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Abstract: We prove a strong theorem on the partial non-defectivity of secant varieties of embedded
homogeneous varieties developing a general set-up for families of subvarieties of Grassmannians.
We study this type of problem in the more general set-up of joins of embedded varieties. Joins are
defined by taking a closure. We study the set obtained before making the closure (often called the
open part of the join) and the set added after making the closure (called the boundary of the join).
For a point q of the open part, we give conditions for the uniqueness of the set proving that q is in the
open part.
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1. Introduction

We start with an example. Suppose you are interested in complex tensors of format
(n1 + 1)× · · · × (nk + 1), k ≥ 3, i.e., elements of the vector space V := V1 ⊗ · · · · · · ⊗ Vk
with Vi

∼= Cni+1. Take T ∈ V , T ̸= 0. A rank 1 tensor is a tensor of the form v1 ⊗ · · · vk
with vi ∈ Vi \ {0}. The rank of T is the minimal number of rank 1 tensors whose sum
is T. The rank of a tensor is important for real-life applications since a standard tool for
signal processing is to approximate a tensor with a low rank tensor, i.e., to fix a positive
integer a and try to approximate T with rank a tensors. Hence, it is natural to ask the
following questions:

(1) What is the rank of a “general” tensor?
(2) For any fixed positive integer a how large is the set of all tensors of rank a (or of rank

at most a)?

The answers for all formats of complex tensors is not known (and, perhaps, in this
strong form will not be known in the near future), but there are “good enough” partial
answers using general old results proved by B. Ådlandsvik (Prop. 2.1, Cor. 2.3, Th. 3.10 [1]),
which are improved here (with a prompt from conversations with the authors of [2]).
Questions (1) and (2) may be rephrased as the computation of the dimensions of the secant
varieties of image of the Segre embedding ν of a complex multiprojective space Pn1 × · · · ×
Pnk . The group GL(n1 + 1,C)× · · · × GL(nk + 1,C) acts transitively on X := ν(Pn1 × · · · ×
Pnk ). Thus, X is an embedded homogeneous space. This framework also applies to partially
symmetric tensors (Segre-Veronese embeddings of multiprojective spaces), anti-symmetric
tensors (Plücker embeddings of Grassmannians) and Schur embeddings.

For this type of embedding, ref. [1] gives a strong tool to see that the set of all rank a
tensors (or partially symmetric tensors or anti-symmetric tensors and many other objects)
has the “expected dimensions”. This set always has at most the “expect dimension” and
proving that the other inequality holds for a very specific a is often quite hard. To apply [1],
one needs to check its assumptions in the case to be studied (there is a “no secant variety is a
cone” assumption without which almost nothing can be said (Remark 3)). For homogeneous
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embeddings, this assumption is always satisfied ([2]). The same paper [1] gives a very good
upper bound for the “general” rank. Hence its improvements, e.g., Theorem 1, give an even
better upper bound for the general rank. Keep in mind that over the complex numbers we
are talking about “general for the Zariski topology”, i.e., open subsets for the euclidean
topology which are dense in the euclidean topology (every tensor may be approximated
with arbitrary precision by a tensor of generic rank) and its complement is “small”, a finite
union of smooth complex varieties of dimension less than the one of the space V .

The a-secant variety of an embedded variety σa(X) is defined by taking a closure in
the Zariski topology and so it contains all objects of rank a, all objects of rank < a and
something else, something “unknown”, the boundary. In Section 4, we consider the subsets
of the a-secant variety formed by the points with rank at most a and its complement, the
boundary. All these results are framed in the more general framework of joins [X1; . . . ; Xs]
of s embedded varieties.

We recall the definition and elementary properties of joins ([3]).
Let X, Y, Xi, 1 ≤ i ≤ s, be integral subvarieties of Pr. The join [X; Y] of X and Y is

defined in the following way. If X = Y and Y is a single point, p, set [{p}; {p}] := {p}.
In all other cases let [X; Y] denote the closure of the union of all lines of Pr spanned by a
point of X and a different point of Y. If s ≥ 3 define [X1; . . . ; Xs] by induction on s using the
formula [X1; . . . ; Xs] := [[X1; . . . ; Xs−1]; Xs]. Set σ1(X) := X ([3]). For all integers i ≥ 2 let
σi(X) denote the join of s copies of X ([3]). The variety σi(X) is called the i-secant variety
of X.

Let c(X) be the maximal integer c such that σc(X) = c(n + 1)− 1. Let g(X) be the
minimal integer such that σg(X)(X) = Pr. For all integers i > 0 set ai(X) := dim σi+1(X)−
dim σi(X).

This is one of the main results proved in this paper.

Theorem 1. Let X ⊂ Pr be an integral and non-degenerate variety. Set n := dim X, g := g(X),
c = c(X) and k := g − c. Let H be an algebraic group with Pr as an irreducible projective
representation. Assume that X is H-invariant. Then:

1. We have 0 ≤ k ≤ n.
2. We have ai+1(X) < ai(X) for all i = c − 1, . . . , g − 2.

3. We have c ≥ r+1
n+1 − nk

n+1 + k(k−1)
2n+2 .

4. We have g ≤ r+1
n+1 + k − k(k−1)

2n+2 .

A Roadmap of the Paper

(a) In Section 2, we give 3 remarks related to Theorem 1. We explain the main cases in
which Theorem 1 may be applied (Remark 1). We explain its use over R (Remark 2).
Remark 3 shows a key requirement to obtain part (2) of Theorem 1 and gives a
motivation for some of the results proved in Section 6.

(b) Theorem 1 is a particular case of a result (Theorem 2) which considers more general
objects, instead of joins of subvarieties, “joins” of subvarieties of Grassmann vari-
eties. See Section 3 for the definitions and main properties. Section 3 introduces the
Grassmannian joins and Grassmannian secant varieties. We hope that they will be
interesting. The main reason to introduce them in this paper is that the proofs for these
Grassmannian secant varieties, i.e., Theorem 2, are verbatim the ones used to prove
Theorem 1. In this roadmap we only describe why the set-up of Section 3 helps to
prove theorems for secant varieties and joins each time we use the Terracini Lemma
(Cor. 1.10 [3]). Let X ⊂ Pr be an integral and non-degenerate projective variety. Let
Xreg denote the set of all smooth points of X. Set n := dim X. For any p ∈ Xreg the
tangent space TpX of X is n-dimensional linear subspace of Pr, i.e., an element of the
Grassmannian G(n + 1, r + 1). The Gauss mapping Xreg → G(n + 1, r + 1) has as its
image an irreducible quasi-projective variety. In Section 3, we consider the case of
arbitrary quasi-projective subvarieties V of G(n + 1, r + 1), not just images of Gauss
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mappings, i.e., we do not assume that they are “integrable”. Thus our theorems are
more general, while as far as possible we give examples coming from images of Gauss
mappings. At the end of the section we raise an open question.

(c) Section 4 contains the definitions of the open part or the open join and of the bound-
ary of a join and of a secant variety. For secant varieties the definitions are well-
known to the experts. In the definition of joins there is a closure of a certain set. In
Section 4, we discuss the set obtained before making the closure. For any set S ⊂ Pr

let ⟨S⟩ denote its linear span. Assuming that all varieties have positive dimension we
may define [X1; . . . ; Xs] as the closure of the union, [X1; . . . ; Xs]◦, of all linear spaces
⟨{p1, . . . , ps}⟩, where pi ∈ Xi for all i. We say that [X1; . . . ; Xs]◦ is the open part or
open join of [X1; . . . ; Xs], although sometimes [X1; . . . ; Xs]◦ is not an open subset of
[X1; . . . ; Xs]. The open join [X1; . . . ; Xs]◦ is a constructible subset of the join [X1; . . . ; Xs]
(Ex. II.3.18, Ex. II.3.19 [4]) and in particular it contains a non-empty Zariski open
subset of [X1; . . . ; Xs]. We say that bnd(X1; . . . , Xs) := [X1; . . . ; Xs] \ [X1; . . . ; Xs]◦ is
the boundary of the join [X1; . . . ; Xs]. Often, the boundary is not closed. We set
σs(X)◦ := [X1; . . . ; Xs]◦ when Xi = X for all i and call bnd(X, S) := σs(X) \ σs(X)◦

the boundary of σs(X). See [5] for several examples with s = 2, r = 3 and X a smooth
curve in which the boundary is neither closed nor irreducible.
There is a huge difference between the case of secant varieties and the case of joins of
different varieties.
For joins of “very different” varieties the boundary is empty (Proposition 3, Theorem 5,
Remark 16).
The boundaries of secant varieties often contain a hypersurface of the secant variety,
i.e., their dimension is the maximal a priori possible. For instance, if r ≥ 3 and X is a
rational normal curve of Pr, then the boundary of σ2(X) is a hypersurface of σ2(X).
See [6] for the case of the 2-secant variety of a Veronese variety. At the end of Section 4
we recall that definition of the tangential variety τ(X) and explain why it often gives
the explicit description of a part of the boundary of σs(X) which have codimension 1
in σs(X) and hence it is as big as a priori possible.

(d) Take a point q in the open part of a join or a secant variety. In Section 5, we study
the subsets which certificate that q is in the open part. We study the uniqueness of
such certificates. When uniqueness fails we discuss when q may be determined by its
solution set. We consider the non-uniqueness set of q. On this topic we also give a
conjecture and several open questions.

(e) In Section 6, we introduce the definition of universally good and strongly universally
good embedding of a variety X ⊂ Pr, i.e., an embedded variety which has joins with
the expected dimension with respect to any other variety Y ⊂ Pr (with finer definitions
if we also give an upper bound on dim Y and allow to take a secant variety of X instead
of X).

(f) In Section 7, we consider the products of two (or more) embedded varieties, say
X ⊂ Pr and Y ⊂ Pm, with X × Y embedded in the Segre embedding of Pr × Pm.

(g) Section 8 briefly describes how the previous sections may be generalized to the case of
families of embedded varieties.

(h) In the last section, Conclusions, we add four open questions.

Strong thanks are due to Alexander Taveira Blomenhofer and Alex Casarotti for
stimulating talks after [2]. A. T. Blomenhofer made suggestions improving the statements
of Theorems 1 and 2.

We thank the referees who helped us to improve the exposition.

