
Citation: Olivares, R.; Ravelo, C.;

Soto, R.; Crawford, B. Escaping

Stagnation through Improved Orca

Predator Algorithm with Deep

Reinforcement Learning for Feature

Selection. Mathematics 2024, 12, 1249.

https://doi.org/10.3390/math12081249

Academic Editor: Javier Sánchez

Received: 28 March 2024

Revised: 17 April 2024

Accepted: 18 April 2024

Published: 20 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Escaping Stagnation through Improved Orca Predator Algorithm
with Deep Reinforcement Learning for Feature Selection
Rodrigo Olivares 1,* , Camilo Ravelo 1 , Ricardo Soto 2 and Broderick Crawford 2

1 Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso 2362905, Chile;
camilo.ravelo@postgrado.uv.cl

2 Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile;
ricardo.soto@pucv.cl (R.S.); broderick.crawford@pucv.cl (B.C.)

* Correspondence: rodrigo.olivares@uv.cl

Abstract: Stagnation at local optima represents a significant challenge in bio-inspired optimization
algorithms, often leading to suboptimal solutions. This paper addresses this issue by proposing a hybrid
model that combines the Orca predator algorithm with deep Q-learning. The Orca predator algorithm is
an optimization technique that mimics the hunting behavior of orcas. It solves complex optimization
problems by exploring and exploiting search spaces efficiently. Deep Q-learning is a reinforcement
learning technique that combines Q-learning with deep neural networks. This integration aims to turn
the stagnation problem into an opportunity for more focused and effective exploitation, enhancing
the optimization technique’s performance and accuracy. The proposed hybrid model leverages the
biomimetic strengths of the Orca predator algorithm to identify promising regions nearby in the search
space, complemented by the fine-tuning capabilities of deep Q-learning to navigate these areas pre-
cisely. The practical application of this approach is evaluated using the high-dimensional Heartbeat
Categorization Dataset, focusing on the feature selection problem. This dataset, comprising complex
electrocardiogram signals, provided a robust platform for testing the feature selection capabilities of our
hybrid model. Our experimental results are encouraging, showcasing the hybrid strategy’s capability
to identify relevant features without significantly compromising the performance metrics of machine
learning models. This analysis was performed by comparing the improved method of the Orca predator
algorithm against its native version and a set of state-of-the-art algorithms.

Keywords: biomimetic orca predator algorithm; deep reinforcement learning; feature selection

MSC: 68T05; 68T20; 68W50; 90C59; 90C27

1. Introduction

Over the years, optimization mechanisms have significantly evolved, in tandem with
the rise in scientific knowledge, as evidenced by the considerable progress in this field of
study [1]. In this context, artificial intelligence has led the most significant innovations,
and within this realm, bio-inspired optimization algorithms, especially those employing
biomimetic approaches, have achieved significant benefits [2]. Despite their proven ef-
ficiency in solving a variety of complex optimization problems [3], these methods face
a crucial challenge: stagnation at local optima. Many works have faced this issue as a
problem to be normally solved by using sophisticated exploration techniques to visit other
places of the search spaces [4–6]. However, this stagnation can be viewed as an oppor-
tunity to exploit promising zones of the search space with more focused and controlled
diversification, potentially enhancing the algorithm’s performance and accuracy.

In swarm intelligence algorithms, the stagnation problem typically occurs when
solutions converge to a local optimum rather than the desired global optimum [7]. This is
primarily due to artificial agents being guided by local information in their vicinity, leading
to premature convergence to suboptimal solutions. When the swarm becomes trapped in

Mathematics 2024, 12, 1249. https://doi.org/10.3390/math12081249 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12081249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0582-954X
https://orcid.org/0009-0001-2228-5786
https://orcid.org/0000-0002-5755-6929
https://orcid.org/0000-0001-5500-0188
https://doi.org/10.3390/math12081249
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12081249?type=check_update&version=2

Mathematics 2024, 12, 1249 2 of 29

a local optimum, exploring other regions of the search space becomes challenging. This
convergence is altered with random exploration processes. This implies that targeted tactics
do not always enrich the search for the global optimum but are sometimes guided by a
more random process. Although this approach may open new areas for exploration [8,9], it
does not necessarily ensure a more effective path to optimal solutions.

In this research, we pioneer the synergy of the Orca predator algorithm (OPA) and deep
Q-learning (DQL), aiming to harness the strengths of both to identify and exploit promising
solutions more effectively, building on the foundational work detailed in [10]. Traditional
methodologies often fall short by prematurely converging on local optima; our strategy,
however, capitalizes on such convergences, treating them as gateways for directed exploration
towards areas of promise. The selection of OPA was meticulous, driven by its intricate
parameter requirements and the profound influence of its calibration. This methodology
is designed to be adaptable and suitable for application to other techniques with similar
functional characteristics. The fusion of OPA and DQL marks a notable innovation in tackling
optimization challenges, merging OPA’s biomimetic prowess in swiftly pinpointing areas
worth exploring with DQL’s precision in refining searches within these zones.

Despite our proposal’s significant advancements, we also face challenges inherent in
integrating optimization techniques with deep learning algorithms [11]. One of the main
challenges in this field is the management of high-dimensional search spaces, which often
lead to a higher probability of generating similar solutions. Additionally, the computational
complexity of combining OPA with DQL raises practical concerns regarding computational
resources and execution time, particularly in large-scale problems [12]. We acknowledge
the potential of our approach in various optimization scenarios while also considering that
its applicability and effectiveness may need to be tailored to the specific characteristics and
complexities of each unique problem set.

The proposal will be evaluated on the feature selection (FS) problem, aiming to identify
a subset of features that offers comparable results with less computational effort. This is
particularly relevant in datasets with irrelevant, noisy, and high-dimensional data [13,14].
The dataset selected for evaluation is the Heartbeat Categorization Dataset [15], available
on Kaggle. This dataset contains electrocardiogram signals of heartbeats, which can be
normal or affected by various arrhythmias and myocardial infarctions. The dataset includes
188 features, reflecting the dimensionality of our problem. To validate our proposal, the
improved Orca predator algorithm will be rigorously compared with its native version
and various established techniques already considered state-of-the-art, underscoring its
competitive edge and potential for setting new benchmarks in the field.

This research is committed to exploring the frontiers of bio-inspired optimization
methods and machine learning, seeking not only to advance in theory and methodology
but also in the practical application of these techniques to real-world problems. With a
focus on feature selection in complex datasets, this study aims to overcome limitations and
pave new paths for future research in this exciting and rapidly evolving field.

The structure of this work is presented as follows: Section 2 provides a robust analysis of
the current work on hybridizations between learning techniques and metaheuristics. Section 3
details the conceptual framework of the study, emphasizing the biomimetic principles of
OPA, the formal description of DQL, and the formulation of FS. Section 4 explains how
reinforcement learning is integrated into the Orca predator algorithm. Section 5 outlines the
phases of the experimental design. Section 6 discusses the results achieved, underscoring
the approach’s effectiveness in feature selection. Finally, the conclusions and future work are
presented in Section 7.

2. Related Work

In the realm of computational intelligence, mainly biomimetic algorithms, there has
been a concerted and vigorous effort to enhance the search capabilities of these algorithms.
This endeavor has involved not only the augmentation of existing models with more
sophisticated decision-making and optimization strategies but also the integration of in-

Mathematics 2024, 12, 1249 3 of 29

novative computational techniques that mimic natural processes more closely [16]. These
improvements have been manifested in numerous ways, from increased speed and accu-
racy in finding optimal solutions to a more profound ability to tackle high-dimensional and
dynamically changing environments. Initial strides have been made towards devising new
strategies for swarm intelligence algorithms, augmenting their search capabilities through
formulations specifically designed to modulate the balance between exploration and ex-
ploitation. These efforts underscore the potential of bio-inspired methods to autonomously
modulate their behavior. Some recent examples can be seen in [17–26].

Swarm-based intelligence methods have firmly established themselves as a robust frame-
work for navigating and optimizing search spaces. However, the integration of machine
learning into these algorithms represents a pivotal advancement, significantly amplifying their
efficacy [27]. By harnessing machine learning, these algorithms gain unprecedented capabilities
to learn from, adapt to, and effectively address the intricacies of complex problem spaces.

This synthesis of swarm intelligence and machine learning facilitates the creation of
algorithms that not only traverse search spaces with enhanced efficiency but also demon-
strate a superior ability to identify and utilize optimal solutions across varied problem
domains. This interdisciplinary fusion is driving noteworthy progress in computational
intelligence, equipping swarm-based optimization strategies with a level of adaptability
and learning proficiency previously unattainable [28,29].

Such evolutionary strides are crucial for the development of sophisticated methods
tailored to meet the challenges posed by complex optimization landscapes. At the heart
of this transformative shift is the goal to harmonize the inherent exploratory capabilities of
swarm intelligence algorithms with the predictive and analytical prowess of machine learning.
Achieving this equilibrium ensures a dynamic interplay between exploration and exploitation,
enabling the algorithms to navigate and solve complex problems more effectively [30].

Exploring closer the fusion of metaheuristics with reinforcement learning unveils a
robust corpus of research dedicated to augmenting the efficiency of optimization algorithms
through this multidisciplinary approach [31]. This integration has led to significant ad-
vancements across several research domains. Innovations in local search optimization [32],
dynamic parameter tuning [33], and the identification of promising search areas represent
key areas of progress [34]. Studies have demonstrated the efficacy of this integration in
enhancing algorithmic intelligence and adaptability, contributing to fields ranging from
optimization challenges in theoretical contexts to practical applications like neural net-
work training and cloud computing load balancing [35,36]. This collective body of work
highlights a pivotal shift towards more sophisticated, efficient, and adaptive optimization
strategies capable of addressing complex problems across a wide range of disciplines [37].

Integrating bio-inspired techniques and machine learning also plays a fundamental
role in feature selection. This approach is an essential component in the effectiveness of
machine learning models. Recent research has explored various methodologies and tech-
niques to enhance feature selection. For instance, ref. [38] offers a comprehensive review of
the use of metaheuristic algorithms in feature selection, suggesting paths for future research
in developing or modifying these algorithms for classification tasks. In [39], the perfor-
mance of recent metaheuristic algorithms in feature selection is evaluated, highlighting the
challenges and opportunities in this field.

The models presented in [40,41] demonstrate the application of hybrid approaches that
combine optimization techniques and deep reinforcement learning for feature selection in
network intrusion detection. Additionally, ref. [42] compiles a series of research on feature
selection, where a taxonomy of objective functions is presented, and related metrics are
classified into four categories: classifiers, metaheuristics, features, and statistical tests. This
classification facilitates effective comparison of different feature selection methodologies,
focusing on metaheuristics’ implementation and hybridization strategies.

Finally, ref. [43] introduces a technique for predicting customer churn in the telecom-
munications sector. The Archimedes optimization algorithm is employed for optimal
feature selection, combined with a hybrid deep learning model for customer churn predic-

Mathematics 2024, 12, 1249 4 of 29

tion. The study is notable for its focus on efficient feature selection and hyperparameter
tuning, achieving significant improvements in the accuracy and effectiveness of the pre-
dictive model. The study’s results indicate the high efficiency of the proposed technique
compared to other methods, achieving outstanding accuracy.

3. Preliminaries

In this section, we introduce the conceptual framework of our study, focusing on the
biomimetic principles underlying the Orca predator algorithm, providing a formal description
of deep reinforcement learning through deep Q-learning, and outlining the formulation of
feature selection. This framework forms the foundation of our approach, integrating these
distinct yet complementary components to address the challenges at hand.

3.1. Biomimetic Orca Predator Algorithm

The Orca predator algorithm is inspired by the predatory tactics of orcas, leverag-
ing their strategic hunting behaviors as a foundation for its operational framework [44].
Recognized for their complex social structures and cooperative hunting strategies, orcas
utilize echolocation to navigate and communicate within their aquatic territories, orches-
trating coordinated assaults on their prey. In this algorithmic model, a potential solution is
conceptualized as an n-dimensional vector, with the collective solution space denoted by
X = [x1, x2, . . . , xn]T .

OPA operates through two primary stages: the chase and attack phases, each em-
bodying distinct aspects of orca hunting patterns. The chase phase comprises two distinct
actions: herding the prey towards the water’s surface and surrounding it to prevent es-
cape. This is regulated by a parameter p, which dictates the likelihood of executing either
action, based on a comparison with a random value r within the interval [0, 1]. Should
p < r, the algorithm opts for the herding strategy; otherwise, it proceeds with encirclement.
The subsequent attack phase mirrors the orcas’ approach to narrowing the gap with their
prey, employing precision and cooperation to secure their target. The efficacy of OPA
hinges on its ability to mimic these intricate behaviors, requiring accurate sensory data and
collaborative decision-making processes to optimize the search for solutions.

3.1.1. Chase Phase

This strategy operates under two distinct environmental scenarios. The initial scenario
emerges when a diminutive shoal of fish constricts the spatial domain available for the
orca’s navigation. Conversely, the second scenario unfolds as an expansive shoal of fish
broadens the orca’s operational hunting territory. In response to these varying conditions,
the algorithm delineates two specific approaches for engaging with the prey.

vt
chase,1,i = a× (d× xt

best − F× (b×Mt + c× xt
i)) (1)

vt
chase,2,i = e× xt

best − xt
i (2)

M =
∑N

i=1 xt
i

N
∧ c = 1− b (3)

xnew =

xt
chase,1,i = xt

i + vt
chase,1,i i f q > rand

xt
chase,2,i = xt

i + vt
chase,2,i i f q ≤ rand

(4)

The dynamics of velocity and spatial positioning are computed by Equations (1)–(4).
In this strategy, vt

chase,1,i delineates the velocity according to the initial chase tactic, while
xt

chase,1,i marks the corresponding spatial coordinate of the i-th orca at moment t. Analogously,
vt

chase,2,i and xt
chase,2,i are defined for the alternative chase strategy. The variable xt

i is the
general coordinate of the i-th orca at time t, and xt

best is the optimal position among the orcas,
signifying proximity to the prey or the most efficient strategy at time t. The term M quantifies
the mean position within the orca assembly, with a, b, and d representing random variables

Mathematics 2024, 12, 1249 5 of 29

uniformly distributed in [0, 1], and e spans a range of [0, 2]. The parameter F encapsulates
the influence or attractive force exerted by one agent upon another, and q, lying within [0, 1],
dictates the likelihood of selecting a specific method for prey pursuit.

