

2. {
£V(t, ϕ(t)) ≤ KV(t, ϕ(t)) − µVp(t, ϕ(t))− λVq(t, ϕ(t)), t ̸= tτ ,

V(t+, ϕ(t+τ )) ≤ ΛV(tτ , ϕ(tτ)), t = tτ
(5)

where ε1, ε2, K, µ, λ, Λ are positive scalars and where 0 < p < 1, q > 1, and K < min{µ, λ,−( ln Λ
ντ

)},
then System (4) is stochastic FXT stable with the ST

T1 =
1

η(1 − q)
ln
(

1 − η

λϖ

)
+

1
η(1 − p)

ln
(

µ

µ − ηπ2

)
,

where ϖ = Λ−τ0(1−γ)sign(1−Λ), π = Λ−τ0(1−p)sign(1−Λ), η = K + ln Λ
ντ

.

Lemma 3 ([33]). If there is a Lyapunov function V(t, ϕ(t)) such that it satisfies the following:

1. ε1∥ϕ(t)∥2 ≤ V(t, ϕ(t)) ≤ ε2∥ϕ(t)∥2 , ∀t ∈ R+, ϕ ∈ Rn

2. £V(t, ϕ(t)) ≤ −T0

Tc

(
− KV(t, ϕ(t)) + µVp(t, ϕ(t)) + λVq(t, ϕ(t))

)
, t ̸= tτ ,

V(t+, ϕ(t+τ )) ≤ ΛV(tτ , ϕ(tτ)), t = tτ

(6)

where Tc is the predefined-time parameter, T0 is given as T0 = 1
λ(q−1)ϖ + π2

µ(1−p) ,

ϖ = Λ−τ0(1−γ)sign(1−Λ), π = Λ−τ0(1−p)sign(1−Λ), ε1, ε2, K, µ, λ, Λ, p, q are positive scalars,
0 < p < 1, q > 1, and K < min{µ, λ,− Tc

T0
( ln Λ

ντ
)}, then System (4) is stochastic PDT stable with

predefined-time Tc.

3. Main Results

In this section, we present two important theorems for the FXT synchronization and
PDT synchronization of the drive system (1) and the response system (2). We design the
external control inputs ui(t, x) and ūj(t, x) as

ui(t, x) =

{
− αi ê

p−1
i (t)ei(t, x)− βi ê

q−1
i (t)ei(t, x) ê(t) ̸= 0,

0, ê(t) = 0,

ūj(t, x) =

{
− γj ε̂

p−1
j (t)ε j(t, x)− δj ε̂

q−1
j (t)ε j(t, x), ε̂(t) ̸= 0,

0, ε̂(t) = 0,

(7)

where αi, βi, γj, δj are positive scalars for i ∈ I⃗ and j ∈ J⃗, while p and q satisfy 0 < p < 1
and q > 1. Here, ê(t) and ε̂(t) are defined as

ê(t) =

(∫
Ω

n

∑
i=1

e2
i (t, x)dx

) 1
2

,

ε̂(t) =

(∫
Ω

m

∑
j=1

ε2
i (t, x)dx

) 1
2

.
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We define

yi = −λi − 2ai + ηi +
m

∑
j=1

(L f
j |bij|+ Lg

i |b̄ji|),

zj = −λ̄j − 2āj + η̄j +
n

∑
i=1

(L f
j |bij|+ Lg

i |b̄ji|),

for i ∈ I⃗ and j ∈ J⃗; then, we have the following theorem.

Theorem 1. If Assumptions 1 and 2 are satisfied, then System (2) can achieve FXT stochastic syn-
chronization with System (1) under Controller (7) provided that the inequality
k < min{ψ, φ,− ln ζ

ντ
} is met with the ST

T2 =
2

η(1 − q)
ln
(

1 − η

φϖ

)
+

2
η(1 − p)

ln
(

ψ

ψ − ηπ2

)
,

where k = max{maxi∈ I⃗{yi}, maxj∈ J⃗{zj}}, ψ = 2 min{mini∈ I⃗{αi}, minj∈ J⃗{γj}}, φ = 2
3−q

2

min{ mini∈ I⃗{βi}, minj∈ J⃗{δj}}, ζ = max{maxi∈ I⃗{ξ2
i }, maxj∈ J⃗{ξ̄2

j }}, ϖ = ζ−τ0 1−q
2 sign(1−ζ),

π = ζ−τ0 1−p
2 sign(1−ζ), η = k + ln ζ

ντ
.

