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Abstract: Reversible data hiding (RDH) is an advanced data protection technology that allows the
embedding of additional information into an original digital medium while maintaining its integrity.
Color images are typical carriers for information because of their rich data content, making them
suitable for data embedding. Compared to grayscale images, color images with their three color
channels (RGB) enhance data embedding capabilities while increasing algorithmic complexity. When
implementing RDH in color images, researchers often exploit the inter-channel correlation to enhance
embedding efficiency and minimize the impact on image visual quality. This paper proposes a novel
RDH method for color images based on inter-channel correlation modeling and improved skewed
histogram shifting. Initially, we construct an inter-channel correlation model based on the relationship
among the RGB channels. Subsequently, an extended method for calculating the local complexity of
pixels is proposed. Then, we adaptively select the pixel prediction context and design three types of
extreme predictors. The improved skewed histogram shifting method is utilized for data embedding
and extraction. Finally, experiments conducted on the USC-SIPI and Kodak datasets validate the
superiority of our proposed method in terms of image fidelity.

Keywords: reversible data hiding; color image; skewed histogram shifting; data security

MSC: 94A08

1. Introduction

Color images are an essential form of visual information communication and recording.
The advent of the digital era has facilitated the generation, processing, transmission, and
application of color images [1]. However, with the continuous development of information
technology and the increasing complexity of the network environment, the security and
privacy protection of color images face increasingly severe challenges. On the Internet,
color images may risk being illegally obtained, tampered with, and disseminated, leading
to severe consequences, such as personal privacy and commercial secret leakage [2,3].
Therefore, ensuring the security and privacy protection of color images is essential for
protecting personal and commercial interests. In recent years, reversible data hiding (RDH)
technology [4,5] has attracted wide attention as an effective means of information hiding.
RDH technology can embed secret data into images while keeping the original image
undamaged. RDH technology has higher security and concealment than traditional encryp-
tion techniques because it does not change the visual effect of the original image, making it
challenging to discover and break. Therefore, using RDH technology to protect the security
and privacy of color images has crucial theoretical value and practical significance. This
paper proposes a novel RDH method for reversible data hiding and extraction in color
images. Our goal is to enhance both the visual quality and privacy protection level of
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color images while ensuring the reversibility of data hiding, thereby providing an effective
solution for the secure transmission and storage of color images.

RDH algorithms are primarily focused on grayscale images, with existing research
mainly comprising four categories, namely, lossless compression [6], difference expansion
(DE) [7–9], histogram shifting (HS) [10–12], and prediction error expansion (PEE) [13]. Loss-
less compression [6], the earliest RDH scheme, releases space by losslessly compressing
some image features to embed secret data. However, this method suffers from limited
embedding capacity. The DE method, pioneered by Tian [7], involves expanding the dif-
ferences between adjacent pixels to embed secret data, with a maximum embedding rate
of 0.5 bits per pixel (bpp). Subsequently, Ni et al. [10] proposed an HS-based method
that builds the histogram of the original image and embeds data using peak and zero
pixels. Methods based on DE and HS have undergone extensive research and improvement
by numerous scholars. Qiu et al. [14] introduced an adaptive RDH method based on
generalized integer transformation, while Wang et al. [15] presented a pixel distortion
optimization method based on multiple histogram shifting. To improve the embedding
performance of RDH schemes, Thodi and Rodriguez [13] proposed a PEE-based method
that embeds data by expanding the differences between pixels and predicted values. PEE is
an extension of the DE-based method and is considered the most effective and significant
method. Subsequent methods have further improved pixel predictors based on PEE, includ-
ing the median edge detection predictor [16], gradient adjusted predictor [17], rhombus
predictor [18], and adaptive predictor [19,20]. In [21], the team explored and reviewed
existing pixel predictors.

Color images are widely used in various application scenarios [1,22,23], while tradi-
tional RDH methods are mainly designed for grayscale images and are difficult to apply
directly to color images. Thus, there is an urgent need to research and develop RDH tech-
niques tailored for color images. Color images are much more complex and informative
than grayscale images, involving multiple aspects of features such as inter-channel correla-
tion, color information, and spatial structure. These features need to be finely processed
and analyzed. In recent years, some scholars have started to focus on the research of RDH
methods for color images and have achieved some preliminary results. This paper divides
RDH methods for color images into three categories. The first category of methods utilizes
the inter-channel correlation of color images for data embedding. Li et al. [24] employed
a diamond predictor to predict the pixel values of each color channel and adjust the pre-
diction values according to the edge information of another channel to improve the pixel
prediction accuracy. Qi et al. [25] proposed a color image RDH method based on adaptive
three-dimensional histogram modification that realizes data embedding and extraction by
adjusting the three-dimensional histogram. Kong et al. [26] utilized the pixel difference
value ordering between different color channels and proposed a color image RDH scheme
based on multi-channel difference value ordering that could adaptively select the embed-
ding channel, thereby improving the embedding capacity and image quality. The second
category of methods is based on PEE for data embedding. Yao et al. [27] presented a color
image RDH method based on guided filtering that utilizes guided filtering to enhance the
effect of PEE. Mao et al. [28] proposed a color image RDH method based on channel unified
embedding that realizes data hiding by performing unified data embedding operations on
the channels. In addition, Mao et al. [29] utilized the pixel value ordering between color
channels and proposed a color image RDH scheme based on the overall process channel
correlation that could effectively utilize the image’s spatial structure and color information
and improve the image quality. The third category of methods introduces a payload alloca-
tion strategy to optimize the data hiding performance. Ou et al. [30] proposed an efficient
color image RDH method based on channel-related payload partitioning and adaptive
embedding that performs payload partitioning according to the channel correlation and
adapts an adaptive embedding strategy to optimize the data hiding effect. Kumar et al. [31]
introduced a color image steganography scheme that leverages gray invariance within the
AMBTC compression domain.
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Despite some progress made in RDH research for color images, there are still limi-
tations that need to be addressed. These shortcomings mainly manifest in the following
three aspects:

1. Some methods are merely extensions of RDH techniques for grayscale images, failing
to fully exploit the characteristics of color images and the correlation between channels,
thus limiting their data embedding capacity.