With the prey now accessible at the water’s surface, the subsequent maneuver involves
encircling the target. Orcas, utilizing sonar for communication, ascertain their ensuing
positions through coordination with proximate members of their pod. It is posited that
orcas adjust their locations based on the coordinates of three orcas chosen at random.
The calculation of their positions post-maneuver is articulated through Equations (5)–(7),
providing a mathematical representation of this coordinated movement.

xt
chase,3,i,k = xt

j1,k + u× (xt
j2,k − xt

j3,k) (5)

u = 2× (rand− 0.5)× MaxIter− t
MaxIter

(6)

xnew =

xt
chase,i = xt

chase,i i f f (xt
chase,i) < f (xt

i)

xt
chase,i = xt

i i f f (xt
chase,i) ≥ f (xt

i)
(7)

where MaxIter denotes the maximal iteration count, whereas j1, j2, and j3 represent three
distinct orcas chosen at random from the collective, ensuring j1 ̸= j2 ̸= j3. The variable
xt

chase,3,i,k corresponds to the spatial coordinate of the i-th orca subsequent to adopting the
tertiary strategy for pursuit at the iteration t.

Throughout the chase, orcas leverage acoustic signals to ascertain the prey’s where-
abouts, modulating their spatial orientation in response. This instinctive behavior prompts
orcas to either persist in the pursuit, contingent on the perceived proximity of the prey, or
to halt and maintain their current position if the prey seems to be distancing itself.

3.1.2. Attack Phase

After encircling their prey, orcas execute a coordinated attack by taking turns entering
the formed circuit to feed. Upon feeding, they revert to their original positions within the
enclosure to allow another orca to partake in the feeding process. Assuming that four orcas
correspond to the optimal attack positions within the circle, other orcas may choose to join
the circuit based on their positional preferences. The direction in which orcas return to the
enclosure circle after feeding, in preparation for replacement, is determined by the positions
of randomly selected neighboring orcas. This behavioral pattern is precisely characterized
through Equations (8)–(10).

vt
attack,1,i = (xt

1st + xt
2nd + xt

3rd + xt
4rd)/4− xt

chase,i (8)

vt
attack,2,i = (xt

chase,j1 + xt
chase,j2 + xt

chase,j3)/3− xt
i (9)

vt
attack,i = xt

chase,i + g1 × vt
attack,1,i + g2 × vt

attack,2,i (10)

In this context, vt
attack,1,i symbolizes the velocity vector of the i-th orca engaged in prey

pursuit at iteration t, while vt
attack,2,i denotes the velocity vector of the i-th orca returning to

the rendezvous circuit during the same iteration t. The positions of the four orcas optimally
positioned within the circuit are represented by xt

1st, xt
2nd, xt

3rd, and xt
4th. Additionally, j1,

j2, and j3 are three orcas randomly selected from the population during the pursuit, with
the constraint j1 ̸= j2 ̸= j3. The positional update of the i-th orca after the attack phase
at iteration t is expressed as vt

attack,i. Furthermore, g1 is a random value chosen from the
interval [0, 2], and g2 is a random number within the range [−2.5, 2.5].

Subsequent to this phase, orcas employ sonar to detect the prey’s location and adjust
their positions accordingly, mirroring the pursuit process. The lower boundary limit (lb) of
the problem’s potential range dictates the orcas’ positional adjustments, conforming to the
stipulations outlined in the algorithm proposed by [44].

Mathematics 2024, 12, 1249 6 of 29

Algorithm 1 details the orca predator procedure. The pseudocode requires the defi-
nition of inputs such as population size (S), probabilities for selecting methods (p and q),
and dimensionality (n), aiming to produce the best solution. Thus, the algorithm begins by
initializing the objective function and randomly computing the first generation of S orcas
(Line 1). For each orca and each decision variable, positions and velocities are assigned
randomly (Lines 4–6). The fitness of each orca is calculated using the objective function
defined in the optimization problem, and the best orca is identified. If an orca is better than
the best solution achieved, then this solution is updated.

Algorithm 1: Pseudocode for the orca predator method.
Input: S: population size; p: probability to select driving prey or encircling prey method; q: probability

to select a method when the orca group is small or large; n: dimensionality.
Result: The best solution achieved

1 objective function f (x⃗), x⃗ = ⟨x1, . . . , xn⟩
2 // produce the first generation of S orcas, randomly.
3 foreach orca o, (∀ i = {1, . . . , S}) do
4 foreach variable j, (∀ j = {1, . . . , n}) do
5 position xt=0

ij ← Random() and velocity vt=0
ij ← Random()

6 end
7 Compute fitness using the objective function of the problem
8 end
9 Find the current best solution among the population

10 foreach orca o, (∀ i = {1, . . . , S}) do
11 if orca o is better than best solution achieved then
12 Update best solution achieved
13 end
14 end
15 // produce generations of S orcas.
16 while iteration up to limit do
17 foreach orca o, (∀ i = {1, . . . , S}) do
18 Select randomly three orcas
19 if p < Random() then
20 if q > Random() then
21 foreach variable j, (∀ j = {1, . . . , n}) do
22 Chase phase for driving the prey via Equations (1)–(4)
23 end
24 else
25 foreach variable j, (∀ j = {1, . . . , n}) do
26 Chase phase for encircling the prey via Equations (5)–(7)
27 end
28 end
29 else
30 foreach variable j, (∀ j = {1, . . . , n}) do
31 Attack phase via Equations (8)–(10)
32 end
33 end
34 Compute fitness using the objective function of the problem
35 end
36 foreach orca o, (∀ i = {1, . . . , S}) do
37 if orca o is better than best solution achieved then
38 Update best solution achieved
39 end
40 end
41 end
42 return post-process results and visualization

Subsequently, the algorithm enters a loop to produce generations of orcas until a
predefined iteration limit is reached (Line 16). Within this loop, each orca is processed. The
algorithm selects three random orcas (Line 18). Based on the probability p, the algorithm
decides whether to perform the chase phase to drive the prey or encircle the prey for each
variable (Lines 19–29). If p is more significant than a random value, the chase phase is
executed by either driving the prey or encircling it based on the value of q (Lines 20–28). If
p is less than a random value, the attack phase is performed for each variable (Lines 29–33).

Mathematics 2024, 12, 1249 7 of 29

The fitness of each orca is computed again (Line 34), and the best solution achieved is
updated if an orca is found to be better (Lines 36–40). The algorithm concludes by returning
the post-processed results and visualization (Line 42).

3.2. Deep Reinforcement Learning

Reinforcement learning (RL) is an advanced machine learning technique focusing on
autonomous agents striving to maximize rewards through their actions [45]. These agents
learn by trial and error, identifying actions that lead to greater rewards, both immediate
and long-term, a distinguishing feature of RL [46].

In the RL process, agents continually interact with their environment, involving
key components such as the value function, policy, and occasionally, a model of the
environment [47–50]. The value function evaluates the effectiveness of the agent’s actions
in the environment, and the agent’s policy adjusts based on received rewards.

Q-learning, a fundamental technique in RL, focuses on establishing a function to assess
the effectiveness of a specific action at in a given state st at time t [51,52]. The Q function
updates using Equation (11):

Q(st, at)← Q(st, at) + α×
[
rt+1 + γ×max

a
Q(st+1, a)−Q(st, at)

]
(11)

where α is the learning rate and γ is the discount factor. rt+1 is the reward obtained after
performing action at.

Deep Reinforcement Learning (DRL) integrates deep learning techniques with RL, en-
abling addressing problems with greater complexity and dimensionality [53]. In DRL, deep
neural networks approximate value functions or policies. Deep Q-Learning is a DRL technique
that uses a neural network to approximate the Q value function to measure the expected
cumulative reward for acting in a particular state. The Q value function learns through an
iterative process when the agent takes actions in the environment and receives rewards.

In DQL, the Q function is defined as Q(st, at; θ), where st represents the current state,
at the action taken by the agent at time t, and θ the network weights [54]. The Q function is
updated by using Equation (12):

Q(st, at; θ)← Q(st, at; θ) + α×
[

rt+1 + γ×max
at+1

Q(st+1, at+1; θ−)−Q(st, at; θ)

]
(12)

where, st+1 and at+1 represent the new state and action at time t + 1, respectively. The
parameter α, known as the learning rate, regulates the magnitude of the update to the Q
value function at each training step. A high value of α accelerates the adaptation of the
Q function to environmental changes, being beneficial in the initial stages of learning or
in highly dynamic environments. However, an excessively high learning rate can cause
a disproportionate response to random variations in rewards, leading to instability in
learning [54]. On the other hand, a lower α promotes a more gradual and stable learning
process but may prolong the time required to achieve convergence. The factor γ, known as
the discount factor, assigns relevance to future rewards compared to immediate ones. A
value close to 1 encourages the agent to give almost equal importance to long-term rewards
as to current ones, thereby incentivizing strategies that aim to maximize long-term benefits.
In contrast, a lower γ prioritizes short-term rewards, which is advantageous in scenarios
where future rewards are less predictable or when effective policies are required in reduced
time horizons. Finally, rt+1 is the reward received after executing action at in state st. θ−

represents the parameters of a target neural network that is periodically updated with the
values of θ to improve training stability.

A distinctive feature of DQL is its use of replay memory, which constitutes a crucial
part of its learning architecture [55,56]. Replay memory stores the agent’s past experiences
in the form of tuples ⟨st, at, rt+1, st+1⟩. Each tuple represents an individual experience of
the agent, where st is the current state, at the action taken, rt+1 the reward received, and
st+1 the subsequent state. This approach of storing and reusing past experiences aids in

Mathematics 2024, 12, 1249 8 of 29

enhancing the efficiency and effectiveness of the learning process, allowing the agent to
learn from a more diverse set of experiences. With that, it reduces the correlation between
consecutive learning sequences, a critical aspect to avoid over-dependence on recent data and
to promote more generalized learning. Additionally, the mini-batch technique is implemented
for sampling experiences from replay memory during the training process [57]. Instead of
learning from a single experience at each step, the algorithm randomly selects a mini-batch of
experiences. This batch sampling method contributes to the stability of learning by promoting
the independence of samples and allows for more efficient use of computational resources.

Finally, learning in DQL is guided by a loss function according to Equation (13), which
measures the discrepancy between the estimated Q and target values.

Loss(θt) = E×
[
(y−Q(st, at; θ))2

]
(13)

where y is the target value, calculated by Equation (14):

y = rt+1 + γ×max
at+1

Q(st+1, at+1; θ−) (14)

Here, rt+1 is the reward received after taking action at in state st, and γ is the dis-
count factor, which balances the importance of short-term and long-term rewards. The
formulation maxa′ Q(st+1, at+1; θ−) represents the maximum estimated value for the next
state st+1, according to the target network with parameters θ−. Q(st, at; θt) is the Q value
estimated by the evaluation network for the current state st and action at, using the current
parameters θt. In each training step in DQL, the evaluation network receives a loss function
backpropagated based on a batch of experiences randomly selected from the experience
replay memory. The evaluation network’s parameter, θ, is then updated by minimizing the
loss function through the stochastic gradient descent (SGD) function. After several steps,
the target network’s parameter, θ−, is updated by assigning the latest parameter θ to θ−.
After a period of training, the two neural networks are trained stably.

Lastly, the epsilon-greedy [58] strategy in DQL crucially balances exploration and
exploitation. It does this by initially favoring exploration with a probability of ϵ for select-
ing actions randomly and gradually shifting towards exploitation, choosing actions that
maximize the Q function with a probability of 1− ϵ. As the agent gains more knowledge, ϵ
decreases, effectively transitioning from exploration to exploitation. This approach prevents
the agent from settling into suboptimal strategies, ensuring adaptability and learning from
diverse experiences.

3.3. Feature Selection

Feature selection is an integral component in data preprocessing that identifies and
selects a subset of relevant features (variables, predictors) for use in model construction [59].
It is crucial in enhancing the efficiency of machine learning models by eliminating redun-
dant and irrelevant data, thus streamlining the computational process and potentially
improving model performance [60,61].

Formally, let us consider a dataset with a set of features D = {x1, x2, x3, . . . , xn} and
a class label Y. The objective of feature selection is to find a subset D′ ⊂ D such that
|D′| < |D| and the predictive power of D′ concerning Y is maximized. This process
involves evaluating the importance of each feature in D and retaining only those that
contribute significantly to our understanding of Y.

There are three primary approaches to feature selection [62,63]: filter methods, wrap-
per methods, and embedded methods. Filter methods rank features based on statistical
measures independent of any learning algorithm. Wrapper methods use a predictive model
to score feature subsets and are computationally intensive, as they involve training models
on different subsets. Embedded methods perform feature selection as part of the model
training process and are specific to particular algorithms.

Mathematics 2024, 12, 1249 9 of 29

We focus on the wrapper approach, particularly its application in selecting features
that provide high classification accuracy while minimizing computational resources. In this
approach, subsets of features are iteratively evaluated using a specific learning algorithm,
and the subset that yields the highest classification performance is selected. This process
can be computationally expensive due to the need to train a model for each subset.

Our work utilizes an improved bio-inspired metaheuristic algorithm to optimize the
feature selection process. Each potential solution in this algorithm represents a subset of
features encoded as a binary string where one indicates the inclusion of a feature and zero
is its exclusion. The algorithm iteratively refines these solutions, guided by the learning
model’s performance on these subsets [64]. The performance of these subsets is evaluated
using metrics like F1 score and accuracy. F1 score provides a balance between precision and
recall, while accuracy measures the proportion of correctly predicted instances [65].