Proof. Consider the following Lyapunov function:

V(t) = V1(t) + V2(t), (8)

where

V1(t) =
∫

Ω

n

∑
i=1

e2
i (t, x)dx

V2(t) =
∫

Ω

m

∑
j=1

ε2
j (t, x)dx.

(9)

We can calculate the £V1(t) along System (3) for t ̸= tτ as

£V1(t) =
∫

Ω

n

∑
i=1

2ei(t, x)
[ l

∑
h=1

2ei(t, x)Dih
∂2ei(t, x)

∂x2
h

− aiei(t, x) +
m

∑
j=1

bijFj(ε j(t, x))− ui(t, x)
]
+ ρ2

i (t, ei(t, x))dx.
(10)

Utilizing Assumption 1 and the inequality 2a1a2 ≤ a2
1 + a2

2 for any constants a1 and a2,
it can be shown that the following inequality is valid:

n

∑
i=1

m

∑
j=1

2ei(t, x)bijFj(ε j(t, x)) ≤
n

∑
i=1

m

∑
j=1

2L f
j |bij||ei(t, x)||ε j(t, x)|

≤
n

∑
i=1

m

∑
j=1

L f
j |bij|(e2

i (t, x) + ε2
j (t, x)).

(11)

Furthermore,

−
∫

Ω

n

∑
i=1

2ei(t, x)αi êp−1(t)ei(t, x)dx = −2êp−1(t)
∫

Ω

n

∑
i=1

αie2
i (t, x)dx

≤ −2 min
i∈ I⃗

{αi}V
p+1

2
1 (t).

(12)
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Similarly,

−
∫

Ω

n

∑
i=1

2ei(t, x)βi êq−1(t)ei(t, x)dx = −2êq−1(t)
∫

Ω

n

∑
i=1

βie2
i (t, x)dx

≤ −2 min
i∈ I⃗

{βi}V
q+1

2
1 (t).

(13)

After that, following to Assumption 2, we can obtain

n

∑
i=1

[ρi(t, ei(t, x))]2 ≤
n

∑
i=1

ηie2
i (t, x). (14)

Finally, to consider the diffusion term, we can apply Green’s identities and the bound-
ary condition of the model to obtain

∫
Ω

2ei(t, x)
l

∑
h=1

Dih
∂2ei(t, x)

∂x2
h

dx ≤ 2Di

∫
Ω

ei(t, x)∆ei(t, x)dx

= 2Di

∫
∂Ω

ei(t, x)∇ei(t, x) · νdS − 2Di

∫
Ω
∇ei(t, x) · ∇ei(t, x)dx

= −2Di

∫
Ω

l

∑
h=1

(
∂ei(t, x)

∂xh

)2

dx,

where Di = minh{Dih}. Using the Poincare inequality, there exist constants lh for h ∈ H
such that the following holds true:

∫
Ω

2ei(t, x)
l

∑
h=1

Dih
∂2ei(t, x)

∂x2
h

dx ≤ −2Di

∫
Ω

l

∑
h=1

(
∂ei(t, x)

∂xh

)2

dx

≤ −2Di

l

∑
h=1

1
lh

∫
Ω

e2
i (t, x)dx

= −λi

∫
Ω

e2
i (t, x)dx,

(15)

where λi = ∑l
h=1

2Di
lh

.
Substituting (11)–(15) into (10), we have

£V1(t) ≤
∫

Ω

n

∑
i=1

[
(−λi − 2ai + ηi)e2

i (t, x) +
m

∑
j=1

L f
j |bij|(e2

i (t, x) + ε2
j (t, x))

]
dx

− 2 min
i∈ I⃗

{αi}V
p+1

2
1 (t)− 2 min

i∈ I⃗
{βi}V

q+1
2

1 (t).