2. Applications of Theorem 1

Remark 1. The paper [2] contains many very strong consequences of their main result (Theorem 1.1
in [2]) which in the set-up of Theorem 1 says that c ≥ r+1

n+1 − n − 1 and g ≤ r+1
n+1 + n + 1). Obvi-

ously, Theorem 1 gives a small improvement of these results. Sometimes, it gives no improvement
at all, because the gap between Theorem 1 and Theorem 1.1 in [2] is covered by previous literature
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listed in [2]. There are many exceptional cases, even in the case of tensors ([7]), skew symmetric
tensors ([2,8]), additive decompositions of forms ([9–11]) and partially symmetric tensors ([12–15].
For many other formats of partially symmetric tensors very few cases are fully understood and many
others are research projects.

Remark 2. We work over the field of complex numbers. We describe the information that the
complex case, say complex tensors of a prescribed format, give if we are interested in the case over
the field of real numbers, say real tensors of the same format. Suppose both your variety and its
embedding X ⊂ Pr are defined over R. The real locus X(R) := X(C) ∩ Pr(R) may be small, even
empty. We assume (as in the case of multiprojective spaces and Grassmannians needed for the
main applications) that this set is as large as possible, i.e., that it contains a differential manifold
of dimension dimC X(C). There is an upper bound, 2g(X(C), for the X(C)-rank of each point of
Pr(C) and the X(R)-rank of every point of Pr(R) ([16]). Thus Theorem 1 and/or similar statements
immediately give an upper bound for all ranks, real or complex. Examples show that sometimes
the upper bound (or the related upper bounds, like 2g(X)(C)− 1 or 2g(X)(C)− 2 given in [16]
if a few other assumptions are satisfied) are sharp over C and over R. Over R there is no notion
of “generic rank”, but only the notion of typical ranks ([16–19]). There are many typical ranks, the
smallest one being the generic complex X(C)-rank of a point of Pr(C). Obviously, all typical ranks
are at most the maximum of all real ranks and hence [16] applies also to typical ranks.

Remark 3. By Th. 3.10 in [1] there is a complete description of the varieties X ⊂ Pr such that
k = n, i.e., g(X) = c(X) + n (even not homogeneous varieties but with no cone as one of their
proper secant varieties). If we drop the assumption that no proper secant variety of X is a cone,
then all non-increasing finite sequences {ai(X)}i>0 of positive integers ai(X) ≤ n + 1 are realized
by some r and some n-dimensional variety X ⊂ Pr, with the only restriction that 1 occurs only
once ([20]).

3. Grassmannian Joins and Grassmannian Secant Varieties

Fix an integer s ≥ 1 and integers 0 ≤ ni < r, 1 ≤ i ≤ s. Let Vi ⊂ G(ni + 1, r + 1),
1 ≤ i ≤ s, be integral quasi-projective subvarieties. Let Vi denote the closure of Vi ⊂
G(ni + 1, r + 1). Set γ(V1, . . . , Vs) := dim⟨A1 ∪ · · · ∪ As⟩, where Ai is a general element of
Vi (and hence a general element of Vi). By the semicontinuity theorem for cohomology the
integer γ(V1, . . . , Vs) is well-defined and we call it the Gdimension of the Gjoin of V1, . . . , Vs
or of V1, . . . , Vs. Let Γ(V1, . . . , Vs) denote the closure in G(γ(V1, . . . , Vs) + 1, r + 1) of the
set of all ⟨A1 ∪ · · · ∪ As⟩ with Ai ∈ Vi and dim⟨A1 ∪ · · · ∪ As⟩ = γ(V1, . . . , Vs). We call
Γ(V1, . . . , Vs) the Gjoin of V1, . . . , Vs. If we have another variety Vs+1, then we have the
associative rule for Gjoins and their dimensions similar to the classical associative rule for
joins [X1; . . . ; Xs+1] = [[X1; . . . ; Xs]; Xs+1]. Obviously, γ(V1, . . . , Vs) = γ(Vτ(1), . . . , Vτ(s))
and Γ(V1, . . . , Vs) = Γ(Vτ(1), . . . , Vτ(s)) for any bijection τ : {1, . . . , s} → {1, . . . , s}. If
Vi = V1 for all i we say that the integer γ(V1, . . . , Vs) is the Gs-secant dimension γs(V1)
of V1 (or of V1) and that Γs(V1) is the associated tangent variety. When we use the join
of i times a varieties we use the notation A(i) and γ(A(i), Y) := γ(A, . . . , A, Y) where A
is repeated i times. Let V ⊂ G(m + 1, r + 1) be a quasi-projective irreducible variety. We
say that p ∈ Pr is contained the vertex of V if p ∈ ∩A∈V A. We say that V is a cone with
vertex E if ∩A∈V A ̸= ∅ and ∩A∈V A = E. Note that the vertex E is a non-empty linear
subspace of Pr and that the vertex of V and V are the same. We say that V ⊂ G(n + 1, r + 1)
is non-degenerate if ⟨∪A∈V A⟩ = Pr. We say that V1, . . . , Vs has Gdefect or that V1, . . . , Vs
are Gdefective if γ(V1, . . . , Vs) < min{r, s − 1 + n1 + · · ·+ ns}.

Our main results are on the integers γ(V1, . . . , Vs), not the Gjoins.

Remark 4. We are aware of biduality ([21]). Since we work over an algebraically closed field with
characteristic 0, e.g., the field of complex numbers, biduality says that any Grassmann data of
hyperplanes is integrable. However, if we translate biduality in our set-up, in general we do not
know in which Grassmannian lives the data whose dual is our given data.
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Remark 5. By the semicontinuity theorem for cohomology we obtain the same integer γ(V1, . . . , Vs)
if instead of V1, . . . , Vs we take any non-empty open Zariski subset Ui of Vi. Now assume that the
algebraically closed base field is the field C of the complex numbers. By the semicontinuity theorem
for cohomology we obtain the same integers γ(V1, . . . , Vs) if instead of Vi we take a non-empty open
subset of Vi for the euclidean topology. If each Vi is defined over R and Vi(R) contains a smooth
point, pi, of the complex projective space Vi(C) instead of Vi we may take an open neighborhood of
pi in Vi(R) for the euclidean topology.

Lemma 1. Fix an integer i ≥ 2 and quasi-projective varieties A ⊂ G(a + 1, r + 1), B ⊂
G(b + 1, r + 1) and C ⊂ G(c + 1, r + 1). Then:

(i) γ(A, B, C)− γ(A, B) ≤ γ(A, C)− a − 1.
(ii) If γ(A(i), C) ≤ γ(A(i)) + c and Γ(A(i−1)) is not a cone, then γ(A(i+1)) − γ(A(i)) <

γ(A(i))− γ(A(i−1)).

Proof. The proof is the one in Proposition 2.1 of [1]. Indeed, the first step of the proof of
Proposition 2.1 in [1] is to reduce the proof of Proposition 2.1 in [1] to the proof of Lemma 1.
The second step of the quoted proof is to prove Lemma 1.

Fix an irreducible locally closed variety V ⊂ G(n + 1, r + 1). For all i ≥ 1 set ai(V) :=
γ(V(i+1))− γ(V(i)). Obviously, 0 ≤ ai(V) ≤ n + 1 for all i. Let c(V) (or just c) be the last
positive integer i such that γ(V(i)) = i(n + 1)− 1. If V is non-degenerate let g(V) be the
minimal integer g such that γ(V(g)) = r.

Corollary 1. If i > c(V) and Γ(V(i−1)) is not a cone, then ai+1(V) < ai(V). Moreover,
g ≤ c + n.

Proof. Part (ii) of Lemma 1 gives the first assertion of the corollary. To prove the “Moreover”
part it is sufficient to observe that any strictly decreasing list of integers between n and 1
has at most n entries.

Remark 6. Take quasi-projective varieties Vi ⊂ G(ni + 1, r + 1), 1 ≤ i ≤ s, and set mi := dim Vi.
Obviously, dim Γ(V1, . . . , Vs) ≤ m1 + · · ·+ ms. If Vi is integrable, i.e., if it is the image of a Gauss
mapping, then mi ≤ ni. For integrable Vi we often have mi = ni. For instance, mi = ni if Xi is
smooth by an important theorem of Zak ([22]). The case mi < ni occurs for all cones, but also for
varieties which are not cones. For surfaces, case ni = 2, we have mi = 1 if and only if either the
surface is a cone or it is the tangent developable of an irreducible curve.

Remark 7. Let V ⊂ G(n + 1, r + 1) be an integral and non-degenerate variety. Let H be an
algebraic group acting on Pr as an irreducible projective representation. Assume that V is H-
invariant. Then no proper Gsecant variety of V is a cone.

Theorem 2. Let V ⊂ G(n, r + 1) be an integral and non-degenerate variety. Set g := g(V),
c := c(V) and k := g − c. Let H be an algebraic group with Pr as an irreducible projective
representation. Assume that V is H-invariant. Then:

1. We have 0 ≤ k ≤ n.
2. We have ai+1(V) < ai(V) for all i = c − 1, . . . , g − 2.

3. We have c ≥ r+1
n+1 − nk

n+1 + k(k−1)
2n+2 .

4. We have g ≤ r+1
n+1 + k − k(k−1)

2n+2 .

Proof. Since c = ⌊(r + 1)/(n + 1)⌋ and g = ⌈(r + 1)/(n + 1)⌉ if V is not Gdefective, we
may assume that V is Gdefective. This assumption implies c ≤ g − 2 and that c is the first
integer such that ac(X) ≤ n. Every Gsecant variety of V is H-invariant. Since Pr is an
irreducible representation of H and the vertex of any cone is a linear subspace, no proper
Gsecant variety of V is a cone (Remark 7). Thus g ≤ c + n and for i = c, . . . , g − 1 we
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have ai+1(V) < ai(V), concluding the proof of parts (1) and (2). By the definition of c we
have r + 1 = c(n + 1) + ∑

g−1
i=c ai(V). Since ac(V) ≤ n, we have ai(V) ≤ n + c − i for all

i = c, . . . , g − 1. Thus ∑
g−1
i=c ai(V) ≤ k(n + n − k + 1)/2 = nk − k(k − 1)/2, concluding

the proof of (3). Since ag(V) ≥ 1, part (2) implies c(n + 1) ≤ r + 1 − k(k − 1)/2. Since

g = c + k, we obtain g ≤ r+1
n+1 − k(k−1)

2n+2 + k.

Remark 8. Let H be an algebraic group acting on Pr as an irreducible projective representation.
Let Xi ⊂ Pr, 1 ≤ i ≤ s, be H-invariant integral subvarieties. Then each Xi is non-degenerate and
the join [X1; · · · ; Xs] is not a cone, unless [X1; · · · ; Xs] = Pr.

Proof of Theorem 1. The proof of Theorem 2 works just writing ai(X) instead of ai(V).

Proposition 1. Let W and Y be integral subvarieties. Then dim[W; g(Y)] = min{r, dim W +
dim Y + 1} for a general g ∈ Aut(Pr).