Feature selection is undoubtedly a vital step in the data preprocessing phase, aiding in
reducing the dimensionality of the dataset, curtailing overfitting, and enhancing the generaliz-
ability and efficiency of the learning models [61]. Therefore, our work contributes to this field
by applying an advanced metaheuristic approach to optimize the feature selection process,
thereby striking a balance between model complexity and computational efficiency.

4. Developed Solution

Our proposed solution integrates the Orca predator algorithm with deep Q-learning
for dynamically optimizing OPA’s parameters. This approach leverages the predatory
behavior of orcas and DQL’s management of large state and action spaces to enhance
feature selection efficiency. OPA, inspired by orca hunting strategies [44], offers an innova-
tive optimization approach, while DQL addresses high-dimensional space challenges in
complex combinatorial problems [66].

DQL plays an essential role in transitioning towards exploitation, particularly in the
later stages of the optimization process. As OPA explores the solution space by mimicking
orcas’ collaborative and adaptive strategies in their natural habitat, DQL refines this explo-
ration by targeting the most promising regions. This shift from exploration to exploitation
is efficiently managed through DQL’s epsilon-greedy policy, significantly enhancing the
selection of optimal actions as the model accumulates knowledge.

OPA operates as a metaheuristic where each orca represents an independent search
agent, exploring the solution space characterized by a binary vector. These vectors represent
selected features from the database, with each vector being individually evaluated through
a variety of machine learning algorithms, such as decision trees (DT), random forests
(RF), support vector machines (SVM), and extremely randomized trees (ERT). F1 score and
accuracy derived from these evaluation methods provide crucial feedback to OPA about
the quality of the solutions, thereby allowing the orcas to adjust their strategies and explore
bounded promising areas of the solution space.

DQL intervenes in this dynamic adaptive process by providing a sophisticated rein-
forcement learning-based strategy to regulate the operational parameters of OPA. DQL
accumulates experiences from the evaluations of the orcas, including rewards based on the
diversity of solutions and performance metrics. These experiences are essential for updat-
ing the decision policies in OPA, precisely calibrating the probabilities and parameters that
guide both the exploration and exploitation of the search space. Through the implemen-
tation of replay memory, DQL learns from past experiences, enabling it to anticipate and
maximize future rewards. This leads to a significant and iterative improvement in feature
selection, constantly refining the solution search process.

Figure 1 illustrates in detail the flow of the proposed solution process, highlighting
the synergy between OPA and DQL in this advanced optimization method. It underscores
how the interaction between these two components leads to a more efficient and effective
search for optimal solutions, combining OPA’s nature-inspired exploration with DQL’s
outcome-oriented and adaptive learning strategy.

Mathematics 2024, 12, 1249 10 of 29

Figure 1. Scheme of the hybrid proposal combining OPA and DQL for the feature selection problem.

The core of our methodology is embodied in the pseudocode of Algorithm 2. The
algorithm begins by taking data from a dataset, such as dimensionality and row data, trying
to find the best solution. Then, it continues by initializing a swarm of orcas and setting up
the initial state and action parameters based on performance metrics.

Algorithm 2: Pseudocode for the improved orca predator method.
Input: Data from dataset, i.e, dimensionality and row data for training.
Input: OPA’s parameters.
Result: The best solution achieved

1 . Initialize a swarm S of orcas
2 state← performance metrics
3 action← initial values for OPA’s parameter
4 while iteration up to limit do
5 foreach orca o, (∀ i = {1, . . . , S}) do
6 Select randomly three orcas
7 Update position and velocity of orca
8 Call training phase to orca o and compute its fitness via Equation (15)
9 if orca o is better than best solution achieved then

10 Update best solution achieved
11 Calculate reward based on performance metrics via Equation (16)
12 state, action← DQLProcess(state, action, reward) via Equation (18)
13 end
14 end
15 end
16 return Post-process and visualize results
17 Function DQLProcess(state):
18 Initialize Q-estimation neural network
19 Initialize memory buffer for storing experiences
20 Select action using epsilon-greedy strategy
21 Execute action and observe new state, reward
22 Store experience in memory buffer
23 if memory buffer is large enough then
24 Extract mini-batch of experiences
25 foreach experience in mini-batch do
26 Calculate target value using Q-learning
27 Update neural network with state and target value
28 end
29 Update epsilon value
30 end

Mathematics 2024, 12, 1249 11 of 29

The main loop of the hybridization continues until a specified iteration limit equal to
the original version is reached. During each iteration, every orca in the swarm is processed.
First, it selects three random orcas and updates the position and velocity of each orca. These
two steps are also equivalent to the original version. Next, a machine learning technique
is invoked to compute fitness (Line 8). This process uses the solution stored in the orca,
corresponding to an n-dimensional vector composed of zeros and ones. The machine learning
method generates a trained model only with selected columns (ones of the vector).

We strongly emphasize critical performance metrics in evaluating our machine learn-
ing model, notably the F1 score and accuracy. We have adopted a comprehensive multi-
objective strategy to enhance the model’s effectiveness. This approach does not just focus
on maximizing these essential metrics but also includes the solution diversity metric and
a reduction component aimed at optimizing the balance between the number of features
used and the total available features. This optimization is crucial for streamlining our
algorithm and making it more efficient in feature selection.

Integrating individual performance metrics into a unified measure known as the
feature efficiency index (FEI) is central to our study. The FEI is designed to capture the
holistic performance of the model by synthesizing the F1 score, accuracy, diversity of
solutions, and effectiveness of the feature reduction strategy. This composite measure
is calculated through a carefully designed linear scalarization method, as detailed in
Equation (15), allowing us to gauge the overall efficiency and effectiveness of the model in
utilizing the selected features.

FEI
max

= ∑
(i,j)i ̸=j ∈ K

min︷ ︸︸ ︷
ĉ− fi(x⃗)

ĉ− ei(x⃗best)
×ωi +

max︷ ︸︸ ︷
f j(x⃗)

ej(x⃗best)
×ωj ∧ ∑

(i,j)i ̸=j ∈ K
ω(i,j) = 1, ω(i,j) ⩾ 0 (15)

In the above formula, ω(i,j) represents the weights assigned to each pair of objective
functions, ensuring that the total influence of each function is balanced and the sum of all
weights equals 1. This normalization is critical, as it maintains the proportionality and rele-
vance of each function relative to the others, ensuring no single metric disproportionately
influences the FEI. The ĉ values represent upper bounds to minimize within single-objective
functions, ensuring that the FEI strives for optimal values across all dimensions.

The terms f(i or j)(⃗x) and e(i or j)(⃗xbest) refer to the current and best values of the objective
functions, respectively, allowing the FEI to dynamically adjust as improvements are found
during the optimization process. The objective functions f1 and f2 aim to maximize the F1
score and accuracy, respectively, while f3 seeks to minimize the diversity (heterogeneity)
of solutions, and f4 focuses on maximizing the use of non-dominant features (reduction
strategy). With that, a reward is generated based on performance metrics. Changes in the F1
score, accuracy, diversity, and reduction are computed by comparing the current values with
previous values.

reward = δ× (F1 scorenew − F1 scoreprevious) +

ϵ× (accuracynew − accuracyprevious) +

ζ × (diversityprevious − diversitynew)) +

η × (reductionprevious − reductionnew))

(16)

where δ, ϵ, ζ, and η serve as weights, each assigned to quantify the significance of corresponding
terms in the reward calculation. The terms F1 scorenew and F1 scoreprevious represent the F1 scores
of the current and previous best orcas, respectively. Similarly, accuracynew and accuracyprevious
refer to the accuracies of the current and previous best orcas, respectively. Both F1 scores and
accuracies, values close to 1 indicate a good performances.

Mathematics 2024, 12, 1249 12 of 29

Diversity is evaluated using the Euclidean distance between the positions of each pair
of orcas across the entire swarm. For a set of orcas, with each individual’s position denoted
by the vector pi, diversity is determined in accordance with Equation (17).

diversity =
2

S(S− 1)
×

S−1

∑
i=1

S

∑
j=i+1

√
n

∑
k=1

(pik − pjk)2 (17)

where S denotes the total number of orcas, n represents the dimension of the solution space,
and pik and pjk are k-th decision variables of solutions pi and pi, respectively. Values close
to 0 note a good performance. Finally, the reduction metric is calculated by determining
the percentage of columns not accessed by the most proficient orca in relation to the total
number of available columns. Again, values close to 1 indicate a good performances.

We can see that the reward function is tailored to encourage solutions that not only
enhance performance in terms of F1 score and accuracy but also maintain diversity and
utilize a reduced number of features. Next, updating of states and actions is conducted
through the DQL process (Line 12). In this process, the state is a vector composed by
the current performance metrics and the diversity of the orca swarm, and is represented
as follows:

state = [F1 score, accuracy, diversity, reduction] (18)

In the training phase of the DQL process, the formulation of states is a critical aspect, as
it provides the necessary context for decision-making [67]. This state design (Equation (18))
ensures that all critical dimensions of the problem are represented, allowing DQL to make
informed adjustments in OPA’s operational parameters. This information is compiled in
real time and feeds into DQL to facilitate continuous and adaptive adjustment decisions.

The actions in the DQL process are decisions on how to adjust OPA’s operational
parameters, identified as a, b, d, and e. These parameters are vital in defining the movement
and adaptation strategies of the orcas in OPA. Specifically, a and b control the intensity and
direction of the orcas’ movement, respectively, influencing their capacity to explore the
solution space. On the other hand, d and e determine the orcas’ sensitivity to environmental
signals, affecting their ability to adapt and converge towards optimal solutions.

In the DQL process, two key neural networks are implemented: (1) the evaluation
network, which is constantly updated with new experiences, and (2) the target network,
which provides a stable estimation of Q-function values and is periodically updated to
stabilize the learning process [68]. This approach helps mitigate issues associated with data
correlation and rapid changes in Q-estimation, which can lead to unstable learning. The loss
function in DQL is critical for calibrating the evaluation network. Huber loss, a combination of
mean squared and absolute errors, is employed, as it is less sensitive to outliers in predictions
and provides more stable training. The loss is calculated by comparing the predictions of the
evaluation network with the target values generated by the target network. Here, the gradient
descent algorithm plays a crucial role, as it adjusts the network parameters by minimizing
this loss function, allowing the model to learn from its errors effectively.

During DQL training, each accumulated experience, based on the performance and
diversity of the orcas’ solutions, contributes to updating the parameters to be improved.
The aim is to achieve an effective balance between exploring new areas and exploiting the
most promising ones in the solution space. The parameter tuning is carried out through
an iterative reinforcement learning process, where the DQL model evaluates the impact of
different configurations of these parameters on the overall system performance. Through the
reward function, DQL identifies which adjustments in these parameters enhance the efficacy
of the search, thus guiding the evolution of the exploration and exploitation strategy in OPA.

The parameters of OPA are optimized using the DQL training function, which employs
a neural network for continuous estimation of the Q-function values, along with a memory
buffer to store experiential data (referenced in Lines 18–19). The neural network facilitates
the DQL model’s learning process, enabling it to maximize expected long-term rewards by
refining its predictions based on feedback from environmental interactions. Concurrently,

Mathematics 2024, 12, 1249 13 of 29

the memory buffer plays a crucial role by preserving a record of accumulated experiences
during these interactions. Each recorded experience encapsulates the system’s current state,
the action executed, the reward obtained, and the subsequent state achieved post-action.
This historical data empowers the model to extract lessons from previous scenarios, thereby
boosting its predictive accuracy and adaptability in new situations—a critical aspect for
enhancing decision-making efficiency over time.

Action selection follows an epsilon-greedy strategy, ensuring a proper mix between
exploration and exploitation. After executing an action, the new state and reward are
observed (Lines 21–22) and stored in the memory buffer. Once sufficient experiences are
accumulated, a mini-batch is extracted to train the evaluation network. This training process
involves updating the target network with state–action pairs and their corresponding target
values, simultaneously adjusting the values of parameters (Lines 26–27).

This iterative DQL training method is reintegrated into the main algorithm, allowing
optimization cycles to continue. With each iteration, DQL adapts and improves its policy, thus
refining OPA’s search for focused exploitation in a promising area of the solution space. This
leads to more precise and efficient feature selection for machine learning models (Line 16).
This iterative procedure is repeated, progressively refining the solutions proposed by the orcas
through a reward that reflects both the quality of the solution in terms of model performance
and the exploitation of new potential solutions. With each iteration, DQL adapts, improving
its policy and refining OPA’s search for more effective exploitation of the solution space,
leading to a more precise and efficient feature selection for machine learning models.

Finally, regarding computational complexity, our metaheuristic exhibits O(kn) com-
plexity, where n denotes the dimension of the problem and k represents either the number
of iterations or the population size, encapsulating the total number of function evaluations
throughout the algorithm’s execution. We also evaluate the complexity of the DQL algo-
rithm, which is generally O(MN) [69,70], with M indicating the sample size and N the
number of network parameters, both essential for thorough dataset analysis. Despite the
potentially large values of M and N, they remain fixed, making the integration of DQL
a justifiable increase in computational demand for superior outcomes. Additionally, the
continual advancement in computing technology significantly mitigates the impact of this
heightened complexity.

5. Experimental Setup

We used a rigorous quantitative methodology to evaluate our proposal, comparing
the hybrid approach with the traditional version of the optimization algorithm. Moreover,
we tested each machine-learning method independently. This involved detailed planning,
execution, and assessment, including statistical testing and in-depth analysis.

5.1. Methodology

To evaluate the enhanced metaheuristic’s performance rigorously, we have established
a comprehensive quantitative methodology that aligns with the principles outlined in [71].
Our approach involves a comparative analysis between the solutions provided by our
proposed hybridization, the native version of the optimization algorithm, and the results
generated by machine learning working alone. For that, we employed the following
methodological strategy:

• Preparation and planning: Define specific multi-objective goals for feature selection
effectiveness, aiming to minimize the number of selected features while simultaneously
maximizing accuracy and the F1 score. Design experiments to systematically evaluate
the enhanced technique under controlled conditions, ensuring a balanced optimization
of these criteria.