2. In pursuit of increasing embedding capacity, specific methods may compromise
image quality as they fail to effectively balance the relationship between embed-
ding capacity and image quality, resulting in pixel distortion introduced by the data
embedding algorithm.

3. Efficiency is compromised in some methods when dealing with large-capacity data be-
cause of their high algorithm complexity, leading to increased computational costs and
a lack of practical parallel computing or other efficient techniques, thereby reducing
their efficiency in processing large-capacity data.

After analyzing the limitations of existing RDH methods for color images, seeking
practical solutions and innovative approaches becomes crucial. Accordingly, this paper
proposes a novel RDH technique tailored for color images that can overcome the existing
limitations and contribute to the development of RDH in color images. This paper proposes
an RDH method for color images that leverages inter-channel correlation to calculate
pixel complexity and enhances the skewed histogram shifting technique for efficient data
embedding and extraction. We endeavor to enhance the security and privacy protection
levels of color images and provide an effective solution for the secure transmission and
storage of color images. The innovative and contributory aspects of this paper can be
outlined as follows:

1. A novel inter-channel correlation modeling method is proposed. A referential rela-
tionship between channels is established through the calculation of the correlation
among the R, G, and B channels of color images. By accurately modeling the inter-
channel correlations, an enhanced evaluation of pixel local complexity is achievable,
mitigating the pixel distortion induced by data embedding.

2. An extended method for calculating the local complexity of pixels is proposed. This
method leverages the inter-channel correlation model to expand upon the general
local complexity calculation approach. The extended method captures images’ local
texture features and structural information more accurately, thereby guiding the data
embedding process better.

3. An improved skewed histogram shifting method is proposed. Based on the inter-
channel correlation model, the pixel prediction context is adaptively selected, and a
generation method for pairs of extreme predictors is proposed to refine skewed his-
togram shifting. This method enhances the accuracy and reliability of data embedding
and reduces distortion during the embedding process.

The structure of this paper is organized as follows. Section 2 provides a review of
existing works related to RDH. Section 3 elaborates on the proposed method of inter-channel
correlation modeling and the improved skewed histogram shifting algorithm. Section 4
validates the effectiveness of the proposed method through a series of experiments and
analyzes the experimental results. Finally, Section 5 concludes the research findings of this
paper and suggests future research directions.

2. Related Work

This section provides a concise review of the related work. Section 2.1 revisits various
methods for calculating local complexity, including the four-pixel, pairwise [32], and
extended-pixel methods [33]. Subsequently, Section 2.2 discusses the skewed histogram
shifting technique and the construction of extreme predictors as proposed in [33].
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2.1. Methods for Calculating Local Complexity

Local complexity refers to the degree of intricacy or variation in the area surrounding
a pixel within a digital image. Generally, higher local complexity indicates richer texture,
structure, or color changes around the pixel, whereas lower local complexity suggests a
relatively uniform or simple surrounding region. Evaluating local complexity allows for
a deeper understanding of the image’s detailed features and facilitates tasks such as data
hiding or processing in image processing applications. Selecting pixels with lower local
complexity for data embedding is advantageous because these pixels typically possess
fewer texture and structure features. Compared to pixels with higher complexity, they
are more capable of concealing additional data without causing significant visual changes.
This selection helps minimize distortion in the image after embedding while enhancing the
stealthiness and stability of data embedding.

In Figure 1a, the current pixel is denoted as P, and its local complexity context includes
the pixels in the four directions north, south, west, and east of P, labeled as N, S, W, and E,
respectively. The local complexity of P is represented by LC(P) and is calculated as follows:

LC(P) = |N −W|+ |W − S|+ |S− E|+ |N − E|+ |W − E|+ |N − S|. (1)

(a) (b) (c)
Figure 1. The context used for local complexity calculation. Blue pixels represent the current pixels,
while orange pixels represent the complexity context. (a) Four-pixel context. (b) Pairwise context.
(c) Extended context.

Ou et al. [32] improved the calculation method of LC(P) by adopting a pairwise
context, as shown in Figure 1b. The current pixel is denoted as P1, and its local complexity
context includes the eight surrounding pixels, namely, N1, S1, W1, E1, F1, F2, E2, and S2. In
this case, the local complexity of P1 is calculated by

LCpair(P1) =|N1 −W1|+ |W1 − S1|+ |S1 − E1|+ |N1 − E1|+ |S1 − S2|
+ |S2 − E2|+ |E2 − E1|+ |E1 − F2|+ |S2 − F2|.