Proof. Fix p ∈ Wreg and q ∈ Yreg. By (part (1) of Cor. 1.10 [3]) it is sufficient to prove
that dim⟨TpW ∪ g(TqY)⟩ = dim[W; g(Y)] = min{r, dim W + dim Y + 1} for a general
g ∈ Aut(Pr). This is true, because Aut(Pr) acts transitively on the Grassmannian G(dim Y+
1, r + 1) of all subspaces of Pr of dimension dim Y.

By induction on the integer s Proposition 1 gives the following more general result.

Proposition 2. Fix integral varieties X1, . . . , Xs ⊂ Pr, s ≥ 2. Then

dim[X1; g2(X2); . . . ; gs(Xs)] = min{r, s − 1 + dim X1 + · · ·+ dim Xs}

for a general (g2, . . . , gs) ∈ Aut(Pr)s−1.

Question 1. Let X ⊂ Pr be an integral and non-degenerate n-dimensional variety. Suppose
dim σi(X) = i(n + 1)− 1 < r and that σi(X) is a cone. How large may be the dimension of the
vertex E of σi(X)?

X may have a vertex of dimension ≤ n − 2, because X is integral and non-degenerate and
n < r. Thus for i = 1 we have dim E ≤ n − 2. Easy examples show that any integer between 0
and n − 2 occurs as the dimension of a cone. Now assume i ≥ 2. Is dim E ≤ n? Note that in the
set-up of Question 1 dim σi−1(X) = (i − 1)(n + 1)− 1 and σi−1(X) is not a cone, because we
are assuming dim σi(X) = i(n + 1)− 1.

Joins also occur in the definition of Generalized Additive Decomposition ([23]).

Remark 9. Among the joins of a + b subvarieties of Pr there is [σa(X); σb(Y)] which is the join of
a-copies of X and b copies of Y. When a ≥ 2 and b ≥ 2 we may apply the ideas of [1] both to X
and Y. It would be very nice to do it efficiently, taking as a model Theorem 1 (or Theorem 2) and
its proof.

4. The Open Part of a Join

From now on in this paper we use the following notation.
Notation: For any integer r ≥ 2 and any q ∈ Pr let ℓq : Pr \ {q} → Pr−1 denote the

linear projection from q. For any set T and any positive integer x let S(T, x) denote the set
of all S ⊆ T such that #S = x.

In the definition of the join of two varieties we use the closure of a certain union of
lines. Thus inductively we obtain several closures in the definition of the joins of at least
three varieties and of the secant varieties σi(X), i ≥ 3. When σs(X) ̸= Pr and X is not
secant defective, the boundary has often codimension 1 in the secant variety. For instance,
this is the case for σ2(X) when X is a Veronese variety ([6]). In the case of joins of different
varieties it seems that the situation is quite different and we discuss in detail the case s = 2.
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Remark 10. With our definition we have X1 ∪ · · · ∪ Xs ⊂ [X1; . . . ; Xs]◦ and σs(X)◦ is the set of
all p ∈ Pr with X-rank at most s. In the literature one sees the same notation to denote the set of all
p ∈ Pr with X-rank exactly s.

Remark 11. Let K2,r denote the set of all degree 2 zero-dimensional schemes v ⊂ Pr. The set K2,r
is an integral projective variety. Take v ∈ K2,r. Either v is the union of 2 different points or it is
connected. In both cases ⟨v⟩ is a line. If {vα}α∈∆ is a family of elements of K2,r and this family has
a limit, v, then the family of lines {⟨vα⟩}α∈∆ ⊂ G(2, r + 1) has the line ⟨v⟩ as its limit.

Proposition 3. If X1 ∩ X2 = ∅, then [X1; X2]
◦ = [X1; X2].

Proof. Our definition gives X1 ∪ X2 ⊂ [X1; X2]
◦ (Remark 10). Fix p ∈ Pr \ (X1 ∪ X2). Since

p /∈ (X1 ∪ X2), both ℓp|X1
and ℓp|X2

are morphisms and hence ℓp(X1) and ℓp(X2) are closed
subvarieties of Pr−1. Since X1 ∩ X2 = ∅, p ∈ [X1; X2]

◦ if and only if ℓp(X1) ∩ ℓp(X2) ̸= ∅.
Since the latter is a closed condition on p and [X1; X2] is the closure of [X1; X2]

◦, we obtain
[X1; X2]

◦ = [X1; X2].

Remark 12. Take X2 := {p} with p ∈ X1. The boundary of [X1; X2] is contained in the
tangent cone, θ, of X1 at p. There are r and X1 with bnd(X1, {p}) = θ \ {p}. Take for instance
r = 2 and X1 a smooth conic. Take r = 2 and let X1 be a general plane curve of degree > 3.
In this case bnd(X1, {p}) = ∅. Now take r = 2 and as X1 a smooth plane cubic. We have
bnd(X1, {p}) = θ \ {p} if p is a flex of X1 and bnd(X1, {p}) = ∅ if p is not a flex of X1.

Theorem 3. Take integral varieties Xi ⊂ Pr, i = 1, 2, such that X1 ̸= X2. The boundary of the
join of X1 and X2 is contained in the union of all Zariski tangent spaces of X1 ∪ X2 at the points of
X1 ∩ X2.

Proof. Let q be any point in the boundary of the join. By the definition of join as a
closure, there is an integral quasi-projective variety Γ ⊂ G(2, r + 1) (i.e., Γ is a family
of lines {Lγ}γ∈Γ), a line L ∈ G(2, r + 1) containing q and in the closure of Γ such that
each Lγ contains a point aγ ∈ X1, a point bγ ∈ X2 such that bγ ̸= aγ and the family
{aγ, bγ}γ∈Γ is an algebraic subset of S(Pr, 2). By the projectivity of the Hilbert scheme of
degree 2 subschemes of X1 ∪ X2, the family {aγ, bγ}γ∈Γ has a flat limit v ⊂ X1 ∪ X2. Since
{aγ, bγ} ⊂ Lγ for all γ, v ⊂ L. Note that L = ⟨v⟩ and that q ∈ L (Remark 11). First assume
that v is formed by two distinct points. One of these points is the limit of the family {aγ}γ∈Γ
and hence it is contained in X1, while the other one is the limit of the family {bγ}γ∈Γ and
hence it is contained in X2. Since q ∈ L, q is not in the boundary, a contradiction. Now
assume that that v is connected and set {o} := vred. The point o is a limit of the family
{aγ}γ∈Γ and of the family {bγ}γ∈Γ. Thus o ∈ X1 ∩ X2. One of the definitions of Zariski
tangent space says that L (as a linear span of v) is contained in the Zariski tangent space
of X1 ∪ X2 at o (Ex. II.2.8 [4], [24], Ch. 7 [25]). Hence q is contained in the Zariski tangent
space of X1 ∪ X2 at o.

Remark 13. Let X, Y be integral space curves such that ⟨X ∪ Y⟩ = P3. Then [X1; X2] = P3.
Note that this is true even if X and/or Y are degenerate, we only need ⟨X ∪ Y⟩ = P3.

Proposition 4. Let X, Y ⊂ P3 be integral planar curve spanning different planes, M and N. Set
E := X ∩ Y (set-theoretic intersection) and L := M ∩ N. Then:

(i) X ∪ Y ∪ (P3 \ (M ∪ N)) ⊇ [X; Y]◦.
(ii) Fix q ∈ M \ (L ∪ Y). We have q ∈ bnd(X, Y) if and only if for each o ∈ E the curve X and

the line ⟨{q, o}⟩ have order of contact deg(X) at o.
(iii) Fix q ∈ N \ (L ∪ X). We have q ∈ bnd(X, Y) if and only if for each o ∈ E the curve Y and

the line ⟨{q, o}⟩ have order of contact deg(Y) at o.
(iv) If #E ̸= 1, then L ⊂ [X; Y]◦. If #E = 1, then L \ E ⊆ bnd(X, Y).
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Proof. Set a := deg(X) and b := deg(Y). Note that X ∩ Y ⊂ L.
Take q ∈ P3 \ (M ∪ N). Since ℓq|M and ℓq|N are isomorphisms, deg(ℓq(X)) = a,

deg(ℓq(Y)) = b and the schemes ℓq(X) ∩ ℓq(Y) are projectively isomorphic subschemes of
the line ℓq(L) with degree at most min{a, b}. If ℓq(X) = ℓq(Y), then q ∈ [X; Y]◦, because
X ̸= Y. Now assume ℓq(X) ̸= ℓq(Y). Note that deg(ℓq(X) ∩ ℓq(Y)) = ab by the theorem of
Bezout. Since ab > min{a, b}, we obtain q ∈ [X; Y]◦.

Take q ∈ M \ (L ∪ X). Every line containing q and a point of X is contained in M.
Thus q ∈ [X; Y]◦ if and only if there is o ∈ Y ∩ L such that the multiplicity of ⟨{q, o}⟩ and X
at o is at most a − 1.

In the same way we prove part (iii).
Now we prove part (iv). Take q ∈ L \ E. If R is a line containing a point of X and a

different point of Y, then R = L and #E > 1. The converse is obvious.

Remark 14. It is easy to construct examples as in Proposition 4 with bnd(X, Y) = (M ∪ N) \
X ∪ Y, other examples with bnd(X, Y) = M \ X, and other examples with bnd(X, Y) = N \ X.
There are many examples with #E = 1.

Proposition 5. Let X ⊂ P3 be an integral and non-degenerate. Let H ⊂ P3 be a plane and
Y ⊂ H an integral curve of degree b > 1. Set E := X ∩ Y (set-theoretic intersection). For any
q ∈ H \ H ∩ X let Cq(Y) be the cone with vertex q and Y as a base. If X ⊈ Cq(Y) for any o ∈ E
let eq,o denote the degree of the connected component of the zero-dimensional scheme Cq(Y) ∩ X
with o as its reduction; set êq := ∑o∈E eq,o. If E ̸= ∅ and X ⊈ Cq(Y) we have êq ≤ ab.

(i) Fix q ∈ P3 \ (H ∪ X). We have q ∈ [X; Y]◦ if and only if either E = ∅ or X ⊂ Cq(Y) or
êq < ab

(ii) Fix q ∈ H \ H ∩ X. We have q ∈ [X; Y]◦ if and only if there is o ∈ E such that Y has order of
contact < b with the line ⟨{q, o}⟩.

Proof. If E = ∅, then bnd(X, Y) = ∅ (Proposition 3). Assume E ̸= ∅.