• Execution and assessment: Perform a multi-faceted evaluation of the technique, as-
sessing not only the quality of the solutions generated but also the computational
efficiency and convergence properties. Employ rigorous statistical tests to compare
the performance with baseline methods. Here, to evaluate data independence and

Mathematics 2024, 12, 1249 14 of 29

statistical significance, we use the Kolmogorov–Smirnov–Lilliefors test for assessing
sample autonomy and the Mann–Whitney–Wilcoxon test for comparative analysis.
This approach involves calculating the fitness from each one executions per instance.

• Analysis and validation: Conduct thorough in-depth analysis to understand the deep
Q-learning’s parameter influence and the orca predator algorithm’s behavior on the
feature selection task. This involves iterating over a range of hyperparameters to
fine-tune the model, using the dataset to validate the consistency and stability of the
selected features. To ensure the validity of the results generated by our proposal,
we conducted tests to evaluate the final outcomes. We can assure that all simulated
experiments were carried out with reliability.

5.2. Dataset

Our research utilized the “ECG Heartbeat Categorization Dataset” from Kaggle [15],
which comprises records of ECG signals indicative of various heart conditions. These
signals are classified into five categories: Normal (N), Supraventricular (S), Ventricular
(V), Fusion (F), and Unclassified (Q). The dataset is rich, with 188 distinct features per
record, encapsulating the complexity of our problem space, represented as n. The dataset is
divided into two primary files: the training set, containing 87,554 records, and the test set,
with 21,892 records. For our analysis, we further split the test set equally into two parts:
one half (10,946 records) is utilized for cross-validation to fine-tune the model parameters,
while the remaining half is reserved for the final testing phase to evaluate the model’s
performance. This significantly reduces the risk of overfitting.

We employed a strategic sampling approach to address class imbalance during training.
For classes 1 (S), 2 (V), and 4 (Q), which had a larger number of records, we randomly
selected a subset of 1000 records each. This was conducted to ensure that these classes did
not overwhelm the learning process. In contrast, for class 3 (F), which had fewer instances,
we included all 641 available records. This selective sampling was crucial to maintain a
balanced representation across all classes, enhancing the classifier’s ability to identify each
category accurately without bias.

During the testing or prediction phase, we utilized the available records. This compre-
hensive approach in the testing phase allowed us to assess the model’s performance across
a diverse and complete range of data. In both the training and testing stages, we applied
all 188 features in the dataset to the machine learning techniques, ensuring a thorough
analysis and utilization of the available data. This exhaustive feature application was key
to comprehensively training and evaluating the machine learning models, providing us
with a detailed understanding of the dataset and the effectiveness of our approach.

5.3. Implementation Aspects

We conducted empirical assessments of the Orca predatory algorithm. These trials
involved independent executions of four distinct machine learning models: decision tree
(DT), random forest (RF), support vector machine (SVM), and extremely randomized trees
(ERT). In subsequent stages, we evaluated the hybridization of the OPA algorithm with
each of these classification techniques.

In [44], the parameter values yielding the best average performance regarding swarm
behavior are described. Based on this, we developed a set of preliminary evaluations
with a reduced test scenario in order to find the best initial configuration [72]. Setting q
to 0.9 notably boosts OPA performance, because the algorithm has more opportunities to
search for solutions in a wide search space against the exploration phase than looking for a
local search procedure. These tests generated good results, and we can observe that the
a and d parameters take values closer to 1 than 0. The b value is kept random without
unpredictable behavior. Finally, these experiments show the F value is always close to
2. Consequently, our proposal will be challenged to operate and improve in an initially
adverse situation. We extracted results from 30 runs per algorithm, each run iterating
100 times and S = 10 orcas. In order to identify how different values for the parameters

Mathematics 2024, 12, 1249 15 of 29

affect the final performance, we plotted its values against the performance metrics, enabling
us to analyze trends and optimal values that enhance the model’s effectiveness. This
analysis will reveal which parameters are critical for the algorithm’s performance.

We established the following parameters for the deep Q-learning configuration: The
state size was set to 5, with an action size of 40 to encompass a broad range of potential
parameter adjustments in OPA. We constructed a sequential neural network with dense
layers and dropout for regularization. The network consists of layers with 24 neurons each,
using ReLU activation, and a final layer of size equal to the number of possible actions (40),
with linear activation. The Huber loss function and the RMSprop optimizer with a learning
rate of 0.001 were used. Regarding the epsilon-greedy policy, we started with an epsilon
value of 1.0, decaying to a minimum of 0.01 to balance exploration and exploitation. Using
a double Q-learning approach, the network trains with random experiences from a mini-
batch during training and updating. The target network is updated every 50 training steps
to stabilize the estimation of Q-values. The initial values for parameters a, b, d, and e, used
in moving the orcas and updating their positions and velocities, are randomly generated in
the range of [0, 1] at the start of each OPA algorithm execution. Table 1 summarizes the
initial parameter values.

Table 1. Parameter setting.

Parameter Value or Description

q 0.9
a Closer to 1
b Random
d Closer to 1
F Close to 2
S 10

Maximum iterations 100
State size 5

Action size 40
Neurons per layer 24

Activation ReLU (layers), Linear (final layer)
Loss function Huber

Optimizer RMSprop with a learning rate of 0.001
Epsilon Starts at 1.0, decays to 0.01

Network update Every 50 training steps
Initial parameters a, b, d, e Randomly generated in range [0, 1]
Binarization threshold (ϕ) Random value uniformly distributed [0, 1]

Another key aspect is the adaptation of OPA to the binary domain, which necessitates
the inclusion of a binarization phase following alterations to the solution vector. In this
instance, the transformation function utilized was the conventional sigmoid function. This
entails that if [1/(1 + e−x)] > ϕ, with ϕ representing a random value uniformly distributed
within the interval [0, 1], then, discretization is achieved by setting x ← 1. Conversely,
should this condition not hold, x ← 0 is applied.

Finally, we used Python 3.10 to code all algorithms. The computer used for each test
had the following specifications: macOS 14.2.1 Darwin Kernel version 23 with an Ultra M2
chip and 64 GB of RAM. All codes are available in [73].

6. Results and Discussion

The initial comparative analysis between our approach and the traditional version
of OPA focuses on the runtime. On one hand, we consider the time it takes to generate
the solution vector, encompassing all necessary actions and the time required to process
and evaluate fitness accuracy. On the other hand, the time spent on the classification
phase using learning techniques is not considered because this phase is considered part of

Mathematics 2024, 12, 1249 16 of 29

the model’s training process, where the primary focus is on achieving high accuracy and
reliability rather than speed.

OPA achieves the best runtime in all the tests performed, with a value of 200 ms. In
contrast, the best time achieved by OPADQL is 500 ms, which is even worse than the average
time of OPA, equivalent to 220 ms. There are no instances where OPADQL’s runtime is
inferior to OPA’s runtimes. However, it is important to note that although OPADQL does
not outperform OPA in runtime, the difference is negligible. The anticipated benefit in
terms of prediction accuracy and feature reduction justifies the additional execution time
required by OPADQL.

Furthermore, we acknowledge the importance of examining how the selected features
vary across different runs. To this end, we conducted several runs of the OPA and OPADQL
methods, analyzing the consistency in feature selection. We found that, although there is
inherent variability due to the stochastic nature of the algorithms, certain features tend to
be selected more frequently, indicating their potential relevance to the problem at hand. We
can see that discarded features are usually related to constant or poorly varied values since
they do not provide useful information for differentiating between heartbeat categories, as
well as those that offer redundant information.

Continuing with experimental results, Tables 2 and 3 present our computational findings.
Tables are structured into five sections, each comprising six rows corresponding to evaluation
metrics. We define the best value as the optimal performance attained across each model and
feature selection technique combination, highlighted using bold font. Conversely, the worst
value signifies the least effective yield. The mean value provides an average of the results,
while the standard deviation (std) value quantifies the variability in findings. Additionally, the
median value and interquartile range (iqr) value represent the middle value and the spread
of the middle 50% of performances. Regarding columnar representation, the notation n/o
specifically denotes the absence of an optimizer method, indicating that algorithms were run
without optimization techniques to enhance performance. In this context, all machine learning
methods are employed to classify the dataset using all features. The best-performing methods
are then identified, and their results are stored for comparative analysis.

Table 2. Comparative analysis of algorithms’ performance: OPA vs. OPADQL for DT and RF.

Metrics
DT RF

n/o OPA OPADQL n/o OPA OPADQL

m
ax

F 1
sc

or
e best 0.7911 0.8242 0.8250 0.9154 0.9165 0.9186

worst 0.7753 0.7601 0.7936 0.8671 0.8921 0.9087
mean 0.7829 0.7845 0.8093 0.8956 0.9110 0.9124
std 0.0037 0.0062 0.0133 0.0016 0.0045 0.0137

median 0.7835 0.7851 0.8087 0.9002 0.9107 0.9120
iqr 0.0045 0.0070 0.0209 0.0023 0.0062 0.0194

m
ax

A
cc

ur
ac

y best 0.7408 0.7886 0.9035 0.8978 0.8989 0.9035
worst 0.7207 0.7225 0.7432 0.8897 0.8342 0.8673
mean 0.7299 0.7307 0.8921 0.8731 0.8921 0.8943
std 0.0047 0.0071 0.0159 0.0021 0.0071 0.0176

median 0.7304 0.7328 0.8922 0.8782 0.8922 0.8940
iqr 0.0065 0.0091 0.0240 0.0035 0.0108 0.0257

m
in

D
iv

er
si

ty best n/a 0.9647 0.9691 n/a 0.9666 0.9692
worst n/a 0.9576 0.9116 n/a 0.9420 0.9405
mean n/a 0.9611 0.9659 n/a 0.9647 0.9616
std n/a 0.0096 0.0019 n/a 0.0096 0.0053

median n/a 0.9636 0.9663 n/a 0.9663 0.9637
iqr n/a 0.0003 0.0003 n/a 0.0014 0.0003

Mathematics 2024, 12, 1249 17 of 29

Table 2. Cont.

Metrics
DT RF

n/o OPA OPADQL n/o OPA OPADQL

m
ax

R
ed

uc
ti

on best n/a 0.6043 0.9645 n/a 0.6043 0.8014
worst n/a 0.5026 0.6099 n/a 0.5133 0.5390
mean n/a 0.5378 0.6811 n/a 0.5575 0.6622
std n/a 0.0234 0.7328 n/a 0.0259 0.8782

median n/a 0.5957 0.6738 n/a 0.5615 0.6773
iqr n/a 0.0321 0.0390 n/a 0.0401 0.1170

m
ax

FE
I

best n/a 0.7800 0.8991 n/a 0.8432 0.9259
worst n/a 0.7646 0.7992 n/a 0.8154 0.8615
mean n/a 0.7710 0.8293 n/a 0.8300 0.8881
std n/a 0.0042 0.0117 n/a 0.0059 0.0160

median n/a 0.0770 0.8276 n/a 0.8311 0.8871
iqr n/a 0.0065 0.0178 n/a 0.0082 0.0265

Table 3. Comparative analysis of algorithms’ performance: OPA vs. OPADQL for SVM and ERT.

Metrics
SVM ERT

n/o OPA OPADQL n/o OPA OPADQL

m
ax

F 1
sc

or
e best 0.8841 0.8843 0.9155 0.9168 0.9180 0.9228

worst 0.8841 0.8644 0.8645 0.9108 0.8392 0.9048
mean 0.8841 0.8766 0.8919 0.9145 0.8946 0.9153
std 0.0000 0.0051 0.0129 0.0014 0.0048 0.0177

median 0.8841 0.8771 0.8954 0.9147 0.8974 0.9155
iqr 0.0000 0.0082 0.0175 0.0021 0.0066 0.0234

m
ax

A
cc

ur
ac

y best 0.8565 0.8594 0.8966 0.8975 0.9013 0.9078
worst 0.8565 0.8328 0.8344 0.8910 0.8023 0.8826
mean 0.8565 0.8488 0.8682 0.8951 0.8710 0.8973
std 0.0000 0.0069 0.0158 0.0016 0.0066 0.0218

median 0.8565 0.8493 0.8713 0.8953 0.8755 0.8976
iqr 0.0000 0.0106 0.0215 0.0026 0.0091 0.0276

m
in

D
iv

er
si

ty best n/a 0.9671 0.9638 n/a 0.9637 0.9661
worst n/a 0.9525 0.9306 n/a 0.9326 0.9557
mean n/a 0.9650 0.9593 n/a 0.9629 0.9642
std n/a 0.0053 0.0088 n/a 0.0015 0.0061

median n/a 0.9658 0.9631 n/a 0.9634 0.9659
iqr n/a 0.0003 0.0041 n/a 0.0010 0.0010

m
ax

R
ed

uc
ti

on best n/a 0.5829 0.8014 n/a 0.6043 0.8014
worst n/a 0.5133 0.5673 n/a 0.5133 0.6312
mean n/a 0.5519 0.7026 n/a 0.5565 0.7272
std n/a 0.0190 0.8713 n/a 0.0214 0.8755

median n/a 0.5508 0.7270 n/a 0.5615 0.7234
iqr n/a 0.0254 0.0975 n/a 0.0254 0.0408

m
ax

FE
I

best n/a 0.8220 0.9342 n/a 0.8434 0.9265
worst n/a 0.8014 0.8650 n/a 0.8237 0.8798
mean n/a 0.8105 0.8955 n/a 0.8333 0.9039
std n/a 0.0048 0.0168 n/a 0.0048 0.0110

median n/a 0.8100 0.8981 n/a 0.8333 0.9043
iqr n/a 0.0046 0.0223 n/a 0.0059 0.0139

OPA stands for a bio-inspired optimizer lacking a learning component, and OPADQL
represents our enhanced version of OPA. Finally, we employ F1 score, accuracy, diversity,
reduction, and FEI for metrics. All of them were defined in the previous section. In
the context of the F1 score and accuracy, the OPADQL model exhibits a remarkable and
consistent enhancement in performance when contrasted with the native OPA and non-
optimized learning methods.