(2)

Kim et al. [33] enhanced the calculation method of LCpair(P1) by adopting an extended
context, as illustrated in Figure 1c. The current pixel remains P, and its local complexity
context includes more pixels than in Figure 1a,b. The calculation of local complexity in
Figure 1c is extended to include the local complexities of the NW, NE, SW, and SE pixels.
Therefore, the calculation formula for LCe(P) is

LCe(P) = LC(P) + LC(NW) + LC(NE) + LC(SE) + LC(SW). (3)

2.2. Skewed Histogram Shifting

Traditional HS-based methods utilize the Laplacian distribution characteristics of the
prediction error histogram for histogram shifting. HS embeds data in the most frequently oc-
curring errors to increase embedding capacity while minimizing distortion. Kim et al. [33]
proposed skewed histogram shifting as an enhancement to traditional HS. Symmetric
histogram is illustrated in Figure 2a, while left-skewed and right-skewed histograms are de-
picted in Figure 2b,c, respectively. In contrast to symmetric histograms, skewed histograms
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exhibit long and short tails. Data embedding based on skewed histograms involves three
main steps: generating a pair of extreme predictions for the current pixel, embedding data
using positive histogram shifting (PHS), and embedding data using negative histogram
shifting (PHS). Positive histograms are generated from prediction errors where the differ-
ence between the pixel and predicted values is positive. In contrast, negative histograms
are generated from prediction errors with negative differences.

(a) (b) (c)
Figure 2. Symmetric histogram and skewed histograms. The prediction errors of the pixels are
denoted by e. (a) Symmetric histogram. (b) Left-skewed histogram. (c) Right-skewed histogram.

The generation of extreme predictions is crucial in skewed histogram shifting, and
a pair of extreme predictors is represented as (Hh, Hl). For the current pixel P, Hh, and
Hl are generated using the pixels in the north, south, west, and east directions, denoted
as N, S, W, and E, respectively (as shown in Figure 1a). First, N, S, W, and E are sorted
in ascending order, represented as δ1, δ2, δ3, and δ4, respectively, with δ1 ≤ δ2 ≤ δ3 ≤ δ4.
Three predictors are used to generate Hh and Hl , and the details of predictors 1, 2, and 3 are
shown in Table 1. In Table 1, [ . ] denotes rounding to the nearest integer value. Predictor
1 generates Hh and Hl using the maximum and minimum values, respectively, while
predictor 2 calculates the average of the two maximum and two minimum values. Predictor
3 utilizes the average of the three maximum and three minimum values. Additionally, to
avoid duplicate embedding when Hh and Hl are equal, special treatment is applied to Hl to
ensure the uniqueness and accuracy of the embedding. The processing of Hl is as follows:

Hl =

{
Hl − 1, if Hh = Hl
Hl , otherwise

. (4)

Table 1. Three predictors used to generate extreme predictors.

Predictor Number 1 2 3

Hh δ4 [ δ4+δ3
2 ] [ δ4+δ3+δ2

3 ]

Hl δ1 [ δ4+δ3
2 ] [ δ3+δ2+δ1

3 ]

3. Methodology

In this section, we provide a comprehensive exposition of the proposed method,
encompassing the modeling of inter-channel pixel correlation, the computation of pixel
local complexity, the generation of a pair of extreme predictors in skewed histogram
shifting, the details of data embedding and extraction, as well as the overall algorithm
implementation process.

3.1. Inter-Channel Correlation Modeling

In contrast to grayscale images, which are made up of a single channel, color images
are composed of three distinct channels: R, G, and B. Color images offer a broader space
for data embedding. Grasping the interplay between color channels enhances the com-
prehension of an image’s intricate structure and the richness of its content. Analyzing the
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interactions between channels makes it possible to more accurately capture the changing
characteristics of pixel values and texture information in images, thereby enhancing the
accuracy and richness of image representation. Particularly in RDH algorithms, leverag-
ing the correlation between channels can enhance the accuracy of pixel local complexity
calculation and pixel prediction, thereby achieving more efficient data embedding and
extraction performance.

When analyzing the pixel characteristics and texture structure of the RGB channels,
we observed significant consistency in the trends of pixel value variations across these
channels. Taking the “Airplane” and “House” images as examples, we randomly sampled
600 consecutive pixel samples and conducted a trend analysis of pixel value variations,
as illustrated in Figure 3. From Figure 3a,b, we can observe the synchronicity of pixel
value variations across different channels. This consistency validates the reliability of
inter-channel mapping correlations and indicates the effectiveness of utilizing information
from one channel to guide the processing of another. This approach enhances the precision
of information processing and provides a solid theoretical and experimental foundation for
our research.

(a) (b)
Figure 3. Consistent pixel value trends across RGB channels at identical locations. (a) Airplane.
(b) House.

This paper analyzes the correlation between the RGB channels by calculating the
Pearson correlation coefficient. The Pearson correlation coefficient is a statistical measure
of the linear correlation between two variables, ranging from −1 to 1. A coefficient of
1 indicates a perfect positive correlation, −1 indicates a perfect negative correlation, and
0 signifies no correlation. The strength of the correlation is determined by the absolute
value of the coefficient, with larger values indicating stronger correlations. The formula
for the Pearson correlation coefficient is shown as Equation (5), where ρ(X, Y) represents
the correlation coefficient between channels X and Y, cov(X, Y) is the sample covariance
between channels X and Y, and σX and σY are the standard deviations of the pixel values
in channels X and Y, respectively. To compute the covariance cov(X, Y) and the standard
deviations σX , σY of the respective channels, we refer to Equations (6)–(8). The dimensions
of the color image are given by M rows and N columns, signifying a total of M × N
pixels within the cover color image. The pixel values at the ν-th position for the X and Y
channels are represented by Xν and Yν, while the mean values of all pixels in these channels
are denoted by X and Y, respectively. By calculating the Pearson correlation coefficient
between different channels, we can reveal the degree of linear correlation among them and
understand their relationships.