(16)

Similarly, we have the following inequality for V2(t):

£V2(t) ≤
∫

Ω

m

∑
j=1

[
(−λ̄j − 2āj + η̄j)ε

2
j (t, x) +

n

∑
i=1

Lg
i |b̄ji|(e2

i (t, x) + ε2
j (t, x))

]
dx

− 2 min
j∈ J⃗

{γj}V
p+1

2
2 (t)− 2 min

j∈ J⃗
{δj}V

q+1
2

2 (t).
(17)
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Therefore, we can find

£V(t) = £V1(t) + £V2(t)

≤
∫

Ω

[ n

∑
i=1

[
− λi − 2ai + ηi +

m

∑
j=1

(L f
j |bij|+ Lg

i |b̄ji|)e2
i (t, x)

]
+

m

∑
j=1

[
− λ̄j − 2āj + η̄j +

m

∑
j=1

L f
j (|bij|+ Lg

i |b̄ji|)ε2
j (t, x)

]]
dx

− 2 min
i∈ I⃗

{αi}V
p+1

2
1 (t)− 2 min

i∈ I⃗
{βi}V

q+1
2

1 (t)

− 2 min
j∈ J⃗

{γj}V
p+1

2
2 (t)− 2 min

j∈ J⃗
{δj}V

q+1
2

2 (t)

≤
∫

Ω

[
max

i∈ I⃗
{yi}

n

∑
i=1

e2
i (t, x) + max

j∈ J⃗
{zj}

m

∑
j=1

ε2
j (t, x)

]
dx

− 2 min
{

min
i∈ I⃗

{αi}, min
j∈ J⃗

{γj}
}[

V
p+1

2
1 (t) + V

p+1
2

2 (t)
]

− 2 min
{

min
i∈ I⃗

{βi}, min
j∈ J⃗

{δj}
}[

V
q+1

2
1 (t) + V

q+1
2

2 (t)
]
.

Applying Lemma 1, we have

£V(t) ≤
∫

Ω

[
max

{
max

i∈ I⃗
{yi}, max

j∈ J⃗
{zj}

}[ n

∑
i=1

e2
i (t, x) +

m

∑
j=1

ε2
j (t, x)

]]
dx

− 2 min
{

min
i∈ I⃗

{αi}, min
j∈ J⃗

{γj}
}

V
p+1

2 (t)− 2
3−q

2 min
{

min
i∈ I⃗

{βi}, min
j∈ J⃗

{δj}
}

V
q+1

2 (t).

Then, we can deduce that

£V(t) ≤ kV(t)− ψV
p+1

2 (t) − φV
q+1

2 (t). (18)

Using the impulse condition of System (3) at instant t = tτ , we then have

V(t+τ ) = V1(t+τ ) + V2(t+τ )

=
∫

Ω

[ n

∑
i=1

e2
i (t

+
τ , x) +

m

∑
j=1

ε2
j (t

+
τ , x)

]
dx

=
∫

Ω

[ n

∑
i=1

ξ2
i e2

i (tτ , x) +
m

∑
j=1

ξ̄2
j ε2

j (tτ , x)
]
dx

≤ max
{

max
i∈ I⃗

{ξ2
i }, max

j∈ J⃗
{ξ̄2

j }
} ∫

Ω

[ n

∑
i=1

e2
i (tτ , x) +

m

∑
j=1

z2
j (tτ , x)

]
dx

= ζV(tτ).

(19)

Therefore, based on Equations (18) and (19) and according to Lemma 2, the drive–
response system in (1) and (2) achieves FXT stochastic synchronization under the controller
in (7). The proof is completed.