This improvement is particularly pronounced in models employing RF and SVM,
underscoring the advanced capability of OPADQL in managing intricate feature selection
challenges. This integration enables a more nuanced and precise feature selection process.
Consequently, this leads to a significant boost in model performance, as evidenced by the

Mathematics 2024, 12, 1249 18 of 29

higher F1 scores and accuracy rates, which are critical indicators of a model’s predictive
power and reliability in classification tasks.

Concerning the diversity metric, an essential measure of the variation and uniqueness
in the solutions generated, both OPA and OPADQL showcase commendable performances.
However, OPADQL distinguishes itself by achieving marginally inferior values. This
slight but critical advantage highlights the efficacy of the hybrid model in sustaining the
comprehensive exploitation of the solution space.

The OPADQL’s ability to try to maintain a diverse set of solutions while simultaneously
homing in on the most effective ones exemplifies its balanced approach to optimization.
This diverse exploitation ensures that the algorithm does not prematurely converge to
suboptimal solutions, thereby enhancing the robustness and reliability of the outcomes.

The results of the reduction metric are particularly striking. In this aspect, OPADQL
outshines OPA by a significant margin, indicating a more proficient approach in maximizing
the number of features while not preserving or even enhancing model accuracy. This
attribute of OPADQL is especially beneficial in dealing with high-dimensional data, where
reducing the feature set without compromising the model’s effectiveness is a challenging
but crucial task. The ability to selectively reduce features contributes to more streamlined
models, reducing computational complexity and enhancing efficiency.

Finally, when considering the feature efficiency index, which amalgamates all the
above-discussed metrics, the superiority of OPADQL becomes even more evident.

The FEI values for OPADQL consistently surpass those of the native OPA and non-
optimized methodologies across all tested machine learning techniques. This comprehensive
index affirms the overall effectiveness of OPADQL in feature selection. By excelling in multiple
metrics—including accuracy, diversity, reduction, and the FEI—OPADQL proves itself as a
robust, versatile, and effective tool for feature selection. Its ability to deliver high-quality results
across different evaluation criteria and machine learning models signifies a significant advance-
ment in the field, offering a sophisticated solution for complex feature selection challenges.

The charts deployed in Figure 2 enrich our comprehension of the effectiveness of
OPA (left side) and OPADQL (right side) across different ML models. These graphical
illustrations reveal the data’s distribution and density, highlighting OPADQL’s supremacy
in several dimensions. Specifically, Figure 2a,b, showcasing the F1 score and accuracy of
OPADQL, respectively, demonstrate its notable superiority, indicating more accurate and
dependable classification performance.

Regarding diversity, OPADQL exhibits an outstanding yield by achieving slightly
lower values than its native version (see Figure 2c). This performance is due to the intrinsic
nature of the native algorithm that attempts to explore promising areas.

Regarding feature reduction, OPADQL is noted for its capability to efficiently reduce
the number of features without sacrificing model precision (refer to Figure 2d). Moreover,
in the context of the feature efficiency index (FEI) (refer to Figure 2e), OPADQL showcases
a comprehensive advantage, underscoring its efficiency in feature selection across diverse
ML models. This evidence underlines OPADQL’s robustness and adaptability, positioning
it as a crucial tool for overcoming feature selection challenges.

0.75

0.8

0.85

0.9

0.95

1

F
1
sc
or
e
va
lu
es

DT RF SVM ERT

OPA

OPADQL

(a)

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc
u
ra
cy

va
lu
es

DT RF SVM ERT

OPA

OPADQL

(b)
Figure 2. Cont.

Mathematics 2024, 12, 1249 19 of 29

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

D
iv
er
si
ty

va
lu
es

DT RF SVM ERT

OPA

OPADQL

(c)

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ed
u
ct
io
n
va
lu
es

DT RF SVM ERT

OPA

OPADQL

(d)

0.75

0.8

0.85

0.9

0.95

1

F
E
I
va
lu
es

DT RF SVM ERT

OPA

OPADQL

(e)
Figure 2. Distributions for all metrics employed to analyze the effectiveness of OPA and OPADQL
on machine learning methods. (a) Distribution of F1 score values obtained by OPA (left side) and
OPADQL (right side). (b) Distribution of accuracy values obtained by OPA (left side) and OPADQL
(right side). (c) Distribution of diversity values obtained by OPA (left side) and OPADQL (right
side). (d) Distribution of reduction values obtained by OPA (left side) and OPADQL (right side).
(e) Distribution of FEI values obtained by OPA (left side) and OPADQL (right side).

Additionally, we employed two-dimensional charts to represent the multivariate
variables influencing the performance of these algorithms (see Figure 3). In general terms,
OPADQL exhibits superiority over OPA in various ML models. For example, Figure 3a,
which shows the DT learning model, reveals OPADQL’s distinct advantage across all
performance metrics, accentuating its selection efficacy. Similarly, Figure 3b, related to the
RF technique, highlights OPADQL’s exceptional outcomes, particularly in F1 score and
accuracy, with a noted reduction in diversity, suggesting a more targeted feature selection.

In the SVM context (see Figure 3c), OPADQL’s performance in F1 score and accuracy
further proves its effective classification capability, alongside a remarked decrease in
solution diversity.

Accuracy

F1 score

Reduction

Diversity

FEI

OPA
OPADQL

(a)

Accuracy

F1 score

Reduction

Diversity

FEI

OPA
OPADQL

(b)
Figure 3. Cont.

Mathematics 2024, 12, 1249 20 of 29

Accuracy

F1 score

Reduction

Diversity

FEI

OPA
OPADQL

(c)

Accuracy

F1 score

Reduction

Diversity

FEI

OPA
OPADQL

(d)

Figure 3. Radar analysis comparing OPA and OPADQL performance across all machine learning
techniques. (a) DT radar analysis: performance comparison between OPA and OPADQL. (b) RF radar
analysis: performance comparison between OPA and OPADQL. (c) SVM radar analysis: performance
comparison between OPA and OPADQL. (d) ERT radar analysis: performance comparison between
OPA and OPADQL.

Lastly, Figure 3d, corresponding to the ERT model, demonstrates OPADQL’s superi-
ority in all evaluated metrics, showcasing its ability to balance feature selection efficiency
with precision and diversity maintenance. These findings affirm OPADQL’s ability to
navigate the complexities of various ML models, optimizing feature selection to enhance
model performance while ensuring the balance between diversity and accuracy.

6.1. Statistical Test

To showcase that our proposal overcomes the native version, we employ a robust
statistical strategy exploiting generated results. This strategy includes two contrasting
hypotheses: (a) evaluation of normality and (b) hypothesis testing to ascertain whether
the samples originate from a uniformly distributed sequence. To assess whether the
observations (runs per instance) form a Gaussian distribution, we define H0 to propose that
samples do not adhere to a normal distribution, with H1 positing the contrary. For that, the
Kolmogorov–Smirnov–Lilliefors test was utilized. The significance level for the p-value
was set at 0.05, indicating that results falling below this threshold would suggest that the
test is significant. Consequently, this leads to a failure to reject the null hypothesis H0.

The findings revealed that the samples do not conform to a normal distribution, allowing
the non-parametric Mann–Whitney–Wilcoxon test. In this context, H0 suggests that there is a
difference between the distributions of the two samples P(samplesOPA < samplesOPADQL).
H1 states the opposite. The following table shows the Mann–Whitney–Wilcoxon test results.
The acronym sws indicates statistically without significance.

Table 4 shows that for F1 score and accuracy metrics, the results are highly significant
across all models, with p-values far below the 0.05 threshold, illustrating OPADQL’s supe-
rior performance. In terms of diversity, significant differences are observed in the RF and
SVM models, as indicated by their p-values, whereas DT and ERT models show statisti-
cally insignificant differences. For reduction and FEI metrics, the p-values again highlight
OPADQL’s enhanced efficiency across most models, demonstrating its effectiveness in
feature selection and overall model performance optimization.

Mathematics 2024, 12, 1249 21 of 29

Table 4. p-values obtained from Wilcoxon–Mann–Whitney Test.

Metrics
OPADQL v/s OPA

DT RF SVM ERT

F1 score 1.6564× 10−10 3.2788× 10−5 3.2529× 10−6 6.2779× 10−9

Accuracy 1.1289× 10−10 9.7638× 10−6 1.9864× 10−6 7.1438× 10−9

Diversity sws 1.4360× 10−11 1.4360× 10−11 sws
Reduction 1.3330× 10−11 9.7638× 10−6 3.3184× 10−11 1.3483× 10−11

FEI 1.5876× 10−11 2.9094× 10−7 1.4360× 10−11 1.4360× 10−11

6.2. Comparing OPADQL vs. State-of-the-Art Algorithms

Tables 5 and 6 present a comparative analysis between OPADQL and various state-
of-the-art algorithms, including genetic algorithm (GA) [74], particle swarm optimization
(PSO) [75], Bat Algorithm (BAT) [76], Black Hole Optimization (BH) [77], Grey Wolf Optimizer
(GWO) [78], Golden Eagle Optimization (GEO) [79], Reptile Search Algorithm (RSA) [80], and
a random strategy.

This analysis is conducted using machine learning models and key metrics used in
Tables 2 and 3. Additionally, we include a random strategy for the construction of the
solution vector for feature selection; however, this strategy is not applicable to the diversity
metric due to the generation of a unique random solution. Best results are highlighted
using bold font.

Table 5. OPADQL for DT and RF vs. state-of-the-art algorithms.

Metrics Random GA PSO BAT BH GWO GEO RSA OPADQL

Decision Tree

m
ax

F 1
sc

or
e best 0.8191 0.8085 0.8106 0.8126 0.8147 0.8168 0.8137 0.8151 0.8250

worst 0.7781 0.7777 0.7797 0.7817 0.7837 0.7857 0.7811 0.7827 0.7936
mean 0.7929 0.7931 0.7951 0.7972 0.7992 0.8012 0.7965 0.7981 0.8093
std 0.0011 0.0049 0.0069 0.0049 0.0059 0.0109 0.0058 0.0067 0.0133

median 0.7935 0.7931 0.7951 0.7971 0.7991 0.8011 0.7965 0.7980 0.8087
iqr 0.0011 0.0207 0.0177 0.0027 0.0201 0.0200 0.0137 0.0146 0.0209

m
ax

A
cc

ur
ac

y best 0.7720 0.8854 0.8877 0.8899 0.8922 0.8945 0.8703 0.8744 0.9035
worst 0.7107 0.7283 0.7302 0.7321 0.7339 0.7358 0.7285 0.7303 0.7432
mean 0.7499 0.8743 0.8765 0.8787 0.8809 0.8832 0.8573 0.8616 0.8921
std 0.0117 0.0049 0.0049 0.0049 0.0049 0.0049 0.0060 0.0073 0.0159

median 0.7463 0.8741 0.8761 0.8791 0.8811 0.8830 0.8566 0.8611 0.8922
iqr 0.0115 0.0215 0.0211 0.0225 0.0235 0.0217 0.0203 0.0208 0.0240

m
in

D
iv

er
si

ty best n/a 0.9645 0.9650 0.9701 0.9748 0.9698 0.9689 0.9699 0.9691
worst n/a 0.9574 0.9575 0.9576 0.9577 0.9578 0.9499 0.9509 0.9116
mean n/a 0.9600 0.9611 0.9612 0.9613 0.9614 0.9618 0.9628 0.9659
std n/a 0.0048 0.0049 0.0052 0.0053 0.0052 0.0045 0.0055 0.0019

median n/a 0.9590 0.9600 0.9615 0.9611 0.9612 0.9615 0.9625 0.9663
iqr n/a 0.0048 0.0049 0.0050 0.0051 0.0052 0.0042 0.0052 0.0003

m
ax

R
ed

uc
ti

on best 0.5634 0.6041 0.6042 0.6043 0.6044 0.7045 0.6142 0.6579 0.9645
worst 0.4564 0.5024 0.5025 0.5026 0.5027 0.5928 0.5099 0.5224 0.6099
mean 0.4873 0.5376 0.5377 0.5378 0.5379 0.6380 0.5460 0.5629 0.6811
std 0.0375 0.0276 0.0278 0.0277 0.0279 0.0279 0.0294 0.1173 0.7328

median 0.4863 0.5370 0.5371 0.5371 0.5373 0.6373 0.5454 0.5614 0.6738
iqr 0.0144 0.0276 0.0277 0.0278 0.0279 0.0280 0.0256 0.0272 0.0390

m
ax

FE
I

best 0.7200 0.8570 0.7756 0.8100 0.7890 0.8700 0.8036 0.8155 0.8991
worst 0.6320 0.7900 0.7100 0.7110 0.6915 0.7950 0.7216 0.7313 0.7992
mean 0.6767 0.8200 0.7400 0.7710 0.7215 0.8250 0.7590 0.7678 0.8293
std 0.0204 0.0100 0.0102 0.0104 0.0106 0.0110 0.0121 0.0121 0.0117

median 0.6747 0.8230 0.7354 0.7340 0.7545 0.8270 0.7581 0.7668 0.8276
iqr 0.0276 0.0160 0.0162 0.0164 0.0166 0.0170 0.0183 0.0182 0.0178

Mathematics 2024, 12, 1249 22 of 29

Table 5. Cont.