ρ(X, Y) =
cov(X, Y)

σXσY
(5)

cov(X, Y) =
M×N

∑
ν=1

(Xν − X)(Yν −Y) (6)
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σX =

√√√√M×N

∑
ν=1

(Xν − X)2 (7)

σY =

√√√√M×N

∑
ν=1

(Yν −Y)2 (8)

We employ ρ(R, G), ρ(R, B), and ρ(G, B) to represent the pairwise correlation coef-
ficients between the RGB channels. The terms ρmax and ρsmax denote the maximum and
second maximum values among these coefficients, respectively. To determine the cor-
responding channels for these correlation coefficients, we define functions ch(ρmax) and
ch(ρsmax), which resolve the channel combinations associated with ρmax and ρsmax. The
specific solution can be expressed using the following formulas:{

ch(ρmax) = (x1, x2), s.t. ρ(x1, x2) = ρmax
ch(ρsmax) = (x3, x4), s.t. ρ(x3, x4) = ρsmax

, (9)

where x1 and x2 represent the two channels involved when the correlation coefficient is
ρmax. At the same time, x3 and x4 designate the two channels involved when the correlation
coefficient is ρsmax. Through this approach, we can accurately identify and analyze the
correlation among the RGB channels. This step is crucial for gaining deeper insights into
the intrinsic connections within image data and optimizing data embedding strategies.

Based on the calculated correlations among the RGB channels, we developed six
correlation models among the three channels, designated asM1 toM6, detailed in Table 2.
Each model comprises three functions that delineate the referential correlations between
channels. For instance, the function Z = F1(X, Y) defines the reference relationship of
channel Z with respect to channels X and Y. Similarly, X = F2(Z′, Y) indicates that
channel X refers to channel Z′ and channel Y, while Y = F3(Z′, X′) signifies that channel
Y refers to channel Z′ and X′. Here, Z′ and X′ represent the states of channels Z and X
after data embedding. Since the embedding is performed sequentially across channels,
when embedding data into subsequent channels, the preceding channels have already been
embedded with data. This implies that the embedding for subsequent channels references
the already embedded state of the channels, ensuring coherence in the embedding process
and consistency in the references.

Table 2. The six correlation models among the three channels of RGB.

M1 :


R = F1(G, B)
G = F2(R′, B)
B = F3(R′, G′)

M2 :


G = F1(R, B)
R = F2(G′, B)
B = F3(G′, B′)

M3 :


R = F1(B, G)
B = F2(R′, G)
G = F3(R′, B′)

M4 :


B = F1(R, G)
R = F2(B′, G)
G = F3(B′, R′)

M5 :


G = F1(B, R)
B = F2(G′, R)
R = F3(G′, B′)

M6 :


B = F1(G, R)
G = F2(B′, R)
R = F3(B′, G′)

In Algorithm 1, we delineate and formulate the inter-channel correlation model. The
algorithm inputs include the pixel values of the R, G, and B channels and six types of
inter-channel correlation models,M1–M6. The algorithm’s output is the formulated inter-
channel correlation model,Mξ3. Initially, we compute the Pearson correlation coefficients
between the three channels using Equation (5), which are denoted as ρ(R, G), ρ(R, B), and
ρ(G, B). Subsequently, we identify the maximum and second maximum values among these
three coefficients and keep them in variables ρmax and ρsmax, respectively. Then, we employ
Equation (9) to determine the channels involved in ρmax and ρsmax, represented as (x1, x2)
and (x3, x4), respectively. Next, by traversing through six models, we locate two models
that satisfy either F1(X, Y) = F1(x1, x2) or F1(X, Y) = F1(x2, x1), designated as Mξ1
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andMξ2, respectively, where ξ1 ∈ {1, 2, 3, 4, 5, 6} and ξ2 ∈ {1, 2, 3, 4, 5, 6}, with ξ1 ̸= ξ2.
Finally, from ξ1 and ξ2, we identify the model satisfying either F2(X, Y) = F2(x3, x4) or
F2(X, Y) = F2(x4, x3) and denote it asMξ3, where ξ3 = ξ1 or ξ3 = ξ2. Consequently,
Mξ3 represents the inter-channel correlation model we have formulated.

Algorithm 1 Inter-Channel Correlation Model Formulation Algorithm

Input:
R, G, B: the pixel values of the RGB channels;
M1,M2,M3,M4,M5,M6: six inter-channel correlation models;

Output:
Mξ3: the formulated inter-channel correlation model;

1: calculate ρ(R, G), ρ(R, B), and ρ(G, B) by Equation (5);
2: ρmax ← max({ρ(R, G), ρ(R, B), ρ(G, B)});
3: ρsmax ← max({ρ(R, G), ρ(R, B), ρ(G, B)} − ρmax);
4: (x1, x2)← ch(ρmax) s.t. ρ(x1, x2) = ρmax;
5: (x3, x4)← ch(ρsmax) s.t. ρ(x3, x4) = ρsmax;
6: for eachMα in {M1,M2,M3,M4,M5,M6} do
7: if F1(X, Y) = F1(x1, x2) then
8: Mξ1 ←Mα;
9: end if

10: if F1(X, Y) = F1(x2, x1) then
11: Mξ2 ←Mα;
12: end if
13: end for
14: for eachMβ in {Mξ1,Mξ2} do
15: if F2(X, Y) = F2(x3, x4) or F2(X, Y) = F2(x4, x3) then
16: Mξ3 ←Mβ;
17: end if
18: end for
19: return Mξ3.