Remark 1. In previous studies [37,38], the authors demonstrated the synchronization of FXT in
BAM neural networks incorporating a reaction–diffusion term. In the course of their work, they

employed the inequality
( ∫

X udx
)p

≤
∫

X updx for u ∈ X, p ≥ 1, with X as a bounded compact
set with a smooth boundary ∂X. However, they failed to show the sufficient condition for the validity
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of this inequality when 0 ≤ p < 1. In the present paper, we introduce a controller into our proof
that does not rely on the aforementioned inequality.

We consider the PDT synchronization of the given drive–response system in (1) and (2).
We design the external control inputs ui(t, x) and ūj(t, x) as

ui(t, x) =

− T0

Tc

(
αi ê

p−1
i (t)ei(t, x) + βi ê

q−1
i (t)ei(t, x)

)
ê(t) ̸= 0,

0, ê(t) = 0,

ūj(t, x) =

− T0

Tc

(
γj ε̂

p−1
j (t)ε j(t, x)− δj ε̂

q−1
j (t)ε j(t, x)

)
, ε̂(t) ̸= 0,

0, ε̂(t) = 0,

(20)

Theorem 2. If Assumptions 1 and 2 are satisfied, then System (2) can achieve PDT stochastic
synchronization with System (1) under Controller (20) provided that the following inequality is met:

k < min{ψ, φ,− Tc

T0

ln ζ

ντ
}, (21)

where k = Tc
T0

max{maxi∈ I⃗{yi}, maxj∈ J⃗{zj}}, ψ = 2 min{mini∈ I⃗{αi}, minj∈ J⃗{γj}},

φ = 2
3−q

2 min{ mini∈ I⃗{βi}, minj∈ J⃗{δj}}, ζ = max{maxi∈ I⃗{ξ2
i }, maxj∈ J⃗{ξ̄2

j }}, Tc is predefined-

time parameter, T0 = 2
φ(q−1)ϖ + 2π2

ψ(1−p) , ϖ = ζ−τ0 1−q
2 sign(1−ζ), and π = ζ−τ0 1−p

2 sign(1−ζ).

Proof. To prove Theorem 2, we can consider the following Lyapunov function:

V(t) = V1(t) + V2(t), (22)

where V1(t) and V2(t) defined in equation (9).
Similarly to Theorem 1, we are able to compute £V1(t) in accordance with System (3)

for t ̸= tτ as follows:

£V1(t) =
∫

Ω

n

∑
i=1

2ei(t, x)
[ l

∑
h=1

2ei(t, x)Dih
∂2ei(t, x)

∂x2
h

− aiei(t, x) +
m

∑
j=1

bijFj(ε j(t, x))− ui(t, x)
]
+ ρ2

i (t, ei(t, x))dx.
(23)

In a similar way to Theorem 1, it can be shown that the following inequality is valid:

−T0

Tc

∫
Ω

n

∑
i=1

2ei(t, x)αi êp−1(t)ei(t, x)dx = −2T0

Tc
êp−1(t)

∫
Ω

n

∑
i=1

αie2
i (t, x)dx

≤ −2T0

Tc
min
i∈ I⃗

{αi}V
p+1

2
1 (t).

(24)

Similarly,

−T0

Tc

∫
Ω

n

∑
i=1

2ei(t, x)βi êq−1(t)ei(t, x)dx = −2T0

Tc
êq−1(t)

∫
Ω

n

∑
i=1

βie2
i (t, x)dx

≤ −2T0

Tc
min
i∈ I⃗

{βi}V
q+1

2
1 (t).

(25)
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Then, substituting (11), (14), (15), (24) and (25) into (23), we have

£V1(t) ≤
∫

Ω

n

∑
i=1

[
(−λi − 2ai + ηi)e2

i (t, x) +
m

∑
j=1

L f
j |bij|(e2

i (t, x) + ε2
j (t, x))

]
dx

− 2T0

Tc
min
i∈ I⃗

{αi}V
p+1

2
1 (t)− 2T0

Tc
min
i∈ I⃗

{βi}V
q+1

2
1 (t).