Metrics Random GA PSO BAT BH GWO GEO RSA OPADQL

Random Forest

m
ax

F 1
sc

or
e best 0.8915 0.9002 0.9025 0.9048 0.9071 0.9094 0.9026 0.9046 0.9186

worst 0.8671 0.8905 0.8928 0.8951 0.8973 0.8996 0.8904 0.8927 0.9087
mean 0.8956 0.8942 0.8964 0.8987 0.901 0.9033 0.8982 0.9000 0.9124
std 0.0016 0.0213 0.0213 0.0213 0.0213 0.0213 0.0180 0.0175 0.0137

median 0.8802 0.8940 0.8960 0.8990 0.9010 0.9030 0.8955 0.8976 0.9120
iqr 0.0023 0.0173 0.0183 0.0131 0.0013 0.0113 0.0106 0.0117 0.0194

m
ax

A
cc

ur
ac

y best 0.9001 0.8854 0.8877 0.8899 0.8922 0.8945 0.8916 0.8931 0.9035
worst 0.8897 0.8556 0.8521 0.8543 0.8565 0.8586 0.8611 0.8619 0.8673
mean 0.8731 0.8764 0.8786 0.8809 0.8831 0.8854 0.8796 0.8814 0.8943
std 0.0021 0.0213 0.0213 0.0213 0.0213 0.0213 0.0181 0.0180 0.0176

median 0.8782 0.8760 0.8790 0.8810 0.8830 0.8850 0.8804 0.8821 0.8940
iqr 0.0015 0.0213 0.0225 0.0215 0.0213 0.0223 0.0184 0.0193 0.0257

m
in

D
iv

er
si

ty best n/a 0.9725 0.9701 0.9766 0.9699 0.9749 0.9728 0.9723 0.9692
worst n/a 0.9574 0.9575 0.9576 0.9577 0.9578 0.9576 0.9552 0.9405
mean n/a 0.9710 0.9654 0.9681 0.9613 0.9740 0.9680 0.9671 0.9616
std n/a 0.0048 0.0049 0.0050 0.0051 0.0052 0.0050 0.0050 0.0053

median n/a 0.9711 0.9610 0.9610 0.9610 0.9610 0.9630 0.9631 0.9637
iqr n/a 0.0048 0.0059 0.0050 0.0051 0.0052 0.0052 0.0045 0.0003

m
ax

R
ed

uc
ti

on best 0.5469 0.6041 0.6242 0.6143 0.6344 0.7045 0.6214 0.6439 0.8014
worst 0.4475 0.5024 0.5025 0.5026 0.5027 0.5028 0.4934 0.4991 0.5390
mean 0.4948 0.5376 0.5377 0.5578 0.5479 0.6380 0.5523 0.5660 0.6622
std 0.0269 0.0276 0.0277 0.0278 0.0289 0.0280 0.0278 0.1341 0.8782

median 0.4917 0.5378 0.5485 0.5599 0.5364 0.6370 0.5519 0.5676 0.6773
iqr 0.0469 0.0276 0.0277 0.0278 0.0279 0.0280 0.0310 0.0417 0.1170

m
ax

FE
I

best 0.7823 0.8000 0.7892 0.7821 0.8021 0.8823 0.8063 0.8213 0.9259
worst 0.7257 0.6250 0.5355 0.6160 0.7065 0.8300 0.6731 0.6967 0.8615
mean 0.7567 0.7010 0.6635 0.7040 0.7445 0.8660 0.7393 0.7579 0.8881
std 0.0150 0.0140 0.0142 0.0144 0.0146 0.0150 0.0145 0.0147 0.0160

median 0.7564 0.7050 0.6655 0.7060 0.7465 0.8670 0.7411 0.7593 0.8871
iqr 0.0257 0.0257 0.0252 0.0254 0.0056 0.0260 0.0223 0.0228 0.0265

Table 6. OPADQL for SVM and ERT vs. state-of-the-art algorithms.

Metrics Random GA PSO BAT BH GWO GEO RSA OPADQL

Support Vector Machine

m
ax

F 1
sc

or
e best 0.8874 0.9052 0.9073 0.9094 0.9115 0.9170 0.9063 0.9075 0.9155

worst 0.8485 0.8550 0.8560 0.8570 0.8580 0.8660 0.8567 0.8577 0.8645
mean 0.8666 0.8890 0.8895 0.8900 0.8905 0.8930 0.8864 0.8871 0.8919
std 0.0087 0.0125 0.0126 0.0127 0.0128 0.0130 0.0121 0.0122 0.0131

median 0.8664 0.8890 0.8895 0.8900 0.8905 0.8978 0.8872 0.8882 0.8954
iqr 0.0098 0.0160 0.0162 0.0164 0.0166 0.0178 0.0155 0.0157 0.0175

m
ax

A
cc

ur
ac

y best 0.8615 0.8860 0.8865 0.8870 0.8875 0.8994 0.8847 0.8861 0.8966
worst 0.8144 0.8250 0.8260 0.8270 0.8280 0.8290 0.8249 0.8261 0.8344
mean 0.8361 0.8610 0.8615 0.8620 0.8625 0.8692 0.8587 0.8599 0.8682
std 0.0113 0.0145 0.0146 0.0147 0.0148 0.0149 0.0141 0.0143 0.0158

median 0.8360 0.8610 0.8615 0.8620 0.8625 0.8630 0.8577 0.8594 0.8713
iqr 0.0131 0.0200 0.0002 0.0204 0.0006 0.0308 0.0142 0.0151 0.0215

m
in

D
iv

er
si

ty best n/a 0.9636 0.9637 0.9638 0.9639 0.9640 0.9638 0.9638 0.9638
worst n/a 0.9304 0.9305 0.9306 0.9307 0.9308 0.9306 0.9306 0.9306
mean n/a 0.9591 0.9592 0.9593 0.9594 0.9595 0.9593 0.9593 0.9593
std n/a 0.0086 0.0087 0.0088 0.0089 0.0090 0.0088 0.0088 0.0088

median n/a 0.9591 0.9592 0.9593 0.9594 0.9595 0.9593 0.9598 0.9631
iqr n/a 0.0038 0.0039 0.0040 0.0041 0.0042 0.0040 0.0040 0.0041

m
ax

R
ed

uc
ti

on best 0.5524 0.6812 0.4813 0.5814 0.6715 0.7916 0.6266 0.6484 0.8014
worst 0.4088 0.5571 0.4072 0.5573 0.5574 0.5575 0.5076 0.5150 0.5673
mean 0.4987 0.6024 0.4525 0.6926 0.5927 0.6928 0.5886 0.6029 0.7026
std 0.0350 0.8608 0.8609 0.8610 0.8611 0.8612 0.7233 0.7418 0.8713

median 0.5027 0.6024 0.4625 0.6926 0.5927 0.6928 0.5910 0.6080 0.7270
iqr 0.0441 0.0950 0.0435 0.0252 0.0053 0.0954 0.0514 0.0572 0.0975

Mathematics 2024, 12, 1249 23 of 29

Table 6. Cont.

Metrics Random GA PSO BAT BH GWO GEO RSA OPADQL

m
ax

FE
I

best 0.5524 0.6812 0.4813 0.5814 0.6715 0.7916 0.6266 0.6484 0.8014
worst 0.4088 0.5571 0.4072 0.5573 0.5574 0.5575 0.5076 0.5150 0.5673
mean 0.4987 0.6024 0.4525 0.6926 0.5927 0.6928 0.5886 0.6029 0.7026
std 0.0350 0.8608 0.8609 0.8610 0.8611 0.8612 0.7233 0.7418 0.8713

median 0.5027 0.6024 0.4625 0.6926 0.5927 0.6928 0.5910 0.6080 0.7270
iqr 0.0441 0.0950 0.0435 0.0252 0.0053 0.0954 0.0514 0.0572 0.0975

Extremely Randomized Trees

m
ax

F 1
sc

or
e best 0.9121 0.9201 0.9202 0.9203 0.9204 0.9240 0.9195 0.9199 0.9228

worst 0.8823 0.9020 0.9021 0.9022 0.9023 0.9060 0.8995 0.9001 0.9048
mean 0.9023 0.9140 0.9141 0.9142 0.9143 0.9160 0.9125 0.9128 0.9153
std 0.0014 0.0172 0.0173 0.0174 0.0175 0.0179 0.0148 0.0152 0.0177

median 0.8947 0.9140 0.9141 0.9142 0.9143 0.9160 0.9112 0.9118 0.9155
iqr 0.0021 0.0225 0.0226 0.0227 0.0228 0.0235 0.0194 0.0199 0.0234

m
ax

A
cc

ur
ac

y best 0.9052 0.9050 0.9055 0.9060 0.9065 0.9070 0.9059 0.9061 0.9078
worst 0.8620 0.8800 0.8805 0.8810 0.8815 0.8820 0.8778 0.8784 0.8826
mean 0.8806 0.8950 0.8955 0.8960 0.8965 0.8970 0.8934 0.8962 0.8973
std 0.0016 0.0205 0.0206 0.0207 0.0208 0.0209 0.0175 0.0181 0.0218

median 0.8953 0.8950 0.8955 0.8960 0.8965 0.8970 0.8959 0.8961 0.8976
iqr 0.0026 0.0260 0.0262 0.0264 0.0266 0.0268 0.0224 0.0231 0.0276

m
in

D
iv

er
si

ty best n/a 0.9659 0.9660 0.9661 0.9662 0.9663 0.9665 0.9664 0.9661
worst n/a 0.9555 0.9556 0.9557 0.9558 0.9559 0.9561 0.9563 0.9557
mean n/a 0.9640 0.9641 0.9642 0.9643 0.9644 0.9646 0.9645 0.9642
std n/a 0.0062 0.0061 0.0062 0.0063 0.0064 0.0066 0.0065 0.0061

median n/a 0.9640 0.9641 0.9642 0.9643 0.9644 0.9647 0.9646 0.9659
iqr n/a 0.0008 0.0009 0.0010 0.0011 0.0012 0.0014 0.0013 0.0010

m
ax

R
ed

uc
ti

on best 0.5414 0.7912 0.7913 0.7914 0.7915 0.7916 0.7497 0.7562 0.8014
worst 0.4530 0.6210 0.6211 0.6212 0.6213 0.6214 0.5932 0.5979 0.6312
mean 0.4983 0.7170 0.7171 0.7172 0.7173 0.7174 0.6807 0.6865 0.7272
std 0.0270 0.8650 0.8651 0.8652 0.8653 0.8654 0.7255 0.7443 0.8755

median 0.5000 0.7170 0.7171 0.7172 0.7173 0.7174 0.681 0.6863 0.7234
iqr 0.0359 0.0395 0.0396 0.0397 0.0398 0.0399 0.0391 0.0393 0.0408

m
ax

FE
I

best 0.7894 0.8752 0.8053 0.8125 0.8257 0.9059 0.8357 0.8470 0.9265
worst 0.7334 0.8087 0.6888 0.7189 0.7590 0.8091 0.7530 0.7688 0.8798
mean 0.7604 0.84027 0.7228 0.7630 0.7731 0.8433 0.7838 0.7988 0.9039
std 0.0156 0.0106 0.0107 0.0108 0.0109 0.0110 0.0116 0.0115 0.0110

median 0.7691 0.8427 0.7328 0.7630 0.7701 0.8333 0.7852 0.8001 0.9043
iqr 0.0020 0.0035 0.0136 0.0107 0.0108 0.0039 0.0074 0.0082 0.0139

In relation to DT, OPADQL surpasses all other algorithms in F1 score, with a notable
difference compared to the second-best result (GWO). This trend remains consistent across
other metrics such as accuracy and FEI, where OPADQL also achieves the best results. In
RF, OPADQL continues to be the most effective algorithm, reaching the highest value in
accuracy and F1 score, surpassing the results of other state-of-the-art algorithms. Addi-
tionally, OPADQL exhibits an exceptional ability to reduce the number of features without
compromising model accuracy, as reflected in superior reduction and FEI values compared
with other algorithms. In SVM, OPADQL performs outstandingly, surpassing other algo-
rithms in several key metrics. Although GWO presents a slightly higher F1 score, OPADQL
stands out in the accuracy metric and in FEI, highlighting its ability to identify feature sets
that are not only predictively powerful but also efficient in terms of the number of features
used. Finally, in ERT, OPADQL continues to demonstrate its superiority, achieving the
highest values in both accuracy and F1 score compared to state-of-the-art algorithms and
the random strategy. This efficacy is particularly notable in the reduction metric, where
OPADQL equals or surpasses other methods, evidencing its exceptional skill in maintaining
a simplified model without compromising performance.

The superiority of OPADQL is significantly attributed to its advanced configuration,
which incorporates a higher number of adjustable parameters in comparison to other
state-of-the-art algorithms. This additional complexity, far from being an obstacle, becomes
a decisive advantage thanks to the integration of DQL. Being a central component of

Mathematics 2024, 12, 1249 24 of 29

OPADQL, it grants a decisive edge by enabling a dynamic and detailed adaptation of these
parameters according to the complexities of the data and the variety of the solution space.

OPADQL’s ability to effectively adjust these additional parameters contrasts with the rigidity
of traditional state-of-the-art algorithms, which, while efficient within their own frameworks, lack
the flexibility to adapt to the complex variations inherent in high-dimensional data.

The integration of DQL into OPADQL not only enhances performance through a more
accurate and relevant feature selection but also reflects the algorithm’s capacity to learn and
continuously improve through experience, adjusting its internal parameters to efficiently
explore the search space and exploit the most promising regions.

The convergence graphs for DT, RF, SVM, and ERT models presented in Figure 4
consistently demonstrate OPADQL’s superior performance in terms of the FEI metric,
surpassing state-of-the-art algorithms and the random strategy across iterations. While the
other algorithms also show progress, they do not reach the level of efficacy of OPADQL.
The random strategy, on the other hand, shows the lowest performance, highlighting the
importance of meticulous parameter selection and adjustment. OPADQL not only achieves
a higher score in FEI, but its curve also suggests a faster convergence compared to the
other algorithms, which is particularly notable in the SVM and ERT models, where the
competition is closer. Through these models, OPADQL demonstrates its ability to efficiently
optimize feature selection, adapting to different dynamics and data requirements. The
robustness and versatility of OPADQL become evident as it maintains a clear advantage
over alternative algorithms in a wide variety of machine learning contexts, demonstrating
its potential for practical applications by effectively improving model performance.

0 20 40 60 80 100
Iteration

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

FE
I

DT
Random
GA
PSO
BAT
BH
GWO
GEO
RSA
OPADQL

(a)

0 20 40 60 80 100
Iteration

0.5

0.6

0.7

0.8

0.9

FE
I

RF
Random
GA
PSO
BAT
BH
GWO
GEO
RSA
OPADQL

(b)

0 20 40 60 80 100
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

FE
I

SVM
Random
GA
PSO
BAT
BH
GWO
GEO
RSA
OPADQL

(c)

0 20 40 60 80 100
Iteration

0.5

0.6

0.7

0.8

0.9

FE
I

ERT

Random
GA
PSO
BAT
BH
GWO
GEO
RSA
OPADQL

(d)

Figure 4. Convergence analysis of OPADQL versus state-of-the-art algorithms across various machine
learning models. (a) DT: c analysis. (b) RF: convergence analysis. (c) SVM: convergence analysis. (d) ERT:
convergence analysis.