3.2. Local Complexity Calculation

After formulating the inter-channel correlation model, this paper proposes a novel
per-channel data embedding approach. The cover color image I is defined with dimensions
M× N × 3, where “3” represents the RGB channels of the image, each channel having a
resolution of M× N. The data embedding adopts a two-stage strategy, with each stage
executed pixel-wise. During this process, pixels within each channel are categorized into
cross pixels or dot pixels based on their positional information. Pixels with the sum of
horizontal and vertical positions being even are labeled as cross pixels, while odd sums
indicate dot pixels.

Pixel local complexity plays a pivotal role as a metric for assessing the degree of
variation in the vicinity of each pixel. Higher complexity indicates frequent and irregular
changes in the corresponding region, whereas lower complexity suggests more uniform
changes. High complexity during data embedding may lead to significant pixel distortion.
Consequently, there is a strong emphasis on embedding data in regions with lower com-
plexity to minimize distortion. Hence, the development of precise standards for measuring
pixel local complexity is paramount for distortion reduction. Most existing studies on color
images calculate pixel local complexity using information from the current channel only,
and methods designed for grayscale images are often not directly applicable to color images.
With the established inter-channel correlation model, we can fully utilize the consistency
of pixel change trends across channels to more accurately assess the complexity of the
current channel.

We denote the current channel as C, with two reference channels represented as R1
and R2, respectively. The channel information used for local complexity calculation is
detailed in Figure 4. In Figure 4a, the adjacent pixels in the north, south, west, and east
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directions of PC in the current channel C are utilized to calculate the local complexity of
PC , denoted as NC , SC , WC , and EC , respectively. Initially, we improve the method for
calculating local complexity as described in Equation (1), adopting the following mean
method to compute the local complexity of PC :

LC(PC) =
(
∣∣NC −WC

∣∣+ ∣∣WC − SC
∣∣+ ∣∣SC − EC

∣∣+ ∣∣NC − EC
∣∣+ ∣∣WC − EC

∣∣+ ∣∣NC − SC
∣∣)

6
. (10)

(a) (b) (c)
Figure 4. The channels used for calculating local complexity. (a) Current channel C. (b) Reference
channelR1. (c) Reference channelR2.

Subsequently, to better leverage the pixel information from the reference channels, we
extend the calculation method in Equation (10) and propose a new method for comput-
ing local complexity. We calculate the largest value among the differences

∣∣NR1 −WR1
∣∣,∣∣WR1 − SR1

∣∣, ∣∣SR1 − ER1
∣∣, and

∣∣ER1 − NR1
∣∣ in reference channelR1 and denote its posi-

tion as DR1 . Thus, DR1 belongs to the set {NWR1 , NER1 , SWR1 , SER1}. For instance, if the
largest difference in channelR1 is

∣∣NR1 −WR1
∣∣, then DR1 = NWR1 . Similarly, we calcu-

late the largest value among the differences
∣∣NR2 −WR2

∣∣, ∣∣WR2 − SR2
∣∣, ∣∣SR2 − ER2

∣∣, and∣∣ER2 − NR2
∣∣ in reference channelR2 and denote its position as DR2 . Thus, DR2 belongs to

the set {NWR2 , NER2 , SWR2 , SER2}.
Finally, combining the LC(PC) computed in the current channel C with the DR1 and

DR2 obtained from reference channels R1 and R2, we derive the calculation method for
the extended local complexity LCe(PC) as follows:

LCe(PC) =
LC(PC) + LC(DR1

C ) + LC(DR2
C )

3
, (11)

where DR1
C represents the pixel in the current channel C that is at the same position as pixel

DR1 in reference channelR1 and DR2
C represents the pixel in the current channel C that is

at the same position as pixel DR2 in reference channelR2. DR1
C and DR2

C belong to the set
{NWC , NEC , SWC , SEC}.

Relative to the predefined threshold T, when LCe(PC) is less than T, pixel PC is
considered smooth and deemed appropriate for data embedding. Conversely, pixel PC is
regarded as rough and should be bypassed for data embedding.

3.3. Pairs of Extreme Predictors for Skewed Histogram Shifting

This paper employs the skewed histogram shifting algorithm for data embedding,
where the generation of pairs of extreme predictors constitutes the algorithm’s core. The
generation of these pairs relies on the construction of prediction contexts. An improved
method for generating pairs of extreme predictors is proposed to enhance the accuracy
of generating extreme predictor pairs and mitigate pixel distortion caused by skewed
histogram shifting.

Constructing prediction contexts plays a pivotal role in generating pairs of extreme
predictors. In [33], the predictive context of a pixel is defined as the set of pixels in the
north, south, west, and east directions. While this approach is straightforward, there is
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still considerable potential for improving predictor accuracy. This paper expands on the
definition of prediction context in [33], as demonstrated in Figure 5. The prediction context
PC(PC) of the current pixel PC is defined as

PC(PC) = {NC , SC , WC , EC} ∪ {DR1 N
C , DR1S

C , DR1W
C , DR1E

C } ∪ {DR2 N
C , DR2S

C , DR2W
C , DR2E

C }, (12)

where DR1 N
C , DR1S

C , DR1W
C , and DR1E

C represent the pixels to the north, south, west, and east
of pixel DR1

C , respectively, and DR2 N
C , DR2S

C , DR2W
C , and DR2E

C correspond to the respective
directional pixels of DR2

C . Determining DR1
C and DR2

C is based on the local complexity calcu-
lation algorithm described in Section 3.2. Taking Figure 5 as an example, when DR1

C = NWC

and DR2
C = SEC are determined according to the inter-channel correlation model, PC(PC)

can be represented as PC(PC) = {NC , WC , EC , SC , NWCN , NWCW , SECE, SECS}.