(i) Fix q ∈ P3 \ (X ∪ H). Since q /∈ H, Cq(Y) is a degree b cone. First assume X ⊂ Cq(Y).
Since we are in characteristic 0, not all tangent lines of X at its smooth points contain q.
Thus a general line of the cone Cq(Y) gives q ∈ [X; Y]◦.
Now assume X ⊈ Cq(Y). Since Y ⊂ H, q ∈ [X; Y]◦ if and only if the scheme Cq(Y)∩ X
contains a point a /∈ E. By the theorem of Bezout the scheme Cq(Y) ∩ X has degree ab
and êq is the sum of the degrees of the connected components of the scheme Cq(Y)∩ X
with a point of E as their reduction. Thus we obtain part (i).

(ii) Fix q ∈ H \ (Y ∪ (X ∩ H)). Any line containing q and a point of Y is contained in H.
The theorem of Bezout gives part (ii).

In the set-up of Proposition 5 there are obvious examples with H ⊈ [X; Y]◦.

Remark 15. Take the assumptions of Theorem 3 and let q be a boundary point of the join of X1
and X2. The proof of Theorem 3 shows the existence of o ∈ X1 ∩ X2 and a connected degree 2
zero-dimensional scheme v ⊂ X1 ∪ X2 such that q is contained in the line ⟨v⟩.

Theorem 4. Let Xi ⊂ P3, i = 1, 2, be integral and non-degenerate curves such that X1 and X2
are smooth at each point of E := X1 ∩ X2, at each o ∈ E the tangent line ToX2 of X2 at o is
not contained in the osculating space Mo of X1 at o and the tangent line ToX1 of X1 at o is not
contained in the osculating space No of X2 at o. Moreover, if #E > 1 assume that the tangent
lines of Xi, i = 1, 2, at any 2 distinct points of E are disjoint. Then the join of X1 and X2 has no
boundary point.

Proof. Set a := deg(X1), b := deg(X2) and e := #E. Our assumptions imply that X1 ∪ X2
is nodal at each point of E. Thus E is the scheme-theoretic intersection of X1 and X2.
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Assume, by contradiction, the existence of a boundary point, q. By Theorem 3 and
Remark 15 there are o ∈ E and a connected zero-dimensional scheme v ⊂ X1 ∪ X2 such
that q ∈ L := ⟨v⟩. Since X1 ∪ X2 ⊂ [X1; X2]

◦, q /∈ X1 ∪ X2 and hence ℓq|Xi
: Xi → P2

is well-defined. If ℓq|E is not injective, then q ∈ [X1; X2]
◦, a contradiction. Thus we may

assume #ℓq(E) = #E, i.e., L ∩ E = {o}, and that no point of X1 ∪ X2 \ E is mapped by ℓq
to a point of ℓq(E). To obtain a contradiction it is sufficient to prove that the plane curves
ℓq(X1) and ℓq(X2) meet at a point not in ℓq(E).

Claim 1. ℓq|X1
and ℓq|X2

are birational onto their images.

Proof of Claim 1. Assume for instance that ℓq|X1
: X1 → P2 is not birational onto its image.

Thus c := deg(ℓq|X1
) > 1. Note that c divides a − deg(L ∩ X1) and that a − deg(L ∩ X1) =

c deg(ℓq(X1)). Since X1 is non-degenerate, ℓq(X1) has degree > 1. If L ∩ X1 contains a
point u ̸= o, then q ∈ [X1; X2]

◦, because o ∈ X2, a contradiction. Thus v ⊂ X1. Since X1 is
smooth at o, L = ToX. First assume e = 1. Since X1 and X2 have different tangents at o
by one of our assumptions and L meets X2 only at o by the definition of boundary, ℓq(X1)
has a unibranch singularity at ℓq(o) and ℓq(X2) is a degree b plane curve which is smooth
at ℓq(o). Since ToX2 ⊈ Mo, the tangent line of ℓq(X2) at ℓq(o) is not in the tangent cone of
ℓq(X1) at ℓq(o). We understand that the intersection number of ℓq(X1) and ℓq(X) at ℓq(o) is
the multiplicity µ of ℓq(X1) at ℓq(o). We have µ ≤ (a − deg(L ∩ X1))/c, while the scheme-
theoretic intersection of ℓq(X1) and ℓq(X2) has degree bc/(a − deg(L ∩ X1)) > µ. Thus
ℓq(X1)∩ ℓq(X2) contains a point not in ℓq(E). Thus q is not in the boundary, a contradiction.
Now assume e > 1. Fix any u ∈ E \ {o}. Since ℓq|X1

has degree > 1 and u ∈ X1 ∩ X2, the
line ⟨{q, u}⟩ is the tangent line of X1 at u, contradicting one of our assumptions.

Claim 2. e ≤ (a − 1)(b − 1) + 1

Proof of Claim 2. If both X1 and X2 are smooth, then Claim 1 is true by (Th. 1 [26]). The
proofs in [26] only use that X1 and X2 are smooth at each point of E.

By Claim 1 ℓq(X1) and ℓq(X2) are plane curves of degree a and b, respectively. To
contradict the assumption that q is in the boundary it is sufficient to prove that ℓq(X1) ∩
ℓq(X2) contains a point not in ℓq(E). Call ê the sum of the multiplicities of intersection of
ℓq(X1) and ℓq(X2) at the points of ℓq(X).

(a) First assume that L is tangent to one of the curves X1 or X2, say to X1, i.e., L = ToX1.
Call µ the multiplicity of ℓq(X1) at ℓq(o). Since ToX2 ⊈ Mo, ℓq(X2) is smooth at ℓq(o)
and with intersection multiplicity µ. We have µ ≤ a. Since µ ≤ a and b > 2, Claim 2
gives ê ≤ µ + e − 1 ≤ a + (a − 1)(b − 1) < ab, concluding the proof in this case.

(b) Assume that L is not tangent to X1 or X2. If q is contained in TuXi for some u ∈ E \ {o},
then we apply step (a) to u instead of o. Thus we may assume that ℓq(X1) and ℓq(X2)
are smooth at ℓq(o). Since ToX1 ⊈ No and ToX2 ⊈ Mo, ℓq(X1) and ℓq(X2) have
intersection multiplicity 2 at ℓq(o). Thus ê = 2 + (e − 1) < ab.

The assumptions of Theorem 4 are often satisfied, but at least some of them are needed.
We give the following example.

Example 1. Take a smooth quadric Q and X1 and X2 non-degenerate space curves contained
in Q. Fix o ∈ Q \ (X1 ∪ X2). By the theorem of Bezout any line containing o and at least 2
different points of X1 ∪ X2 is contained in Q. We may obtain smooth curves X1, X2 ⊂ Q with
o ∈ bnd(X1, X2) in the following way. Fix integers a1 ≥ 2 and a2 ≥ 1. Let L1 ∈ |OQ(1, 0)| and
L2 ∈ |OQ(0, 1)| be the two lines of Q containing o. Fix u1 ∈ L1 \ {o} and u2 ∈ L2 \ {o}. Let
Zi ⊂ Li, i = 1, 2, be the only connected degree ai zero-dimensional scheme with ui as its reduction.
Since h0(Q,OQ(a2, a1)) = (a2 + 1)(a1 + 1) ≥ a1 + a2 + 2, we have dim |IZ1∪Z2(a2, a1)| > 0
and hence X ̸= Y for a general X, Y ∈ |IZ1∪Z2(a2, a1)|.
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Claim 3. A general W ∈ |IZ1∪Z2(a2, a1)| is smooth and irreducible.

Proof of Claim 3. Note that L1 ∪ L2 ∪ D ∈ |IZ1∪Z2(a2, a1)| for every D ∈ |OQ(a2 − 1, a1 −
1)|. Since |OQ(a2 − 1, a1 − 1)| has no base points, the theorem of Bertini gives that X
and Y are smooth outside L1 ∪ L2 (III.10.9 [4], 6.3 [27]). We have h0(OQ(u, v)) = (u +
1)(v + 1) for all (u, v) ∈ N2. Thus h0(OQ(a2, a1)) − h0(OQ(a2 − 1, a1)) > deg(Z1) and
h0(OQ(a2, a1)) − h0(OQ(a2, a1)) > deg(Z2). Thus neither L1 nor L2 is contained in the
base locus of |IZ1∪Z2(a2, a1)|. Hence neither L1 nor L2 is an irreducible component of W.
Since a1 (resp. a2) is the intersection number of OQ(a2, a1) and OQ(1, 0) (resp. OQ(0, 1))
we understand that Zi is the scheme-theoretic intersection of W and Li. Thus {u1, u2} is the
base locus of |IZ1∪Z2(a2, a1)|. Hence W is smooth outside {u1, u2} by the theorem of Bertini.
Take D ∈ |OQ(a2 − 1, a1 − 1)| such that D ∩ {u1, u2} = ∅. Since L1 ∪ L2 ∪ D is smooth at
each point of {u1, u2} and smoothness is an open condition, W is smooth. Since a2 and a1
are positive, the intersection theory of Q gives that the smooth curve W is connected.

Since W is smooth and irreducible and deg(W ∩ Li) = ai, Zi is the scheme-theoretic
intersection of W and Li. At the beginning of the example we explained why o ∈
bnd(X1, X2).

Proposition 6. Let Xi ⊂ P3, i = 1, 2, be integral and non-degenerate curves. Assume that X1
and X2 are smooth and with a different tangent line at each point of E := X1 ∩ X2. Assume
that at each o ∈ E the curves X1 and X2 have different osculating planes. Then bnd(X1, X2) ⊂
∪o∈E(ToX1 ∪ ToX2).

Proof. Fix q ∈ bnd(X1, X2) (if any). In order to obtain a contradiction we assume q /∈
∪o∈E(ToX1 ∪ ToX2). Set e := #E and ai := deg(Xi). Since Xi is non-degenerate, ai ≥ 3.
Claim 2 of the proof of Theorem 4 gives e ≤ (a1 − 1)(a2 − 1) + 1.

Since E ⊆ X1 ∪ X2, if there is o ∈ E and u ∈ X1 ∪ X2 \ {o} such that ℓq(o) = ℓq(u),
then q ∈ [X1; X2]

◦, a contradiction. Thus we may assume #ℓq(E) = e and ℓq(E) ∩ ℓq((X1 ∪
X2) \ E) = ∅. By Theorem 3 there is o ∈ E such that q is contained in the Zariski tangent
space of X1 ∪ X2 at o. Since q /∈ ∪u∈E(TuX1 ∪ TuX2), each ℓq(Xi) is smooth at each point
of ℓq(E). The assumption on the osculating planes of X1 and X2 at the points of E implies
that ℓq(X1) ∩ ℓq(X1) are transversal at each point of ℓq(E). Recall that we assume q /∈
∪o∈E(ToX1 ∪ ToX2). With this assumption the proof of Claim 1 of the proof of Theorem 4
gives that each ℓq|Xi

is birational onto its image, i.e., deg(ℓq(Xi)) = ai. Since a1a2 > e,
q ∈ [X1; X2]

◦, a contradiction.