(26)

Similarly, we have

£V2(t) ≤
∫

Ω

m

∑
j=1

[
(−λ̄j − 2āj + η̄j)ε

2
j (t, x) +

n

∑
i=1

Lg
i |b̄ji|(e2

i (t, x) + ε2
j (t, x))

]
dx

− 2T0

Tc
min
j∈ J⃗

{γj}V
p+1

2
2 (t)− 2T0

Tc
min
j∈ J⃗

{δj}V
q+1

2
2 (t).

(27)

Therefore, we can find

£V(t) = £V1(t) + £V2(t)

≤
∫

Ω

[ n

∑
i=1

[
− λi − 2ai + ηi +

m

∑
j=1

(L f
j |bij|+ Lg

i |b̄ji|)e2
i (t, x)

]
+

m

∑
j=1

[
− λ̄j − 2āj + η̄j +

m

∑
j=1

L f
j (|bij|+ Lg

i |b̄ji|)ε2
j (t, x)

]]
dx

− 2T0

Tc
min
i∈ I⃗

{αi}V
p+1

2
1 (t)− 2T0

Tc
min
i∈ I⃗

{βi}V
q+1

2
1 (t)

− 2T0

Tc
min
j∈ J⃗

{γj}V
p+1

2
2 (t)− 2T0

Tc
min
j∈ J⃗

{δj}V
q+1

2
2 (t)

≤
∫

Ω

[
max

i∈ I⃗
{yi}

n

∑
i=1

e2
i (t, x) + max

j∈ J⃗
{zj}

m

∑
j=1

ε2
j (t, x)

]
dx

− 2T0

Tc
min

{
min
i∈ I⃗

{αi}, min
j∈ J⃗

{γj}
}[

V
p+1

2
1 (t) + V

p+1
2

2 (t)
]

− 2T0

Tc
min

{
min
i∈ I⃗

{βi}, min
j∈ J⃗

{δj}
}[

V
q+1

2
1 (t) + V

q+1
2

2 (t)
]
.

Applying Lemma 1, we have

£V(t) ≤T0

Tc

[ Tc

T0
max

{
max

i∈ I⃗
{yi}, max

j∈ J⃗
{zj}

} ∫
Ω

[ n

∑
i=1

e2
i (t, x) +

m

∑
j=1

ε2
j (t, x)

]
dx

− 2 min
{

min
i∈ I⃗

{αi}, min
j∈ J⃗

{γj}
}

V
p+1

2 (t)− 2
3−q

2 min
{

min
i∈ I⃗

{βi}, min
j∈ J⃗

{δj}
}

V
q+1

2 (t)
]
.

Then, we can deduce that

£V(t) ≤ T0

Tc

[
kV(t)− ψV

p+1
2 (t) − φV

q+1
2 (t)

]
. (28)

Therefore, based on Equations (19) and (28) andaccording to Lemma 3, the drive–
response system in (1) and (2) achieves PDT stochastic synchronization with predefined-
time Tc under the controller in (20). The proof is completed.

Remark 2. Designing a controller is crucial for studying the synchronization of neural network
systems. In this paper, we have proposed a novel controller that is simpler compared to the one
mentioned in [18]. Our controller consists only of two terms, yet still achieves high quality PDT
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synchronization for the drive–response system in (1) and (2). This simplicity makes our controller
more applicable in practical scenarios and can potentially save on control costs.

In Theorem 2, we discussed the PDT synchronization of BAM neural networks in-
volving reaction–diffusion, impulsive, and stochastic effects. However, if we remove the
reaction–diffusion term from the drive systems in (1) and (2), these systems can be regarded
as impulsive BAM neural networks with stochastic perturbations:

dvi(t) =[−aivi(t) +
m

∑
j=1

bijhj(wj(t)) + Ii]dt + ϱi(t, vi(t))dω(t), t ̸= tτ ,

dwj(t) =[−ājwj(t) +
n

∑
i=1

b̄jigi(vi(t)) + Jj]dt + ϱ̄j(t, wj(t))dω(t), t ̸= tτ ,

∆vi(tτ) = vi(t+τ )− vi(t−τ ) = (ξi − 1)vi(tτ),

∆wj(tτ) = wj(t+τ )− wj(t−τ ) = (ξ̄ j − 1)wj(tτ),

(29)