Figure 5. PC and its prediction context.

Once PC(PC) is determined, the number of elements in the prediction context set,
denoted as n, is calculated, where card(PC(PC)) = n, with the card() function indicating
the number of elements in a set. The elements in PC(PC) are sorted in ascending order, rep-
resented as τ1, τ2, τ3, . . ., τn−2, τn−1, τn, satisfying τ1 ≤ τ2 ≤ τ3 ≤ . . . ≤ τn−2 ≤ τn−1 ≤ τn.
This paper designs three predictors to generate pairs of extreme predictors, namely, Hh and
Hl , as detailed in Table 3. Predictor 1 consists of the most extreme prediction values, namely,
the maximum and minimum values in the prediction context set. Predictor 3 comprises the
most collaborative prediction values, utilizing the highest number of context elements to
generate predictions.

Furthermore, a particular treatment is applied to Hl to avoid redundant data embed-
ding when Hh and Hl are equal, using Equation (4).

Table 3. Three predictors for generating pairs of extreme predictors Hh and Hl .

Predictor Number 1 2 3

Hh τn [ τn+τn−1
2 ] [ τn+τn−1+τn−2

3 ]

Hl τ1 [ τ1+τ2
2 ] [ τ1+τ2+τ3

3 ]

3.4. Data Embedding and Extraction

At the data-sending end, we first construct the inter-channel correlation modelMξ3
for the RGB channels. Based on this model, data are embedded channel by channel. For
each channel, we calculate the local complexity of each pixel and select pixels with lower
complexity for data embedding. The size of the cover color image is M × N × 3, with
each channel being M× N. Based on the characteristic that the sum of the horizontal and
vertical positions of pixels is either even or odd, pixels are divided into cross pixels and dot
pixels. A two-stage data embedding strategy is executed for cross pixels and dot pixels. For
ease of algorithm description, the first stage of data embedding is focused on cross pixels,
while the second stage targets dot pixels.

Each pixel PC undergoes two rounds of data embedding, using high estimates Hh for
the first round and low estimates Hl for the second round. The calculation methods for
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Hh and Hl are detailed in Table 3 of Section 3.3. Initially, the first skewed prediction error
histogram is generated from the calculation result of PC − Hh, followed by data embedding
using PHS. The embedding method is as follows:

P̂C =


PC + m1, if PC − Hh = 0
PC + 1, if PC − Hh > 0
PC , otherwise

, (13)

where m1 is the secret data bit to be embedded and m1 ∈ {0, 1}, with P̂C representing the
pixel value after the first embedding. When the prediction error is zero, one bit of data is
embedded, and when the prediction error is positive, the pixel value shifts one unit in the
positive direction.

Subsequently, the second skewed prediction error histogram is generated from the cal-
culation result of PC −Hl , followed by data embedding using NHS. The specific embedding
method is as follows:

P̃C =


P̂C −m2, if P̂C − Hl = 0
P̂C − 1, if P̂C − Hl < 0
P̂C , otherwise

, (14)

where m2 represents the secret data bit to be embedded and m2 ∈ {0, 1}. Here, P̃C denotes
the pixel value after the second data embedding, also known as the marked pixel. When
the prediction error is 0, one bit of data is embedded, and the pixel value shifts one unit in
the negative direction when the prediction error is negative. The pixel value changes by 0
or +1 because of PHS and by 0 or −1 because of NHS. Consequently, each pixel value can
change by at most ±1 through these two rounds of data embedding.

At the data reception end, to ensure the reversibility of data hiding and extraction, the
extraction steps should be performed in reverse order to the embedding steps. Specifically,
data are first extracted from dot pixels and then from cross pixels. For dot pixels, secret data
extraction is achieved using NHS and low estimate Hl , with the extraction formula being

m2 =

{
0, if P̃C − Hl = 0
1, if P̃C − Hl = −1

, (15)

and the pixel is restored as

P̂C =
{

P̃C + 1, if P̃C − Hl < 0
P̃C , otherwise

. (16)

Subsequently, secret data are extracted using PHS and high estimate Hh, with the
extraction formula being

m1 =

{
0, if P̂C − Hh = 0
1, if P̂C − Hh = 1

, (17)

and the pixel is restored as

PC =
{

P̂C − 1, if P̂C − Hh > 0
P̂C , otherwise

. (18)

After the data extraction and pixel recovery for dot pixels, the same method is applied
to cross pixels for secret data extraction and pixel recovery.

This paper presents a two-stage embedding process of three RGB channels in Figure 6
to clearly illustrate the data embedding and extraction process. The cover color image
I consists of the cover R, G, and B channels. Each channel is divided into cross and dot
pixels, i.e., Rc, Rd, Gc, Gd, Bc, and Bd. Then, data embedding is carried out using predictors
1, 2, and 3, resulting in the embedded R′c, R′d, G′c, G′d, B′c, and B′d. Finally, the marked R′, G′,
and B′ channels collectively form the marked color image I′. It is worth mentioning that
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the final I′ is the result of selecting the image with minor distortion after data embedding
with the three predictors.

Figure 6. Two-stage data embedding process of RGB channels.