The following result shows that sometimes Zariski open subsets of an osculating plane
are contained in the boundary.

Proposition 7. Let X ⊂ P3 be an integral and non-degenerate curve. Fix a smooth point o ∈ X1
and let M the osculating plane of X at o. Fix a line L ⊂ M such that L ∩ X1 = {o} (e.g., take a
general line of M containing o).

(i) If M contains another point of X, then M ⊂ [X; L]◦.
(ii) If M contains no other point of X, then bnd(X, L) = M \ L.

Proof. Let ℓL : P3 \ L → P1 denote the linear projection. Note that ℓL(M \ L) is a point, u.
Fix q ∈ M \ L. Any line R containing q and meeting L is contained in M. Conversely,

any line of M meets L. We see that q ∈ [X; L]◦ if and only if M contains another point of X.
Fix q ∈ P3 \ M. If a ∈ P1 \ {u}, then ℓ−1

L (a) = N \ L, where N is a plane containing
L and N ̸= M. Since N ̸= M, M is the osculating space of X at o and X is smooth at
o, the connected component of X ∩ N containing o has degree < deg(X). Thus there is
v ∈ X ∩ (N \ L). Hence q ∈ [X; L]◦.

The following example shows the existence of X as in Proposition 7 for all integers
deg(X) ≥ 3.
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Example 2. In the set-up of Example 1 take a1 = 1. The smooth curve X1 has degree a2 + 1 and its
tangent line at u1 has order of contact deg(X1)− 1 with X1 at u1, the osculating plane has order
of contact ≥ deg(X1) and hence it has order of contact deg(X1).

Theorem 5. Fix an integer s ≥ 2 and integral varieties Xi ⊂ Pr, 1 ≤ i ≤ s. Set T1 := X1. For
i = 2, . . . , s− 1 set Ti := [X1; . . . ; Xi]. Assume Ti ∩ Xi+1 = ∅ for all i. Then the join [X1; . . . ; Xs]
has no boundary.

Proof. The case s = 2 is true by Proposition 3. The case s > 2 is true using induction on s
and applying Proposition 3 to the varieties Ts−1 and Xs.

Remark 16. Fix integers s ≥ 2 and ni ≥ 0, 1 ≤ i ≤ s. Take linear subspaces Li ⊂ Pr,
1 ≤ i ≤ s, such that dim Li = ni. Take a general (g1, . . . , gs−1) ∈ Aut(Pr)s−1. Since Aut(Pr)
acts transitively on each Grassmannian, we have

dim⟨g1(L1) ∪ · · · ∪ gs−1(Ls−1) ∪ Ls⟩ = min{r, s − 1 + n1 + · · ·+ ns}.

Remark 17. Fix irreducible varieties T, X ⊂ Pr and set t := dim T and n := dim X. Fix a general
g ∈ Aut(Pr). We have T ∩ g(X) = ∅ if t + n < r, while T ∩ X ̸= ∅ and dim T ∩ X = t + n − r
with T ∩ X equidimensional if t + n ≥ r (III.10.8 [4]). Now fix integral varieties Xi ⊂ Pr,
i ≤ i ≤ s. Set ni := dim Xi. Take a general (g1, . . . , gs−1) ∈ Aut(Pr)s−1. We have

dim[g1(X1); . . . ; gs−1(Xs−1); Xs] = min{r, s − 1 + n1 + · · ·+ ns}

by the Terracini Lemma and Remark 16.

Fix integral varieties X ⊂ Pr, Y ⊂ Pr and positive integers a and b. Let τ(X) ⊆ Pr

denote the tangential variety of X, i.e., the closure in Pr of the union of all TpX, p ∈ Xreg. The
closed set τ(X) is an irreducible variety. We have X ⊆ τ(X) ⊆ σ2(X), dim τ(X) ≤ 2 dim X,
and dim σ2(X) ≤ 2 dim X + 1. Hence σa+1(X) ⊆ [σa(X), τ(X)] ⊆ σa+2(X) for all a ≥ 0.
Often, [σa(X)◦, τ(X)]◦ ∩ bnd(σa+2(X)) is a hypersurface of σa+2(X). Now assume X is
smooth. We often have τ(X) \ X = bnd(σ2(X)). For instance, this is the case for Veronese
varieties ([6]). If X is a Veronese variety, then the join of a copies of X and b copies of τ(X)
is related to a certain generalized additive decomposition ([28]).

5. Solution Sets, Generic Uniqueness and the Reconstruction from the Solution Set

Let [X1; . . . ; Xs]◦◦ denote the set of all q ∈ [X1; . . . ; Xs]◦ such that there is no k < s and
i1 < · · · < ik ≤ s with q ∈ [Xi1 ; . . . ; Xik ]

◦. We say that s is the join-rank of X1, . . . , Xs and
write r[Xi1

;...;Xik
](q) = s. Assume that q has join-rank s. Let S(X1, . . . , Xs; q) denote the set of

all s-ples (p1, . . . , ps) with pi ∈ Xi for all i and pi ̸= pj for all i ̸= j. The set S(X1, . . . , Xs; q)
is called the solution set of the join. We have S(X1, . . . , Xs; q) ̸= ∅ for all q ∈ [X1; . . . ; Xs]◦◦.
Abusing notation, we say that a subset S ⊂ X1 ∪ · · · ∪ Xs is a solution of q if it has an
ordering (p1, . . . , ps) of its points with (p1, . . . , ps) ∈ S(X1, . . . , Xs; q) .

Example 3. Take r = 3, two distinct planes M1 and M2 of P3, and a point o ∈ M1 ∩ M2. Let
Xi ⊂ Mi, i = 1, 2, be a general smooth conic containing o. All q ∈ Mi \ Xi have join-rank 2, but
any 2-ple in S(X1, X2; q) contains o ∈ X1 ∩ X2.

Remark 18. Assume dim[X1; . . . ; Xs] = s − 1 + ∑s
i=1 dim Xi. This assumption implies that

for a general q ∈ [X1; . . . ; Xs] its solution set is finite. It also implies that [X1; . . . ; Xs] strictly
contains each join of s − 1 entries of the s-ple (X1, . . . , Xs) and the singular locus of the other entry.
Thus there is a non-empty open subset V of [X1; . . . ; Xs]◦◦ such that for each q ∈ V its solution
set is finite, for any {p1, . . . , ps} ∈ S(X1, . . . , Xs; q) we have {p1, . . . , ps} ∩ Sing(Xi) = ∅ for
all i and pi /∈ Xj for all i ̸= j. Now assume r ≥ s + dim X1 + · · ·+ dim Xs. Fix any q ∈ V and
any (p1, . . . , ps) ∈ S(X1, . . . , Xs). Since pi /∈ Sing(Xi) for all i, it is well-defined the tangent
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locus introduced in [29]. Take a solution set (p1, . . . , ps) with pi ∈ (Xi)reg for all i. By the
Terracini Lemma ⟨Tp1 X1 ∪ · · · ∪ Tps Xs⟩ is contained in the tangent space of [X1; . . . ; Xs] and
equality holds for a general q ∈ [X1; . . . ; Xs] and all S ∈ S(X1, . . . , Xs; s). Our assumption
on r implies ⟨Tp1 X1 ∪ · · · ∪ Tps Xs⟩ ̸= Pr. Thus there is a non-empty Zariski open subset G
of V such that Tq[X1; . . . ; Xs] = ⟨Tp1 X1 ∪ · · · ∪ Tps Xs⟩ for all q ∈ G and all solution sets
S = {p1, . . . , ps} of q. The tangential contact locus t(S) of S is the union of the irreducible
components of the contact locus of X1 ∪ · · · ∪ Xs containing at least one point of {p1, . . . , ps}.
Note that t(S) ⊇ S and equality holds if and only if dim t(S) = 0. As in [30–33] we say
that [X1; . . . ; Xs] is tangential defective if dim t(S) > 0 for a general q ∈ [X1, . . . , Xs] and
some S = {p1, . . . , ps} ∈ S(X1, . . . , Xs; q). A dimensional count shows that if [X1; . . . ; Xs] is
tangential defective, then dim t(S) > 0 for a general q ∈ [X1; . . . ; Xs] and all S ∈ S(X1, . . . , Xs; q)
and that the dimension and the number of the irreducible components of t(S) are the same for a
general q ∈ [X1; . . . ; Xs] and all S ∈ S(X1, . . . , Xs; q).

Proposition 8. Assume r ≥ s + dim X1 + · · ·+ dim Xs with each Xi non-degenerate. Take a
join [X1; . . . ; Xs] with dim[X1; . . . ; Xs] = s− 1+∑s

i=1 dim Xi and not tangential defective. Then
#S(X1, . . . , Xs; q) = 1 for a general q ∈ [X1; . . . ; Xs].

Proof. The assumption that [X1; . . . ; Xs] is not defective and the assumption on r allow us
the definition of contact locus. With the definition given in Remark 18 the proof given in
(Prop. 14 [31]) works with no modification.

Theorem 6. Assume r ≥ 2s. Let Xi ⊂ Pr, 1 ≤ i ≤ s, be integral and non-degenerate curves.
Then #S(X1, . . . , Xs; q) = 1 for a general q ∈ [X1; . . . ; Xs].

Proof. The join [X1; . . . ; Xs] has dimension 2s − 1 (Cor. 1.5 [3]). Any hyperplane is tangent
to a non-degenerate curve only at finitely many points. Hence the theorem is a corollary of
Proposition 8.

Now we consider a general q ∈ Pr. Hence we are in the case [X1; . . . ; Xs] = Pr. We also
assume r = s − 1 + dim X1 + · · ·+ dim Xs. These assumptions imply that S(X1, . . . , Xs; q)
is finite. In the case of secant varieties, i.e., Xi = Xj for all i ̸= j, seldom #S(X1, . . . , Xs; q) =
1 for a general q ∈ Pr. For the secant varieties of curves this is true if and only if r is odd and
X1 is a rational normal curve (Th. 3.1 [30]). If #S(X1, . . . , Xs; q) = 1 for a general q ∈ .Pr

we say that generic uniqueness holds.