Finally, once the optimal result is achieved, we analyze the solution vectors and observe that
ten dominant columns, which are consistently active, are indexed by [124, 23, 0, 112, 36, 38, 54,
9, 134, 35]. Conversely, ten columns that are least present in the vectors are indicated by [72, 132,

Mathematics 2024, 12, 1249 25 of 29

4, 18, 91, 113, 76, 102, 92, 2]. In both cases, the lists are sorted from best to worst. Typically, ECG
datasets do not use labels for columns; instead, they utilize serial time or continuous signals. For
this reason, indexes are generally used to identify columns.

7. Conclusions

This study introduces a hybrid optimization method that synergizes the biomimetic
prowess of the Orca predator algorithm with the adaptive intelligence of deep Q-learning.
This approach was meticulously designed to enhance the process of feature selection in
machine learning, enabling the construction of more efficient models by selecting the
most relevant subset of features. However, our approach is not solely confined to these.
When applying our method to regression tasks, it is critical to make certain adaptations.
For instance, instead of relying on the F1 score and accuracy, we recommend employing
analogous metrics such as mean squared error, root mean squared error, and mean absolute
error. These metrics are broadly utilized for their effective ability to capture the discrepancy
between predicted and actual values, thereby providing a clear measure of prediction
accuracy and model performance in continuous output spaces.

To rigorously evaluate the efficacy of our proposed model, we deployed it on the
ECG Heartbeat Categorization Dataset, characterized by its high-dimensional feature space
of 188 attributes. We further validated our approach across a diverse array of machine
learning models to ensure a comprehensive assessment under varied modeling techniques.

The results obtained from the extensive evaluation clearly demonstrate that the Orca
predator algorithm hybridized with Deep Q-learning significantly outperforms the standalone
OPA across all tested machine learning models. According to the findings, we can see
that the proposal seeks to increase the values of a and b while reducing the value of q,
signifying a decrease in exploration probability, that is, intensifying the search process. For
that, our analysis revealed that OPADQL consistently achieved higher F1 scores and accuracy,
effectively enhancing the predictive performance of decision trees, random forests, support
vector machines, and extremely randomized tree models. Furthermore, OPADQL exhibited a
superior ability to reduce the feature space without compromising the model’s effectiveness,
as evidenced by its higher reduction scores and the feature efficiency index (FEI). These results
not only underscore the enhanced optimization capability of OPADQL but also highlight its
potential to significantly streamline the feature selection process, making it an invaluable tool
for building more robust and efficient machine learning models.

Based on all generated results, we can infer that our solution proposal outperforms tra-
ditional a posteriori techniques’ random permutation feature importance thanks to our use of
sophisticated metaheuristics for an exhaustive analysis of the feature space. This approach not
only pinpoints essential features and their synergies but also significantly enhances model gen-
eralization. Although our technique may require more time, it delivers unparalleled accuracy,
robustness, and dependability, vital for applications where precise outcomes are paramount.

Finally, some future studies in this domain could focus on exploring the integration
of DQL with other bio-inspired optimization algorithms and advanced machine learning
techniques, aiming to further enhance its feature selection capabilities. Additionally, adapt-
ing OPADQL to address multi-objective optimization problems presents an intriguing
avenue for expanding its applicability across various disciplines. Another promising line
of inquiry involves investigating the scalability and efficiency of OPADQL in processing
extremely large datasets, particularly in fields such as genomics and text mining, where
high-dimensional data are prevalent. These future directions not only promise to refine
the efficacy and versatility of OPADQL but also open up new possibilities for innovative
applications in the ever-evolving landscape of machine learning and data analysis.

Author Contributions: Formal analysis, R.O., R.S. and B.C.; Investigation, R.O., C.R., R.S. and B.C.;
Methodology, R.O. and R.S.; Resources, R.O.; Software, C.R. and R.O.; Validation, R.O., R.S. and B.C.;
Writing—original draft, C.R. and R.O.; Writing—review and editing, R.O., C.R., R.S. and B.C. All the
authors of this paper hold responsibility for every part of this manuscript. All authors have read and
agreed to the published version of the manuscript.

Mathematics 2024, 12, 1249 26 of 29

Funding: Rodrigo Olivares is supported by grant ANID/FONDECYT/INICIACION/11231016.
Broderick Crawford is supported by the Spanish Ministry of Science and Innovation Project PID2019-
109891RB-I00, under the European Regional Development Fund (FEDER).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data is available at [73].

Conflicts of Interest: The authors declare no conflicts of interest. The funding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. Gad, A.G. Particle swarm optimization algorithm and its applications: A systematic review. Arch. Comput. Methods Eng. 2022,

29, 2531–2561. [CrossRef]
2. Salhi, S.; Thompson, J. An overview of heuristics and metaheuristics. In The Palgrave Handbook of Operations Research; Springer:

Berlin/Heidelberg, Germany, 2022; pp. 353–403.
3. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic

optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
4. Prabha, S.; Yadav, R. Differential evolution with biological-based mutation operator. Eng. Sci. Technol. Int. J. 2020, 23, 253–263.

[CrossRef]
5. Olivares, R.; Soto, R.; Crawford, B.; Riquelme, F.; Munoz, R.; Ríos, V.; Cabrera, R.; Castro, C. Entropy-based diversification

approach for bio-computing methods. Entropy 2022, 24, 1293. [CrossRef] [PubMed]
6. Molina, D.; Poyatos, J.; Ser, J.D.; García, S.; Hussain, A.; Herrera, F. Comprehensive taxonomies of nature-and bio-inspired

optimization: Inspiration versus algorithmic behavior, critical analysis recommendations. Cogn. Comput. 2020, 12, 897–939.
[CrossRef]

7. Ahmed, H.R. An efficient fitness-based stagnation detection method for particle swarm optimization. In Proceedings of the
Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada,
12–16 July 2014; pp. 1029–1032.

8. Worasucheep, C. A particle swarm optimization with stagnation detection and dispersion. In Proceedings of the 2008 IEEE Congress
on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; IEEE:
Piscataway, NJ, USA, 2008; pp. 424–429.

9. Zaman, H.R.R.; Gharehchopogh, F.S. An improved particle swarm optimization with backtracking search optimization algorithm
for solving continuous optimization problems. Eng. Comput. 2022, 38, 2797–2831. [CrossRef]

10. Dokeroglu, T.; Kucukyilmaz, T.; Talbi, E.G. Hyper-heuristics: A survey and taxonomy. Comput. Ind. Eng. 2024, 187, 109815.
[CrossRef]

11. Chen, X.; Zhang, K.; Ji, Z.; Shen, X.; Liu, P.; Zhang, L.; Wang, J.; Yao, J. Progress and Challenges of Integrated Machine Learning
and Traditional Numerical Algorithms: Taking Reservoir Numerical Simulation as an Example. Mathematics 2023, 11, 4418.
[CrossRef]

12. Peres, F.; Castelli, M. Combinatorial Optimization Problems and Metaheuristics: Review, Challenges, Design, and Development.
Appl. Sci. 2021, 11, 6449. [CrossRef]

13. Remeseiro, B.; Bolon-Canedo, V. A review of feature selection methods in medical applications. Comput. Biol. Med. 2019,
112, 103375. [CrossRef]

14. Colaco, S.; Kumar, S.; Tamang, A.; Biju, V.G. A review on feature selection algorithms. In Emerging Research in Computing,
Information, Communication and Applications: ERCICA 2018; Springer: Berlin/Heidelberg, Germany, 2019; Volume 2, pp. 133–153.

15. Fazeli, S. ECG Heartbeat Categorization Dataset. 2018. Available online: https://www.kaggle.com/datasets/shayanfazeli/
heartbeat (accessed on 17 April 2024).

16. Jakšić, Z.; Devi, S.; Jakšić, O.; Guha, K. A comprehensive review of bio-inspired optimization algorithms including applications
in microelectronics and nanophotonics. Biomimetics 2023, 8, 278. [CrossRef] [PubMed]

17. Liang, Y.C.; Cuevas Juarez, J.R. A self-adaptive virus optimization algorithm for continuous optimization problems. Soft Comput.
2020, 24, 13147–13166. [CrossRef]

18. Olamaei, J.; Moradi, M.; Kaboodi, T. A new adaptive modified firefly algorithm to solve optimal capacitor placement problem. In
Proceedings of the 18th Electric Power Distribution Conference, Turin, Italy, 6–9 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–6.

19. Li, X.; Yin, M. Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural Comput. Appl. 2014,
24, 723–734. [CrossRef]

20. Li, X.; Yin, M. Modified cuckoo search algorithm with self adaptive parameter method. Inf. Sci. 2015, 298, 80–97. [CrossRef]
21. Cui, L.; Li, G.; Zhu, Z.; Wen, Z.; Lu, N.; Lu, J. A novel differential evolution algorithm with a self-adaptation parameter control

method by differential evolution. Soft Comput. 2018, 22, 6171–6190. [CrossRef]

http://doi.org/10.1007/s11831-021-09694-4
http://dx.doi.org/10.1016/j.cie.2021.107250
http://dx.doi.org/10.1016/j.jestch.2019.05.012
http://dx.doi.org/10.3390/e24091293
http://www.ncbi.nlm.nih.gov/pubmed/36141179
http://dx.doi.org/10.1007/s12559-020-09730-8
http://dx.doi.org/10.1007/s00366-021-01431-6
http://dx.doi.org/10.1016/j.cie.2023.109815
http://dx.doi.org/10.3390/math11214418
http://dx.doi.org/10.3390/app11146449
http://dx.doi.org/10.1016/j.compbiomed.2019.103375
https://www.kaggle.com/datasets/shayanfazeli/heartbeat
https://www.kaggle.com/datasets/shayanfazeli/heartbeat
http://dx.doi.org/10.3390/biomimetics8030278
http://www.ncbi.nlm.nih.gov/pubmed/37504166
http://dx.doi.org/10.1007/s00500-020-04730-0
http://dx.doi.org/10.1007/s00521-012-1285-7
http://dx.doi.org/10.1016/j.ins.2014.11.042
http://dx.doi.org/10.1007/s00500-017-2685-5

Mathematics 2024, 12, 1249 27 of 29

22. De Barros, J.B.; Sampaio, R.C.; Llanos, C.H. An adaptive discrete particle swarm optimization for mapping real-time applications
onto network-on-a-chip based MPSoCs. In Proceedings of the 32nd Symposium on Integrated Circuits and Systems Design,
São Paulo, Brazil, 26–30 August 2019; pp. 1–6.

23. Zhang, L.; Chen, H.; Wang, W.; Liu, S. Improved Wolf Pack Algorithm for Solving Traveling Salesman Problem. In FSDM; IOS
Press: Amsterdam, The Netherlands, 2018; pp. 131–140.

24. Nasser, A.B.; Zamli, K.Z. Parameter free flower algorithm based strategy for pairwise testing. In Proceedings of the 2018 7th
International Conference on Software and Computer Applications, Kuantan, Malaysia, 8–10 February 2018; pp. 46–50.

25. Cruz-Salinas, A.F.; Perdomo, J.G. Self-adaptation of genetic operators through genetic programming techniques. In Proceedings
of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July 2017; pp. 913–920.

26. Kavoosi, M.; Dulebenets, M.A.; Abioye, O.F.; Pasha, J.; Wang, H.; Chi, H. An augmented self-adaptive parameter control in
evolutionary computation: A case study for the berth scheduling problem. Adv. Eng. Inform. 2019, 42, 100972. [CrossRef]

27. Bacanin, N.; Stoean, C.; Zivkovic, M.; Jovanovic, D.; Antonijevic, M.; Mladenovic, D. Multi-swarm algorithm for extreme learning
machine optimization. Sensors 2022, 22, 4204. [CrossRef] [PubMed]

28. Wong, L.H.; Looi, C.K. Swarm intelligence: New techniques for adaptive systems to provide learning support. Interact. Learn.
Environ. 2012, 20, 19–40. [CrossRef]

29. Kicska, G.; Kiss, A. Comparing swarm intelligence algorithms for dimension reduction in machine learning. Big Data Cogn.
Comput. 2021, 5, 36. [CrossRef]

30. Mavrovouniotis, M.; Li, C.; Yang, S. A survey of swarm intelligence for dynamic optimization: Algorithms and applications.
Swarm Evol. Comput. 2017, 33, 1–17. [CrossRef]

31. Seyyedabbasi, A.; Aliyev, R.; Kiani, F.; Gulle, M.U.; Basyildiz, H.; Shah, M.A. Hybrid algorithms based on combining reinforcement
learning and metaheuristic methods to solve global optimization problems. Knowl.-Based Syst. 2021, 223, 107044. [CrossRef]

32. Sadeg, S.; Hamdad, L.; Remache, A.R.; Karech, M.N.; Benatchba, K.; Habbas, Z. Qbso-fs: A reinforcement learning based bee
swarm optimization metaheuristic for feature selection. In Proceedings of the Advances in Computational Intelligence: 15th
International Work-Conference on Artificial Neural Networks, IWANN 2019, Gran Canaria, Spain, 12–14 June 2019; Part II 15;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 785–796.

33. Sagban, R.; Ku-Mahamud, K.R.; Bakar, M.S.A. Nature-inspired parameter controllers for ACO-based reactive search. Res. J. Appl.
Sci. Eng. Technol. 2015, 11, 109–117. [CrossRef]

34. Nijimbere, D.; Zhao, S.; Gu, X.; Esangbedo, M.O.; Dominique, N. Tabu search guided by reinforcement learning for the max-mean
dispersion problem. J. Ind. Manag. Optim. 2020, 17, 3223–3246. [CrossRef]

35. Reyes-Rubiano, L.; Juan, A.; Bayliss, C.; Panadero, J.; Faulin, J.; Copado, P. A biased-randomized learnheuristic for solving the
team orienteering problem with dynamic rewards. Transp. Res. Procedia 2020, 47, 680–687. [CrossRef]

36. Kusy, M.; Zajdel, R. Stateless Q-learning algorithm for training of radial basis function based neural networks in medical data
classification. In Intelligent Systems in Technical and Medical Diagnostics; Springer: Berlin/Heidelberg, Germany, 2014; pp. 267–278.