3.5. Implementation of the Proposed Method

This paper proposes an RDH framework encompassing both data embedding and
extraction processes. Figure 7 details the proposed framework. During the data embedding
process, an inter-channel correlation model is constructed based on the correlation among
the RGB channels of the cover color image I. Subsequently, local complexity is calculated
on a per-pixel basis to identify low-complexity pixels suitable for embedding secret data.
Then, pairs of extreme predictors are utilized for skewed histogram shifting, facilitating the
embedding of secret data and auxiliary information. This process results in the generation
of a marked color image I′.

Figure 7. An overview of the proposed RDH framework.

In the data extraction process, the auxiliary information is first extracted from the
marked image I′. Afterward, the calculation results of local complexity are used to de-
termine which pixels contain embedded data. In pixels within smooth areas, a skewed
histogram shifting algorithm is applied to extract the secret data. Finally, the original color
image is restored, and the complete secret information is successfully retrieved.

The process of embedding data at the sending end is defined as follows.
(1) Generating location map after preprocessing: Initially, the pixels of the R, G, and B

channels are categorized into cross pixels and dot pixels. Pixel pre-processing is imple-
mented to prevent pixel value overflow, either above or below the threshold. For the R, G,
and B channels, respective location maps, denoted as Lr, Lg, and Lb, are constructed. The
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dimensions of each location map correspond to the size of the channel image, that is, M×N.
All location maps are initialized with a value of zero. The specific pixel pre-processing
method includes adjusting pixel values of 0 to 1 and 255 to 254 in each channel and marking
the corresponding position in the location map with a value of 1.

(2) Embedding payload using the improved skewed histogram shifting: We employ arithmetic
coding algorithms to compress the data for the location maps Lr, Lg, and Lb. The lengths
after compression are denoted as ℓcr, ℓcg, and ℓcb, respectively, with the total compressed
length represented by ℓc, satisfying ℓc = ℓcr + ℓcg + ℓcb. The payload consists of two parts:
the first part is the secret data, and the second part is a bit sequence extracted from the
least significant bits (LSBs) of the first (145 + ℓc) pixels from the top and bottom rows of
the R channel of the cover color image. The secret data are combined with the (145 + ℓc)
LSBs to form the payload, which is then embedded using our proposed improved skewed
histogram shifting.

(3) Embedding auxiliary information and compressed location map: Upon completing the
embedding of the payload, we utilize the LSB replacement method to embed auxiliary
information into the first 145 pixels of the first row in the red channel. The auxiliary
information comprises the following elements: ℓcr (20 bits), ℓcg (20 bits), ℓcb (20 bits),Mξ3
(5 bits), T (8 bits), and the positional information for the endpoints of data embedding
across the three channels, with each position occupying 12 bits, totaling 72 bits for the six
row and column numbers of the three channels. Following the auxiliary information, we
embed the compressed location maps, including the compressed Lr, Lg, and Lb.

The steps involved in the data extraction process at the receiving end are outlined
below.

(1) Extracting auxiliary information and compressed location map: To begin, we extract
the auxiliary information from the R channel of the marked color image using the LSB
replacement, which is located within the first 145 pixels of the first row. Subsequently,
utilizing the extracted values of ℓcr, ℓcg, and ℓcb, we proceed to retrieve the compressed
location map.

(2) Extracting payload and recovering pixels: We utilize arithmetic coding algorithms to
decompress the location maps. Concurrently, based on the inter-channel correlation model
Mξ3, we perform information extraction channel by channel and pixel by pixel, thereby
restoring the original pixel values.

(3) Recovering color image: From the extracted payload, we separate the secret data and
the LSBs. Subsequently, these LSBs are utilized to restore the LSBs of the first 145 pixels in
the first row of the R channel. Ultimately, this process completely recovers the cover color
image and the secret data.

The complexity of the proposed algorithm is analyzed in terms of time. The algo-
rithm consists of two primary steps: establishing the inter-channel correlation model and
implementing the improved skewed histogram shifting. Constructing the inter-channel
correlation model involves calculating the covariance between different channels, which
has a quadratic time complexity proportional to the total number of pixels in the image.
Similarly, the histogram shifting process, which operates on each pixel, exhibits quadratic
time complexity.

4. Experimental Results and Analysis

In this section, we conduct a series of experiments to validate the effectiveness of
the proposed inter-channel correlation modeling and the improved skewed histogram
shifting method for RDH in color images. Initially, we provide detailed information
about the experimental datasets and the configuration of the experimental environment.
Then, we demonstrate the correctness and efficiency of our algorithm using the USC-
SIPI dataset. Subsequently, we perform comparative experiments on the Kodak dataset
to further confirm the superiority of our method. Finally, we present a comprehensive
performance evaluation and an in-depth analysis of our proposed method.
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4.1. Datasets and Experimental Environment Configuration

To substantiate the efficacy of the RDH method proposed in this paper, we metic-
ulously selected two widely recognized datasets for experimental analysis: USC-SIPI
(http://sipi.usc.edu/database/database.php?volume=misc (accessed on 20 December
2023)) and Kodak (http://r0k.us/graphics/kodak/ (accessed on 20 December 2023)). The
USC-SIPI dataset comprises six color images, each with a resolution of 512× 512 pixels, as
illustrated in Figure 8. Each image is characterized by its unique texture and pattern, pro-
viding an ideal testbed to assess the algorithm’s performance comprehensively. The Kodak
dataset consists of 24 color images with dimensions of either 768× 512 or 512× 768 pixels,
encompassing a diverse range of visual content from natural landscapes to urban architec-
ture, thus offering a broad perspective for evaluating the generalization capability of the
proposed method.