Theorem 7. Let X ⊂ P3 be an integral, smooth and non-degenerate curve. Let Y ⊂ P3 be an
integral and smooth curve such that Y ̸= X. Set d := deg(X). Generic uniqueness holds for the
join of X and Y if and only if X is rational, Y is a line and deg(Y ∩ X) = d − 1.

Proof. Set a := deg(Y), E := X ∩ Y (set-theoretic intersection) and e := #E. For each o ∈ E
let mo denote the order of contact of X and Y at o, i.e., let mo be the degree of the connected
component of X ∩ Y (scheme-theoretic intersection) containing o. Set ê := ∑o∈E mo.

Since X is non-degenerate, d ≥ 3. Let g(X) and g(Y) denote the genus of the smooth
curve X and Y, respectively. Take a general q ∈ P3. Since q is general and E is finite,
#ℓq(E) = #E, ℓq(X) is a degree d nodal curve with exactly (d − 1)(d − 2)/2 − g(X) nodes,
ℓq(Y) is a degree a nodal curve with exactly (a − 1)(a − 2)/2 − g(Y) nodes and ℓq(X) ∩
Sing(ℓq(Y)) = ℓq(Y) ∩ Sing(ℓq(X)) = ∅. Moreover, for a general q we may also determine
that ℓq(X) and ℓq(Y) intersect transversally outside ℓq(E) and that ℓq(u) /∈ ℓq((X ∪ Y) \
{u}) for all u ∈ E. Set Z := ℓq(X) ∩ ℓq(Y) (scheme-theoretic intersection) and set F := Zred
and f := #F, i.e., let f the number of common points of ℓq(X) and ℓq(Y). We have
deg(Z) = ad by the theorem of Bezout. Note that F ⊇ ℓq(E) and that f − e = #(S(X, Y; q)).
Since for each o ∈ E the integer mo is the intersection multiplicity of ℓq(X) and ℓq(Y) at
ℓq(o), we have f − e = da − ê.
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(a) Assume that Y is non-degenerate. Thus a ≥ 3. In this case changing if necessary X
and Y we may assume a ≤ d. Assume for the moment a ≥ 5. By the smoothness of
Y and Theorem 1 and Remark 14 in [26] we have ê ≤ (a − 1)(d − 1) + 1 and hence
ad − ê > 1. In this step to use Remark 14 in [26] it is essential the assumption that
Y is smooth. Now assume a ∈ {3, 4}. In this case Y is contained in a quadric Q. If
X ⊈ Q, then ê ≤ 2d (and hence da − ê > 1) by the theorem of Bezout. If X ⊂ Q we
obtain the inequality da − ê > 1 by the classification of smooth curves contained in
integral quadric surfaces (see Ex. III.5.6 in [4] for smooth quadrics and Ex. V.2.9 in [4]
for quadric cones).

(b) Assume that Y is a plane curve, but not a line. Thus a ≥ 2 and M := ⟨Y⟩ intersects X
in a degree d scheme. Thus ê ≤ d. We have da − ê ≥ d > 1.

(c) Assume that Y is a line. We obtain f − e = 1 if and only if ∑o∈E mo = d− 1. To conclude
the “only if” part of the proof of the theorem it is sufficient to prove that if Y is a line
and deg(Y ∩ X) = 1, then X is rational. Call ℓ : P3 \ Y → P1 the linear projection
from the line Y. Since X is smooth, the rational map ℓ|X\E : X \ E → P1 extends to a
morphism µ : X → P1. We have deg(µ) = d − deg(Y ∩ X) and deg(µ) = #S(X, y; q).

The last part of step (c) also proves the “if” part of the theorem.

Theorem 8. Fix an integer s ≥ 2 and set r := 2s − 1. Let X ⊂ Pr be an integral, smooth and
non-degenerate curve of degree d. Let L ⊂ Pr be a line. Set Xi := X for i = 1, . . . , s − 1 and
Xs := L. We have [X1; . . . ; Xs] = Pr. Generic uniqueness holds for this join if and only if X is a
rational curve and L is a line with deg(L ∩ X) = d + 2 − r.

Proof. To prove the “only if” part we use induction on the integer s, the case s = 2 being
true by Theorem 7. Assume s > 2. Let ℓL : Pr \ L → Pr−1 denote the linear projection from
L. Since X ̸= L and X is smooth, the rational map ℓL|X\X∩L : X \ X ∩ L → Pr−2 extends
to a morphism µ : X → Pr−2. Note that d − deg(L ∩ X) = deg(µ)deg(µ(X)). Since X
is non-degenerate, µ(X) is non-degenerate. Generic uniqueness for the join of X1, . . . , Xs
holds if and only if deg(µ) = 1 and generic uniqueness holds for the (s − 1)-th secant
variety of µ(X) in Pr−2. The latter condition holds if and only if µ(X) is a rational normal
curve of Pr−2 (Th. 3.1 [30]). Assume that µ(X) is a rational normal curve of Pr−2. Since X is
smooth, we have deg(µ) = 1 if and only if X is a rational curve and d = r − 2−deg(L ∩ X).

Now we prove the “if part”. Fix a general q ∈ [X; . . . ; X; L]. Since q is general, q /∈ L
and hence ℓL(q) is a well-defined point of Pr−2. Since q is general, ℓL(q) is a general point
of Pr−2. By the easy part of (Th. 3.1 [30]) there is a unique S ⊂ X such that ℓL(q) ∈ ⟨ℓL(S)⟩.
Since L is a line, the set L ∩ ⟨S ∪ {q}⟩ is a unique point, o. The set S ∪ {o} is the unique
element of S(X, L; q).

Conjecture 1. Take an integer s ≥ 2 and s smooth non-degenerate curves Ci ⊂ Pr, r = 2s − 1,
such that C1 ̸= C2. Is generic uniqueness always false for the join of C1, . . . , Cs?

Question 2. Is Conjecture 1 true if we allowed the curves Ci to be singular?

Remark 19. If Question 2 or Conjecture 1 are false we expect that the counterexamples form a
short list and that each of them has very interesting geometric properties.

Now we consider solutions sets for subvarieties of Grassmannians.
We consider the space of all solutions, but in this definition we need to distinguish

between Vi and Vi. In algebraic geometry a constructible subset of an algebraic variety Y
is a finite union of locally closed subsets of Y (Ex. II.3.18 and II.3.19 [4]). To be as general
as possible we fix a Zariski dense constructible subset Ui of Vi and say that we look at
solutions coming from U1, . . . , Us. Since Ui is constructible and Ui = Vi, Ui contains a
non-empty Zariski open subset of Vi (Ex. II.3.18 and II.3.19 [4]). Fix q ∈ Pr. We say
that q has (U1, . . . , Us)-rank s (or just Grank s with respect to U1, . . . , Us) if there are
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Ai ∈ Ui, 1 ≤ i ≤ s, such that q ∈ ⟨A1 ∪ · · · ∪ As⟩, dim⟨A1 ∪ · · · ∪ As⟩ = γ(V1, . . . , Vs)
and there is no integer 1 ≤ m < s, 1 ≤ i1 < · · · < im ≤ s and Bij ∈ Uij , 1 ≤ j ≤ m,
such that q ∈ ⟨Bi1 ∪ · · · ∪⟩. If γ(V1, . . . , Vs) = s − 1 + n1 + · · · + ns there are points of
Grank s. For each q ∈ Pr of Grank s with respect to U1, . . . , Uq let S(U1, . . . , Us; q) denote
the set of all (A1, . . . , As) such that Ai ∈ Ui, 1 ≤ i ≤ s, such that q ∈ ⟨A1 ∪ · · · ∪ As⟩
and dim⟨A1 ∪ · · · ∪ As⟩ = γ(V1, . . . , Vs). The non-empty set S(U1, . . . , Us; q) is called the
solution set.

In many important cases the solution set is not a singleton, i.e., uniqueness does not
hold. We describe how to use the solution set, if large, to reconstruct the element q ∈ Pr

from it solution set. We state it in the case of secant varieties, the case of joins requiring
only notational modifications. Let X ⊂ Pr be an integral and non-degenerate variety. For
each q ∈ Pr let rX(q) denote the X-rank of q, i.e., the first integer a such that there is S ⊂ X
such that q ∈ ⟨S⟩. Let S(X, q) (the solution set of q with respect to X) denote the set of all
S ⊂ X such that q ∈ ⟨S⟩ and #S = rX(q). Set W(X)q := ∩S∈S(X,q)⟨S⟩. The set W(X)q is a
linear subspace, the non-uniqueness set of q with respect to X. The point q is uniquely
reconstructed by its solution set if W(X)q = {q}. Set w(X)q := dim W(X)q. Since W(X)q
is a linear space, w(X)q = 0 if and only if W(X)q = {q}. Obviously, W(X)q = {q} if q ∈ X,
i.e., if rX(q) = 1. By the semicontinuity theorem and standard results for constructible
sets over the complex numbers (or over any algebraically closed field), the integer w(X)q
is the same for all q in a non-empty Zariski open subset of Pr (Ex. II.3.18 and II.3.19 [4]).
We call this, integer, w(X), the generic indeterminacy number of X. Now assume that
X is defined over R, that Xreg(R) ̸= ∅ and that q ∈ Pr(R). For any q ∈ Pr with real rank
rX(R)(q) let SR(X, q) denote the set of all S ⊂ X(R) such that #S = rX(R)(q) and q ∈ ⟨S⟩.
Set W(X,R)q := Pr(R) ∩ (∩S∈SR(X,q)⟨S⟩). The set W(X,R)q is a real vector space and we
call w(X,R)q its dimension. By results on real semi-algebraic geometry (fully explained in
the papers describing the typical ranks ([16–19]), there are finitely many euclidean open
subset Ui, 1 ≤ i ≤ e, such that rX(R)(q) and w(X,R)q, are the same for all q ∈ Ui. These
integers w(X,R)q are called the typical non-uniqueness numbers.

Question 3. Are the typical non-uniqueness numbers a connected set of integers, i.e., do they
contain all integers between the minimum and the maximum typical?

Question 4. Assume that X is real. What is its position of w(X) with respect to the list of typical
non-uniqueness numbers?

The set S(X, q) may be generalized in the following way. Fix q ∈ Pr. For each
integer b ≥ rX(q) let S1(X, q; b) denote the set of all S ⊂ X such that #S = b and q ∈ ⟨S⟩.
Set W1(X, b)q := ∩S∈S1(X,q;b)⟨S⟩. Let S(X, q; b) denote the set of all S ∈ S1(X, q; b) such
that q /∈ ⟨S′⟩ for each S′ ⊊ S. If S(X, q; b) ̸= ∅ set W(X, b)q := ∩S∈S(X,q;b)⟨S⟩. Set
w1(X, b)q := dim W1(X, b)q and w(X, b)q := dim W(X, b)q with the convention w(X, b)q =
−∞ if W(X, b)q = ∅.