dṽi(t) =[−ai ṽi(t) +
m

∑
j=1

bijhj(w̃j(t)) + Ii

+ ui(t)]dt + ϱi(t, ṽi(t))dω(t), t ̸= tτ ,

dw̃j(t) =[−ājw̃j(t) +
n

∑
i=1

b̄jigi(ṽi(t)) + Jj

+ vj(t)]dt + ϱ̄j(t, w̃j(t))dω(t), t ̸= tτ ,

∆ṽi(tτ) = ṽi(t+τ )− ṽi(t−τ ) = (ξi − 1)ṽi(tτ),

∆w̃j(tτ) = w̃j(t+τ )− w̃j(t−τ ) = (ξ̄ j − 1)w̃j(tτ).

(30)

The relevance of PDT synchronization in the mentioned systems was considered in
Theorem 2, Corollary 3, and Corollary 4 of reference [33]. This simplification allows us to
focus solely on the impulsive dynamics and the stochastic influences on the synchroniza-
tion behavior.

Taking controllers ui(t) and vj(t) in System (30) as follows:
ui(t) =− T0

Tc

[
αisign(ei(t))e

p
i (t) + βisign(ei(t))e

q
i (t)

]
,

vj(t) =− T0

Tc

[
γjsign(ε j(t))ε

p
j (t) + δjsign(ε j(t))ε

q
j (t)
]
,

(31)

where αi, βi, γj, δj, p and q are positive constants for i ∈ I⃗, j ∈ J⃗ and p, q satisfy 0 ≤ p < 1,
q > 1, then letting

y̌i = −2ai + ηi +
m

∑
j=1

(L f
j |bij|+ Lg

i |b̄ji|,

žj = −2āj + η̄j +
n

∑
i=1

(L f
j |bij|+ Lg

i |b̄ji|),

ǩ = max
{

max
i∈ I⃗

{y̌i}, max
j∈ J⃗

{žj}
}

,

the following result holds true.

Corollary 1. Suppose that the Assumption 1 and 2 hold true and that the control gains in (31)
satisfy the inequality ǩ < min

{
ψ, φ,− Tc

T0

ln ζ
ντ

}
. Then, the drive–response system in (29) and (30)

achieves PDT stochastic synchronization under the controller in (31) .
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If the original system in (1) and (2) does not have any stochastic perturbations, then
the following drive system can be derived:

dvi(t) =
[ l

∑
h=1

Dih
∂2vi(t, x)

∂x2
h

− aivi(t, x)

+
m

∑
j=1

bij f j(wj(t, x)) + Ii

]
dt, t ̸= tτ ,

dwj(t) =
[ l

∑
h=1

D̄jh
∂2wj(t, x)

∂x2
h

− ājwj(t, x)

+
n

∑
i=1

b̄jigi(vi(t, x)) + Jj

]
dt, t ̸= tτ ,

∆vi(tτ , x) = (ξi − 1)vi(tτ , x),

∆wj(tτ , x) = (ξ̄ j − 1)wj(tτ , x)

(32)

with the corresponding response system

dṽi(t) =
[ l

∑
h=1

Dih
∂2ṽi(t, x)

∂x2
h

− ai ṽi(t, x)

+
m

∑
j=1

bij f j(w̃j(t, x)) + Ii + ui(t, x)
]
dt, t ̸= tτ ,

dw̃j(t) =
[ l

∑
h=1

D̄jh
∂2w̃j(t, x)

∂x2
h

− ājw̃j(t, x)

+
n

∑
i=1

b̄jigi(ṽi(t, x)) + Jj + ūj(t, x)
]
dt, t ̸= tτ ,

∆ṽi(tτ , x) = (ξi − 1)ṽi(tτ , x),

∆w̃j(tτ , x) = (ξ̄ j − 1)w̃j(tτ , x).