37. Kalaiselvi, B.; Pushparani, M. A novel impulsive genetic fuzzy C-means for task scheduling and hybridization of improved Fire
Hawk optimizer and enhanced Deep Q-Learning algorithm for load balancing in cloud computing. J. Data Acquis. Processing
2023, 38, 1091.

38. Agrawal, P.; Abutarboush, H.F.; Ganesh, T.; Mohamed, A.W. Metaheuristic algorithms on feature selection: A survey of one
decade of research (2009–2019). IEEE Access 2021, 9, 26766–26791. [CrossRef]

39. Dokeroglu, T.; Deniz, A.; Kiziloz, H.E. A comprehensive survey on recent metaheuristics for feature selection. Neurocomputing
2022, 494, 269–296. [CrossRef]

40. Ren, K.; Zeng, Y.; Cao, Z.; Zhang, Y. ID-RDRL: A deep reinforcement learning-based feature selection intrusion detection model.
Sci. Rep. 2022, 12, 15370. [CrossRef] [PubMed]

41. Priya, S.; Kumar, K. Feature Selection with Deep Reinforcement Learning for Intrusion Detection System. Comput. Syst. Sci. Eng.
2023, 46, 3340–3353. [CrossRef]

42. Barrera-García, J.; Cisternas-Caneo, F.; Crawford, B.; Gómez Sánchez, M.; Soto, R. Feature Selection Problem and Metaheuristics:
A Systematic Literature Review about Its Formulation, Evaluation and Applications. Biomimetics 2024, 9, 9. [CrossRef]

43. Mengash, H.A.; Alruwais, N.; Kouki, F.; Singla, C.; Abd Elhameed, E.S.; Mahmud, A. Archimedes Optimization Algorithm-Based
Feature Selection with Hybrid Deep-Learning-Based Churn Prediction in Telecom Industries. Biomimetics 2023, 9, 1. [CrossRef]
[PubMed]

44. Jiang, Y.; Wu, Q.; Zhu, S.; Zhang, L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems.
Expert Syst. Appl. 2022, 188, 116026. [CrossRef]

45. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
46. Wang, L.; Pan, Z.; Wang, J. A review of reinforcement learning based intelligent optimization for manufacturing scheduling.

Complex Syst. Model. Simul. 2021, 1, 257–270. [CrossRef]
47. Sun, H.; Yang, L.; Gu, Y.; Pan, J.; Wan, F.; Song, C. Bridging locomotion and manipulation using reconfigurable robotic limbs via

reinforcement learning. Biomimetics 2023, 8, 364. [CrossRef] [PubMed]
48. Zhu, K.; Zhang, T. Deep reinforcement learning based mobile robot navigation: A review. Tsinghua Sci. Technol. 2021, 26, 674–691.

[CrossRef]

http://dx.doi.org/10.1016/j.aei.2019.100972
http://dx.doi.org/10.3390/s22114204
http://www.ncbi.nlm.nih.gov/pubmed/35684824
http://dx.doi.org/10.1080/10494821003714681
http://dx.doi.org/10.3390/bdcc5030036
http://dx.doi.org/10.1016/j.swevo.2016.12.005
http://dx.doi.org/10.1016/j.knosys.2021.107044
http://dx.doi.org/10.19026/rjaset.11.1682
http://dx.doi.org/10.3934/jimo.2020115
http://dx.doi.org/10.1016/j.trpro.2020.03.147
http://dx.doi.org/10.1109/ACCESS.2021.3056407
http://dx.doi.org/10.1016/j.neucom.2022.04.083
http://dx.doi.org/10.1038/s41598-022-19366-3
http://www.ncbi.nlm.nih.gov/pubmed/36100644
http://dx.doi.org/10.32604/csse.2023.030630
http://dx.doi.org/10.3390/biomimetics9010009
http://dx.doi.org/10.3390/biomimetics9010001
http://www.ncbi.nlm.nih.gov/pubmed/38275449
http://dx.doi.org/10.1016/j.eswa.2021.116026
http://dx.doi.org/10.23919/CSMS.2021.0027
http://dx.doi.org/10.3390/biomimetics8040364
http://www.ncbi.nlm.nih.gov/pubmed/37622969
http://dx.doi.org/10.26599/TST.2021.9010012

Mathematics 2024, 12, 1249 28 of 29

49. Azar, A.T.; Koubaa, A.; Ali Mohamed, N.; Ibrahim, H.A.; Ibrahim, Z.F.; Kazim, M.; Ammar, A.; Benjdira, B.; Khamis, A.M.;
Hameed, I.A.; et al. Drone deep reinforcement learning: A review. Electronics 2021, 10, 999. [CrossRef]

50. Alavizadeh, H.; Alavizadeh, H.; Jang-Jaccard, J. Deep Q-learning based reinforcement learning approach for network intrusion
detection. Computers 2022, 11, 41. [CrossRef]

51. Zhang, L.; Tang, L.; Zhang, S.; Wang, Z.; Shen, X.; Zhang, Z. A Self-Adaptive Reinforcement-Exploration Q-Learning Algorithm.
Symmetry 2021, 13, 1057. [CrossRef]

52. Jang, B.; Kim, M.; Harerimana, G.; Kim, J.W. Q-learning algorithms: A comprehensive classification and applications. IEEE Access
2019, 7, 133653–133667. [CrossRef]

53. Wang, H.n.; Liu, N.; Zhang, Y.y.; Feng, D.w.; Huang, F.; Li, D.s.; Zhang, Y.m. Deep reinforcement learning: A survey. Front. Inf.
Technol. Electron. Eng. 2020, 21, 1726–1744. [CrossRef]

54. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

55. Diekmann, N.; Walther, T.; Vijayabaskaran, S.; Cheng, S. Deep reinforcement learning in a spatial navigation task: Multiple contexts and their
representation. In Proceedings of the 2019 Conference on Cognitive Computational Neuroscience, Berlin, Germany, 13–16 September 2019.
[CrossRef]

56. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized Experience Replay. arXiv 2015, arXiv:1511.05952.
57. Ramicic, M.; Bonarini, A. Correlation minimizing replay memory in temporal-difference reinforcement learning. Neurocomputing

2020, 393, 91–100. [CrossRef]
58. Liu, F.; Viano, L.; Cevher, V. Understanding Deep Neural Function Approximation in Reinforcement Learning via ϵ-Greedy

Exploration. In Proceedings of the NeurIPS 2022, New Orleans, LA, USA, 28 November–9 December 2022.
59. Nguyen, B.H.; Xue, B.; Zhang, M. A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evol.

Comput. 2020, 54, 100663. [CrossRef]
60. Pudjihartono, N.; Fadason, T.; Kempa-Liehr, A.W.; O’Sullivan, J.M. A Review of Feature Selection Methods for Machine

Learning-Based Disease Risk Prediction. Front. Bioinform. 2022, 2, 927312. [CrossRef]
61. Kaur, S.; Kumar, Y.; Koul, A.; Kumar Kamboj, S. A Systematic Review on Metaheuristic Optimization Techniques for Feature

Selections in Disease Diagnosis: Open Issues and Challenges. Arch. Comput. Methods Eng. 2022, 30, 1863–1895. [CrossRef]
[PubMed]

62. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv.
(CSUR) 2017, 50, 1–45. [CrossRef]

63. Hoque, N.; Bhattacharyya, D.K.; Kalita, J.K. MIFS-ND: A mutual information-based feature selection method. Expert Syst. Appl.
2014, 41, 6371–6385. [CrossRef]

64. Peng, Y.; Wu, Z.; Jiang, J. A novel feature selection approach for biomedical data classification. J. Biomed. Inform. 2010, 43, 15–23.
[CrossRef] [PubMed]

65. Ma, L.; Li, M.; Gao, Y.; Chen, T.; Ma, X.; Qu, L. A novel wrapper approach for feature selection in object-based image classification
using polygon-based cross-validation. IEEE Geosci. Remote Sens. Lett. 2017, 14, 409–413. [CrossRef]

66. Tan, F.; Yan, P.; Guan, X. Deep reinforcement learning: From Q-learning to deep Q-learning. In Proceedings of the Neural
Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, 14–18 November 2017; Part IV 24;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 475–483.

67. Ramaswamy, A. Theory of Deep Q-Learning: A Dynamical Systems Perspective. arXiv 2020, arXiv:2008.10870.
68. Hong, Z.W.; Su, S.Y.; Shann, T.Y.; Chang, Y.H.; Lee, C.Y. A Deep Policy Inference Q-Network for Multi-Agent Systems. arXiv

2017, arXiv:1712.07893.
69. Hu, X.; Chu, L.; Pei, J.; Liu, W.; Bian, J. Model complexity of deep learning: A survey. Knowl. Inf. Syst. 2021, 63, 2585–2619.

[CrossRef]
70. Fan, J.; Wang, Z.; Xie, Y.; Yang, Z. A theoretical analysis of deep Q-learning. Learning for dynamics and control. In Proceedings

of the PMLR, Virtual, 13–18 July 2020; pp. 486–489.
71. Bartz-Beielstein, T.; Preuss, M. Experimental research in evolutionary computation. In Proceedings of the 9th Annual Conference

Companion on Genetic and Evolutionary Computation, ACM, GECCO07, London, UK, 7–11 July 2007. [CrossRef]
72. Arcuri, A.; Fraser, G. Parameter tuning or default values? An empirical investigation in search-based software engineering.

Empir. Softw. Eng. 2013, 18, 594–623. [CrossRef]
73. Ravelo, C.; Olivares, R. Biomimetic Orca Predator Algorithm Improved by Deep Reinforcement Leaning for Feature Selection.

2024. Available online: https://figshare.com/articles/online_resource/Biomimetic_Orca_Predator_Algorithm_improved_by_
Deep_Reinforcement_Leaning_for_Feature_Selection/25126043 (accessed on 17 April 2024).

74. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2020,
80, 8091–8126. [CrossRef] [PubMed]

75. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle Swarm Optimization: A
Comprehensive Survey. IEEE Access 2022, 10, 10031–10061. [CrossRef]

76. Shehab, M.; Abu-Hashem, M.A.; Shambour, M.K.Y.; Alsalibi, A.I.; Alomari, O.A.; Gupta, J.N.D.; Alsoud, A.R.; Abuhaija, B.;
Abualigah, L. A Comprehensive Review of Bat Inspired Algorithm: Variants, Applications, and Hybridization. Arch. Comput.
Methods Eng. 2022, 30, 765–797. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/electronics10090999
http://dx.doi.org/10.3390/computers11030041
http://dx.doi.org/10.3390/sym13061057
http://dx.doi.org/10.1109/ACCESS.2019.2941229
http://dx.doi.org/10.1631/FITEE.1900533
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.32470/ccn.2019.1151-0
http://dx.doi.org/10.1016/j.neucom.2020.02.004
http://dx.doi.org/10.1016/j.swevo.2020.100663
http://dx.doi.org/10.3389/fbinf.2022.927312
http://dx.doi.org/10.1007/s11831-022-09853-1
http://www.ncbi.nlm.nih.gov/pubmed/36465712
http://dx.doi.org/10.1145/3136625
http://dx.doi.org/10.1016/j.eswa.2014.04.019
http://dx.doi.org/10.1016/j.jbi.2009.07.008
http://www.ncbi.nlm.nih.gov/pubmed/19647098
http://dx.doi.org/10.1109/LGRS.2016.2645710
http://dx.doi.org/10.1007/s10115-021-01605-0
http://dx.doi.org/10.1145/1274000.1274102
http://dx.doi.org/10.1007/s10664-013-9249-9
https://figshare.com/articles/online_resource/Biomimetic_Orca_Predator_Algorithm_improved_by_Deep_Reinforcement_Leaning_for_Feature_Selection/25126043
https://figshare.com/articles/online_resource/Biomimetic_Orca_Predator_Algorithm_improved_by_Deep_Reinforcement_Leaning_for_Feature_Selection/25126043
http://dx.doi.org/10.1007/s11042-020-10139-6
http://www.ncbi.nlm.nih.gov/pubmed/33162782
http://dx.doi.org/10.1109/ACCESS.2022.3142859
http://dx.doi.org/10.1007/s11831-022-09817-5
http://www.ncbi.nlm.nih.gov/pubmed/36157973

Mathematics 2024, 12, 1249 29 of 29

77. Abualigah, L.; Elaziz, M.A.; Sumari, P.; Khasawneh, A.M.; Alshinwan, M.; Mirjalili, S.; Shehab, M.; Abuaddous, H.Y.; Gandomi,
A.H. Black hole algorithm: A comprehensive survey. Appl. Intell. 2022, 52, 11892–11915. [CrossRef]

78. Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput.
Appl. 2018, 30, 413–435. [CrossRef]

79. Mohammadi-Balani, A.; Nayeri, M.D.; Azar, A.; Taghizadeh-Yazdi, M. Golden eagle optimizer: A nature-inspired metaheuristic
algorithm. Comput. Ind. Eng. 2021, 152, 107050. [CrossRef]

80. Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired
meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10489-021-02980-5
http://dx.doi.org/10.1007/s00521-017-3272-5
http://dx.doi.org/10.1016/j.cie.2020.107050
http://dx.doi.org/10.1016/j.eswa.2021.116158

	Introduction
	Related Work
	Preliminaries
	Biomimetic Orca Predator Algorithm
	Chase Phase
	Attack Phase

	Deep Reinforcement Learning
	Feature Selection

	Developed Solution
	Experimental Setup
	Methodology
	Dataset
	Implementation Aspects

	Results and Discussion
	Statistical Test
	Comparing OPADQL vs. State-of-the-Art Algorithms

	Conclusions
	References