Question 5. Give upper and lower bounds for the first integer b such that w1(X, b)q = {q} for a
general q ∈ Pr and for the first integers b1 such that W1(X, b1)q = {q} for all q ∈ Pr.

Remark 20. It is easy to check that r −dim X + 1 is an upper bound for the integer b1 in Question 5.

Suggestion: Assume that X is real, take q ∈ Pr(R) and fix an integer b > rX(R(q). De-
fine the set SR(X, q; b), the real linear space WR(X, b)q and set wR(X, b)q := dimR WR(X, b)q.
Rephrase Question 5 for the euclidean open subsets of Pr(R) corresponding to typical ranks.

6. Good X with Respect to Joins by an Arbitrary Y

Definition 1. Let X ⊂ Pr be an integral and non-degenerate variety. Set n := dim X. Fix
positive integers i and m such that i(n + 1) + m ≤ r. We say that X is (i, m)-universal (resp.
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strongly (i, m)-universal) nondefective or just (i, m)-universal (resp. strongly (i, m)-universal) if
dim[σi(X); Y] = i(n + 1) + dim Y for all integral and non-degenerate (resp. integral) varieties
Y of dimension ≤ m. We say that X is universal (resp. strongly universal) secant nondefective if
it is (i, m)-universal (resp. strongly (i, m)-universal) for all positive integers i and m such that
i(n + 1) + m ≤ r. We say that X is m-universal or strongly m-universal if it is (1, m)-universal
or strongly (1, m)-universal.

Remark 21. Note that if X is (i, m)-universal, then dim σi(X) = i(n + 1)− 1. By (Cor. 1.5 [3])
X is (i, 1)-universal if and only if dim σi(X) = i(n + 1)− 1 < r.

Remark 22. Let X ⊂ Pr be an integral n-dimensional variety. If i ≥ 2 and dim σi(X) =
i(n + 1)− 1, then σi−1(X) is not a cone.

Proposition 9. Let X ⊂ Pr, r ≥ 2, be an integral and non-degenerate curve defined over any
algebraically closed field. Then X is not secant defective, g(X) = ⌈(r + 1)/(n + 1)⌉ and no proper
secant variety of X is a cone.

Proof. X is not secant defective (Cor. 1.5 [3]) and hence g(X) = ⌈(r+ 1)/(n+ 1)⌉. Remark 22
proves the case r odd. If r is even and i ≤ g(X)− 2, we apply Remark 22. Assume that r is
even and σg(X)−1(X) is a cone. Take a point o in the vertex of σg(X)−1(X). By (1.3 and 1.4 [3])
and induction on i we obtain dim[σi(X); {o}] = 2i for all i ≤ g(X)− 1. The contradiction
arises for i = g(X)− 1.

Proposition 10. In arbitrary characteristic all secant varieties of a non-degenerate curve are
strongly universal.

Proof. Let Y ⊂ Pr be any integral variety. Let C ⊂ Pr be an integral and non-degenerate
curve. Fix an integer i > 0. We have dim σi(C) = min{r, 2i − 1} (Cor 1.5 [3]). We have
dim[σi(C); Y] = min{r, 2i + dim Y} (use Prop. 1.3 [3] and induction on i).

By the Terracini Lemma the definition of strong (1, m)-universality may be rephrased
in the following way.

Remark 23. Let X ⊂ Pr be an integral and non-degenerate variety. Set n := dim X and fix a
positive integer m < r − n. The following conditions are equivalent:

1. X is strongly (1, m)-universal;
2. for every M ∈ G(m + 1, r + 1) there is o ∈ Xreg such that M ∩ ToX = ∅;
3. for every M ∈ G(m + 1, r + 1), we have dim ℓM(X \ X ∩ M) = n, where ℓM : Pr \ M →

Pr−m−1 denote the linear projection from M.

Proposition 11. Fix integers n > t ≥ 2. Then there is a non-defective n-dimensional smooth
projective variety X ⊂ Pr such that no σi(X), i < g(X), is a cone.

Proof. Set g := ⌈(r+ 1)/(n+ 1)⌉. Note that g = g(X) for every non-defective n-dimensional
variety X ⊂ Pr and that X is not secant defective if and only if g = g(X) and dim σg−1(X) =
(g − 1)(n + 1)− 1. Moreover, no proper secant variety of X is a cone if and only if σg−1(X)
is a cone. For any p ∈ Pr let G(n + 1, r + 1)p denote the sets of all n-dimensional linear
subspaces of Pr containing p. Let Γ be denote the subset of (Pr)g × G(n + 1, r + 1)g formed
by all (p1, . . . , pg, V1, . . . , Vg) such that pi ̸= pj for all i ̸= j and Vi ∈ G(n + 1, r + 1)pi

for all i = 1, . . . , g. The set Γ is an irreducible quasi-projective variety of dimension
g(r + r(r − n + 1)) = gr(r − n). Fix a general A = (p1, . . . , pg, V1, . . . , Vg).

Claim 4. There is a smooth n dimensional variety X ⊂ Pr such that pi ∈ X and Tpi (X) = Vi for
all i.
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Proof of Claim 4. Fix an integer d ≥ 4(r − n)g. Our aim is to prove that we may take as X
the general complete intersection of r − g degree d hypersurfaces. For i = 1, . . . , g and j =
1, . . . , r − n let Hi(j) be a general hyperplane containing Vi. Note that ∩r−n

j=1 Hi(j) = Vi. We
first find degree d smooth hypersurfaces Xj containing {p1, . . . , pg} and with Tpi Xj = Hi(j)
for all i. If we omit the requirement that Xj is smooth outside the set {p1, . . . , pg}, then is an
easy interpolation problem which is true if d ≥ g and we use the inequality d ≥ 2g and the
theorem of Bertini to obtain the smoothness of Xj outside {p1, . . . , pg}. For j = 1, . . . , r − n

set X[j] := ∩j
h=1Xh. Since d ≥ 4(r − n)g, by induction on j and using the theorem of Bertini

we recognize that each X[j] is smooth. Note that X := X[r − n] is a solution of Claim 4.

Take X as in Claim 4. For each I ⊆ {1, . . . , g} let AI be the linear span of ∪i∈IVi. Since
A is general, we have AI = Pr if I = {1, . . . , g} and dim AI = #I(n+ 1)− 1 if I ̸= {1, . . . , g}.
Thus X is not secant defective by the Terracini Lemma. Assume that σg−1(X) is a cone and
take a point o in the vertex of the cone. Let T be the set of all S ⊂ {p1, . . . , pg} such that
#S = g − 1. For any S ∈ T set WS := ⟨∪p∈SVp⟩. The Terracini Lemma gives o ∈ WS for all
S ∈ T. Thus o ∈ ∩S∈TWS. The generality of A and the definition of g gives ∩S∈TWS = ∅, a
contradiction.

Proposition 12. Fix integers r > n > 0 such that r + 1 ≡ 0 (mod n + 1). Set g := (r +
1)/(n + 1). Take an integral, non degenerate and not secant defective variety X ⊂ Pr. Then
g = g(X) ≥ 2 and no secant variety σi(X), i < g, is a cone.

Proof. Since X is not secant defective and r = g(n + 1)− 1, g = g(X) and dim σi(X) =
dim σi+1(X)− n − 1. Assume that σi(X) is a cone and let i ∈ {1, . . . , g − 1} be the first
integer such that σi(X) is a cone. Take a point o in the vertex of σi(X). Take a general
S ⊂ Xreg such that #S = i + 1. For any I ⊂ S set VI := ⟨∪p∈I TpX⟩. Take I ⊂ S such that
#I = i − 1 and set {p, q} := S \ I, E := I ∪ {p} and F := I ∪ {q}. By assumption and the
Terracini Lemma we have o ∈ VE ∩ VF and o /∈ Vi. Since dim VS = dim VI + 2n + 1, we
obtain a contradiction.

Proposition 13. Fix integers r > n > 0 and set i := ⌊(r + 1)/(n + 1)⌋ and a := r + 1 − (n +
1)i. Let X ⊂ Pr be an integral and non-degenerate variety such that dim σi(X) = r − a. Assume
a ∈ {1, 2}.

(a) X is (i, ∞)-universal.
(b) Assume a = 1. X is strongly (i, ∞)-universal if and only σi(X) is not a cone.

Proof. By assumption σi(X) has codimension a. Let Y ⊂ Pr be an integral and non-
degenerate variety. To prove part (a) it is sufficient to prove that [σi(X); Y] = Pr. Since Y is
non-degenerate, there is a non-degenerate curve C ⊆ Y. Thus it is sufficient to quote (Prop.
1.3 [3]).

Assume a = 1. If σi(X) is not a cone, then [σi(X); {p}] = Pr for every p ∈ Pr, while if
σi(X) is a cone with vertex V, then [σi(X); {p}] = σi(X) for every p ∈ V.

Theorem 9. Fix positive integers n, m and r0 and an integral n-dimensional variety X. Then there
is a very ample line bundle L on X such that h0(L) > r0 and the embedding of X by the complete
linear system |L| is strongly m-universal.

Proof. Fix an arbitrary embedding X ⊂ PN and take a positive integer d and set OX(1) :=
OPN (1)|X. Fix an integer d ≥ n + m such that h0(OX(d)) > r0. and set L := OX(d). The
line bundle L is very ample. Let X1 ⊂ Pr, r := h0(L)− 1, denote the image of X by the
embedding j of X induced by the complete linear system |L|. Fix an integral m-dimensional
variety Y. By the Terracini Lemma to prove that dim[X1; Y] = n + m + 1 it is sufficient
to prove that dim[X1; W] = n + m + 1 for a general tangent space W of Yreg. Thus it is
sufficient to prove that dim[X1; V] = n + m + 1 for every m-dimensional linear space V.
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Let ℓV : Pr \ V → Pr−m−1 the linear projection from V. Since X1 ⊈ V, to conclude the proof
it is sufficient to prove that the quasi-projective variety ℓV(X1 \ X1 ∩ V) has dimension
n (use the Terracini Lemma). Let vN,d : PN → PM, M := (N+M

N )− 1, denote the order d
Veronese embedding of PN . Note that L ∼= OPN (1)|vN,d(PN). Let C ⊂ X be any integral
curve. Note that vN,d(C) spans a linear space of dimension at least d and hence j(C) spans
a linear subspace of dimension at least d. Since d > m, V ∩ X1 is a finite set and hence
j(C) ∩ V is finite. Since d ≥ m + 2, no (m + 1)-dimensional linear subspace of Pr contains
C. Thus ℓV(j(C) \ j(C) ∩ V) is a curve. Thus ℓV(X1 \ X1 ∩ V) has dimension n.