(33)

Now, denoting

ȳi = −λi − 2ai +
m

∑
j=1

(L f
j |bij|+ Lg

i |b̄ji|),

z̄j = −λ̄j − 2āj +
n

∑
i=1

(L f
j |bij|+ Lg

i |b̄ji|),

k̄ = max

{
max

i∈ I⃗
{ȳi}, max

j∈ J⃗
{z̄j}

}
,

we have the following result.

Corollary 2. Suppose that Assumptions 1 and 2 are satisfied; then, the drive–response system in
(32) and (33) exhibits PDT synchronization in probability under the controller in (7) if the control
gains αi, βi, γj and δj satisfy the inequality k̄ < min

{
ψ, φ,− Tc

T0

ln ζ
ντ

}
.

Remark 3. In previous works [32–34,41], the authors successfully achieved FXT and PDT synchro-
nization of neural networks with or without stochastic perturbations by designing a controller that
incorporates a discontinuous sign function. However, when the synchronization approaches zero,
the chattering effect caused by the function’s discontinuity can result in a decline in synchronization
performance. To address this issue, in Theorems 1 and 2 and Corollary 2 we have proposed a novel
continuous controller that avoids the use of a discontinuous sign function.



Mathematics 2024, 12, 1204 15 of 19

Remark 4. In previous studies [32–34,38,41], researchers have successfully achieved FXT and
PDT synchronization in different types of impulsive neural networks. However, there is a lack of
research on PDT synchronization in stochastic impulsive reaction–diffusion BAM neural networks.
In this paper, we have addressed this gap by proposing a new controller to exhibit FXT and PDT
synchronization of BAM neural networks with stochastic perturbations, reaction–diffusion terms,
and general impulsive effects. The results obtained from our study have broader applicability.

4. Numerical Examples

In this section, we compare the numerical results with our theoretical predictions
and evaluate the effectiveness of the proposed methods and models by implementing the
Euler–Maruyama method in Python.

Example 1. Consider the following impulsive stochastic BAMNNs with reaction–diffusion term

dvi(t) =
[

Di
∂2vi(t, x)

∂x2 − aivi(t, x) +
3

∑
j=1

bij f j(wj(t, x))

+ Ii

]
dt + ϱi(t, vi(t, x))dω(t), t ̸= tτ ,

dwj(t) =
[

D̄j
∂2wj(t, x)

∂x2 − ājwj(t, x) +
3

∑
i=1

b̄jigi(vi(t, x))

+ Jj

]
dt + ϱ̄j(t, wj(t, x))dω(t), t ̸= tτ ,

∆vi(t+τ , x) = ξivi(tτ , x),

∆wj(t+τ , x) = ξ̄ jwj(tτ , x)

(34)

in a one-dimensional case for space Ω, where Di = D̄j = 1, hl = 5, a1 = a2 = a3 = 1.222,
ā1 = ā2 = ā3 = 1.1280, b11 = 1.8150, b12 = −4.6464, b13 = −4.6464, b21 = −4.6464,
b22 = 1.5972, b23 = −6.3888, b31 = −4.6464, b32 = 6.3888, b33 = 1.4520, b̄11 = 1.9800,
b̄12 = −5.0688, b̄13 = −5.0688, b̄21 = −5.0688, b̄22 = 1.7424, b̄23 = −6.9696,
b̄31 = −5.0688, b̄32 = 6.9696, b̄33 = 1.5840, {Ii} = {Jj} = 0, {ξi} = {ξ̄ j} = 0.58
and where f j(u) = tanh(u), gi(u) = tanh(u), ϱ1(u) = ϱ2(u) = ϱ3(u) = 0.21u, and
ϱ̄1(u) = ϱ̄2(u) = ϱ̄3(u) = 0.21u. Figures 2 and 3 are the time-evolution diagram of System (34)
when its initial values are r1 = 0.0517 sin( 3x

5 ), r2 = 0.2146 sin( 3x
5 ), r3 = 0.4863 sin( 3x

5 ),
s1 = 1.0239 sin( 3x

5 ), s2 = 1.1400 sin( 3x
5 ), s3 = 2.7070 sin( 3x

5 ), indicating that the system
has a chaotic attractor.
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Figure 2. The chaotic attractor of System (34).
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Figure 3. The chaotic attractor of System (34) when x = −4 is fixed; v(t, x) (left), w(t, x) (right).

The response system of System (34) is

dṽi(t) =
[

Di
∂2ṽi(t, x)

∂x2 − ai ṽi(t, x) +
m

∑
j=1

bij f j(w̃j(t, x))

+ Ii + ui(t, x)
]
dt + ϱi(t, ṽi(t, x))dω(t), t ̸= tτ ,

dw̃j(t) =
[

D̄j
∂2w̃j(t, x)

∂x2 − ājw̃j(t, x) +
n

∑
i=1

b̄jigi(ṽi(t, x))

+ Jj + ūj(t, x)
]
dt + ϱ̄j(t, w̃j(t, x))dω(t), t ̸= tτ ,

∆ṽi(t+τ , x) = ξi ṽi(tτ , x),

∆w̃j(t+τ , x) = ξ̄ jw̃j(tτ , x),

(35)

where k1 = maxi∈ I⃗1
{yi} = −0.027, k2 = maxj∈ J⃗1

{zj} = 0.161, k = Tc
T0

max{k1, k2} = 0.1378,

L f
j = Lg

i = 1, ηi = η̄j = 0.1, and i ∈ I⃗1 ≜ {1, 2, 3}, j ∈ J⃗1 ≜ {1, 2, 3}. Setting parameters
α1 = α2 = α3 = 6, β1 = β2 = β3 = 6.3, γ1 = γ2 = γ3 = 4.8, δ1 = δ2 = δ3 = 4.2, p = 0.4,
and q = 1.6 and setting the preassigned-time as Tc = 0.75, Assumptions 1 and 2 hold
true and inequality k < min{ψ, ϕ,− Tc

T0

ln ζ
ντ

}= min{9.6, 6.8229, 0.9333} is satisfied, where
T0 = 0.8755. As a result, according to Theorem 2, the response system of the drive system
shows convergence to the desired synchronization in preassigned-time Tc = 0.75, which
is less than T2 = 0.8251. This validates the effectiveness of the controller in achieving
predefined-time synchronization. The simulation results in Figures 4 and 5 provide further
evidence of the synchronization and robustness of the system.

Figure 4. The evolution diagram of e1(t, x) (left), e2(t, x) (middle), and e3(t, x) (right).

Figure 5. The evolution diagram of ε1(t, x) (left), ε2(t, x) (middle), and ε3(t, x) (right).
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Remark 5. From Figure 2, it is evident that the BAM neural networks exhibit hyperchaotic
attractors due to the combined effects of impulse and random noise, leading to enhanced associative
memory capabilities. Figures 3 and 4 further illustrate that the error system converges to zero
within preassigned-time Tc, as stated in Theorem 2. This convergence is more precise than the time
T2 mentioned in Theorem 1. When compared to the previous works referenced in [38,39,41,43],
the findings in this paper offer a more practical and applicable approach.

5. Conclusions

In this paper, we have focused on investigating the FXT and PDT synchronization
of impulsive reaction–diffusion BAM neural networks with stochastic perturbations. We
started by introducing some relevant background information on FXT and PDT synchro-
nization and stochastic neural networks. Building upon previous research in these areas, we
then combined the effects of impulse and stochastic perturbations in BAM neural networks.
In addition, we designed a linear controller for the system and derived sufficient conditions
for ensuring the FXT and PDT synchronization of the drive–response systems using the
Lyapunov function method. Finally, we have provided a numerical example to verify
the theoretical results obtained with the proposed model. However, fuzziness is often
unavoidable in numerous dynamical systems. It can allow the network to handle uncertain
and ambiguous information, thereby improving its robustness and adaptability [31,38,41].
In this paper, we did not consider fuzzy terms. In future work, we may concentrate on
synchronization of BAM neural networks with fuzzy terms as a means of enhancing the
applicability of our dynamical system.
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