In Theorem 9 we cannot require that the embedding of X is given by a complete linear
system. Indeed, in general there is no integer r0(n, m) such that for all r ≥ r0(n, m) we have
a non-degenerate embedding of X in Pr which is universally m-join, because often, e.g., for
Pn, n ≥ 2, not all large integers r are of the form h0(L)− 1 for some line bundle L on X.

Theorem 10. Fix a positive integer m. Let X ⊂ Pr be an integral and non-degenerate variety. Set
n := dim X and assume dim σm+2(X) = (m + 2)(n + 1)− 1. Then X is strongly m-universal.

Proof. By the Terracini Lemma it is sufficient to prove that dim[X; T] = n+m+ 1 for any m-
dimensional linear subspace T ⊂ Pr. Fix T. By the Terracini Lemma it is sufficient to prove
that TpX ∩ T = ∅ for a general p ∈ Xreg. Assume TpX ∩ T ̸= ∅ for a general p ∈ Xreg.
Fix a general S ⊂ Xreg such that #S = m + 2, say S = {p1, . . . , pm+2}. By assumption
there is oi ∈ T ∩ Tpi X, i = 1, . . . , m + 2. Since dim σm+2(X) = (m + 2)(n + 1) − 1, the
Terracini Lemma implies that o1, . . . , om+2 are linearly independent. Thus dim T > m,
a contradiction.

Note that if m ≥ 2 and X satisfies the assumptions of Theorem 10 for the integer m,
then it satisfies the assumptions of Theorem 10 for all positive integers < m.

Theorem 11. Fix positive integers n, m and i and integral n-dimensional projective variety X. Let
N be the local embedding dimension of X, i.e., the maximum of the embedding dimension of all points
of X. Fix an integer r ≥ max{n + N, (i + m + 3)(n + 1)− 1}. Then there is a non-degenerate
embedding j : X → Pr such that j(X) is not secant defective and strongly (i, m)-universal.

Proof. Fix any very ample line bundle L on X. By [34] there is an integer d0 such that
for all d ≥ d0 the embedding j1 of X by the complete linear system |L⊗d| is not secant
defective. Fix any d ≥ d0 such that h0L⊗d) > r and let j1 : X → Px, x = h0(L⊗d) − 1
denote the embedding of X induced by the complete linear system |L⊗d|. Let V ⊂ Px be a
general (r − x − 1)-dimensional linear subspace, with the convention V = ∅ if x = r. Let
ℓV : Px \ V → Pr denote the linear projection for V. Since x − r < x − n and V is general,
V ∩ j1(X) = ∅ and hence ℓV|j1(X) : j1(X) → Pr is a morphism. Set j := ℓV ◦ j1. Since j1 is
an embedding, r ≥ max{n + N + 2n + 1} and V is general, j is an embedding.

Claim 5. j(X) is not secant defective.

Proof of Claim 5. Set g := ⌈(r + 1)/(n + 1)⌉. To prove Claim 5 it is sufficient to prove
that dim σg−1(j(X)) = (g − 1)(n + 1) − 1 and σg(X) = Pr. Since j1(X) is not secant
defective, dim σg−1(j1(X)) = (g − 1)(n + 1) − 1. By the definition of x − r − 1 and the
generality of V we have V ∩ σg−1(X) = ∅. Thus ℓV(σg−1(j1(X))) = σg−1(j(X)) and
dim σg−1(j(X)) = (g − 1)(n + 1)− 1. Fix a general S ⊂ Xreg such that #S = g. By the
Terracini Lemma and the nondefectivity of j1(X), the vector space W := ⟨∪p∈j1(S)Tp j1(X)⟩
has dimension (n + 1)g − 1 ≥ r. Since V is general, we have V ∩ W = ∅ and ℓV(W) = Pr.
Thus ⟨∪p∈j(S)Tp j(X)⟩ = Pr. The Terracini Lemma gives σg(X) = Pr.

Note that g− 3 ≥ i +m (resp. g− 2 ≥ i +m). Since dim σg−1(j(X)) = dim σg−2(j(X)) +
n+ 1, σg−2(j(X)) is not a cone. Part (i) of (Cor. 2.3 [1]) gives dim[σi(j(X)); Y] = dim σi(j(X))+
n + 1. Thus to prove Theorem 11 it is sufficient to quote part (i) of (Cor. 2.3 [1]).
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Note that N = n in Theorem 11 if X is smooth and that if X is contained in an
M-dimensional projective space, then N ≤ M.

7. Tensors and Products

In this section, we fix an integer k ≥ 2 and non-zero vector spaces Vh, 1 ≤ h ≤ k.
We set V := V1 ⊗ · · · ⊗ Vk. Not that V is the vector spaces of all k-order tensors with
format (dim V1, . . . , dim Vk). We take the set-up of the other sections of the papers for very
particular subvarieties X and Y of PV: we assume that both X and Y are product of k
varieties Xh and Yh. We prove the following result.

Theorem 12. Fix integral and non-degenerate varieties Xh ⊂ PVh, 1 ≤ h ≤ k, and integral
varieties Yh ⊂ PVh, 1 ≤ h ≤ k. Set nh := dim Xh, mh := dim Yh, X := X1 × · · · × Xk, and
Y := Y1 × · · · × Yk. See both X and Y as subvarieties of PV using the Segre embedding of the mul-
tiprojective space PV1 × · · · ×PVk into PV. Fix a positive integer i and assume dim[σi(Xh); Yh] =
mh + i(nh + 1) for all h = 1, . . . , k. Then dim[σi(X); Y] = i(dim X + 1) + dim Y.

Proof. Fix a general S ⊂ S(Xreg, i) and a general p ∈ Yreg. Set W := ⟨∪q∈STqX ∪ TpY⟩
and Wh := ⟨∪o∈SToh Xh ∪ TphYh⟩. By the Terracini Lemma it is sufficient to prove that
dim W = i(dim X + 1) + dim Y. We have dim X = n1 + · · ·+ nk and dim Y = m1 + · · ·+
mk. Write p = (p1, . . . , pk). For all o ∈ S write o = (o1, . . . , ok). Note that [σi(X) : Y] ⊆
∏k

h=1[σi(Xh); Yh]. Let A ⊂ X × Y denote the set of all products of the coordinates of the
i+ 1 elements of S∪{p}. We have #A = k(i+ 1). The Terracini Lemma and the assumption
dim[σi(Xh); Yh] = mh + i(nh + 1) gives dim Wh = mh + i(nh + 1). Hence the definition of
tensor product gives dim⊗hWh = ∏h(mh + i(nh + 1)). We understand that the tangent
spaces to X and Y appearing in the definition of W are linearly independent, i.e., W has the
claimed dimension.

8. Family of Joins

All questions considered in this paper may be considered in the following more general
set-up. Let Xi ⊂ Pr, 1 ≤ i ≤ s, be integral projective varieties. Set ni := dim Xi. Suppose
that there is a family Fi, 1 ≤ i ≤ s, of subvarieties of Pn, i.e., algebraic constructible
subsets of the Hilbert scheme of Pr, with Xi ∈ Fi for all i. Consider the family of all
irreducible varieties [Y1; . . . ; Ys], Yi ∈ Fi, for all i. If each Fi is irreducible, we obtain an
irreducible family of joins parametrized (not one-to-one and may be not even finite-to-
one) by the irreducible variety F1 × · · · × Fs. In this case it makes sense to consider the
“generic case”, i.e., the generic uniqueness problem or the dimension of the boundary, for a
general (T1, . . . , Ts) ∈ F1 × · · · × Fs. For instance, we may consider a small neighborhood
of Xi in the Hilbert scheme of Pr assuming (as in many important examples) that the
Hilbert scheme of Pr is “nice” (e.g., irreducible) at [Yi]. This choice (for a sufficiently
small neighborhood of Xi) has the advantage that if Xi is non-degenerate then all nearby
Yi ∈ Fi are non-degenerate and that if Xi is smooth, then all nearby Yi ∈ Fi are smooth.
We give some examples. Take for instance s = 2 and assume n1 + n2 < r. Just using
F1 := X1, i.e., not moving X1 and taking as F2 the family of all g(X2), g ∈ Aut(Pr), we
have T1 ∩ T2 = ∅ and hence the boundary of [T1; T2] is empty by Proposition 1. Similarly,
if n1 + · · ·+ ns + s ≤ r and a general (g1, . . . , gs−1) ∈ Aut(Pr)s − 1 we understand that the
boundary of X1; g1(X2); . . . ; gs−1(Xs)] is empty (Proposition 2). In the case of two space
curves X, Y with a unique common point it is each to obtain [X; g(Y)]◦ = P3 for a general
g ∈ Aut(P3) such that g(o) = o. We think that similar results may be proved for the general
element of families with prescribed, but small, intersection.

9. Conclusions

We prove a strong theorem on partial non-defectivity of secant varieties of embed-
ded homogeneous varieties developing a general set-up for families of subvarieties of
Grassmannians. We study these type of problems in the more general set-up of joins of
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embedded varieties. Joins are defined by taking a closure. We study the set obtained before
the closure (often called the open part of the join) and the set added taking the closure is
called the boundary. For a point q of the open part we give conditions for the uniqueness
or non-uniqueness of the set proving that q is in the open part. On this topics we give a
conjecture and several open questions. For the applications a very promising area is the
reconstruction of an object, say a tensor T, from a small family of rank 1 decompositions,
not (or at least not known) having the minimal number of addenda. The space of possible
tensors is a linear space and reconstruction holds if this linear subspace has dimension 1,
i.e., it it spanned by T. Note that the answer may be YES without knowing T.

We state the following four additional questions framed in the set-up of tensors:

(1) Is a general tensor of a given format uniquely determined by the sets of its solutions?
May it be reconstructed in a computational efficient way?

(2) Take a format for tensors and a positive integer a such that the set of all rank a tensors
(of the given format) has not the expected dimension. Is a general rank a tensor
uniquely determined by its set of solutions?

(3) Take a rank a tensor T of tensor rank a and a given format. Describe the integer b > a
such that T may be uniquely reconstructed by the set of all its decompositions as a
sum of b rank 1 tensors.
These questions make sense even for real tensors and real decompositions of real
tensors.

(4) For any variety X ⊂ Pr and all positive integer a and b compute the dimension of the
join of a copies of X and b copies of the tangential variety τ(X) of X. The interested
reader may work on these questions for different objects, e.g., for partially symmetric
tensors or skew tensors.
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