(a) (b) (c)

(d) (e) (f)
Figure 8. Six USC-SIPI images with a size of 512× 512. (a) Lena. (b) Baboon. (c) Airplane. (d) House.
(e) Peppers. (f) Lake.

In the experiments conducted with the USC-SIPI dataset, we adhered to the RDH
framework depicted in Figure 8, performing the data embedding and extraction processes
on each image. To assess the algorithm’s performance quantitatively, we compared the
visual discrepancies between the cover image I and the marked image I′ under a fixed data
embedding capacity. Concurrently, the data extraction algorithm was employed to verify
the consistency between the original cover image and the extracted cover image and the
accuracy of the embedded secret data compared to the extracted secret data.

For the Kodak dataset, we replicated the same data hiding and extraction procedures as
with the USC-SIPI dataset to ensure the consistency and reproducibility of the experiments.
This process validated the effectiveness of our method and demonstrated its stability and
reliability when processing various types of images.

The secret data used in our experiments were meticulously generated by a random
function, forming a binary string of zeros and ones, to accurately simulate the randomness
and diversity found in the real world. Our experimental environment was carefully
configured, featuring a macOS Monterey operating system device equipped with an Intel
Core i7 processor and 16GB of memory. All experiments were conducted in the stable and
extensively supported MATLAB R2020a environment, ensuring the reliability of our results.

We relied on the widely recognized and accepted peak signal-to-noise ratio (PSNR) as
our primary metric for the quantitative assessment of image fidelity, measured in decibels
(dB). PSNR served as a standard for evaluating the quality comparison between marked and
cover images, providing an objective measure to assess the impact of RDH technology on

http://sipi.usc.edu/database/database.php?volume=misc
http://r0k.us/graphics/kodak/
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image integrity. This series of experimental configurations allowed us to comprehensively
evaluate the performance of the proposed method in various scenarios and, specifically, its
impact on image fidelity.

4.2. Comparative Performance Evaluation on USC-SIPI Images

A series of experiments was designed to evaluate the performance differences in color
image fidelity among the proposed method and four RDH methods, namely, PEEC [24],
CPPAE [30], SHCC [23], and PVOPC [29]. These experiments compared the PSNR values of
six USC-SIPI images shown in Figure 8. A higher PSNR value indicated a more remarkable
similarity between the marked and original cover images, signifying better image fidelity.

Firstly, we presented the correlation coefficients between the RGB channels of six im-
ages depicted in Figure 8 and the inter-channel correlation models established, as shown in
Table 4. The data in the table reveal variances in the correlations between different channels
of the images, which guided us in constructing diverse correlation models. These models
enabled the efficient transfer and sharing of information between channels, significantly
reducing potential image distortion during the data embedding process. When embedding
data into a specific channel, we considered the data from the other channels to adjust our
embedding strategy, thereby optimizing the overall image quality. This approach ensured
that the images retained high fidelity, even during intensive data embedding.

Table 4. The correlation coefficients between the RGB channels and the formulated inter-channel
correlation models.

Image ρ(R, G) ρ(R, B) ρ(G, B) Correlation Model

Lena 0.8786 0.6764 0.9106 M3
Baboon 0.3565 0.1237 0.8074 M3

Airplane 0.9212 0.8410 0.9380 M3
House 0.8070 0.6900 0.9104 M3

Peppers 0.2752 0.3952 0.8379 M1
Lake 0.8868 0.8271 0.9564 M3

Subsequently, we embedded secret data of 20,000 bits into the six images in Figure 8
and presented the comparative experimental results in Table 5. The experimental results
unequivocally demonstrate the superiority of our proposed method. With an embed-
ding capacity of under 20,000 bits, our method consistently outperformed PEEC [24],
CPPAE [30], SHCC [23], and PVOPC [29] regarding average PSNR values across the six
images. Specifically, when embedding 20,000 bits of data, the average PSNR values of our
method surpassed those of PEEC [24], CPPAE [30], SHCC [23], and PVOPC [29] by 2.83,
1.85, 0.9, and 0.24 dB, respectively. These results affirm the superior image fidelity of our
method and its ability to maintain high image quality at higher embedding capacities.

Table 5. Comparisons in terms of PSNR (dB) on six USC-SIPI color images with the payload of
20,000 bits.

Image PEEC CPPAE SHCC PVOPC Proposed

Lena 59.03 60.51 62.07 62.33 62.44
Baboon 57.12 56.81 58.69 58.71 58.78

Airplane 62.16 64.87 65.03 64.71 65.23
House 64.83 65.67 66.05 64.05 66.35

Peppers 56.83 57.12 58.01 62.50 60.82
Lake 59.53 60.44 61.26 62.76 62.85

Average 59.92 60.90 61.85 62.51 62.75

This advantage stems from the correlation model established between RGB channels,
which enhances the accuracy of local pixel complexity calculations. Moreover, the improved
skewed histogram shifting strategy limits the maximum change to one per pixel value
during the embedding process, ensuring minimal pixel distortion. However, it is important
to note that our method does not always hold an advantage, particularly in certain types of
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images, such as Peppers, which may be due to their smoother pixel distribution. Future
research will focus on algorithmic improvements to achieve better performance across
various image types.

To further validate the performance of our method, the paper begins with an embed-
ding capacity of 20,000 bits. It increases it in increments of 2000 bits, comparing the changes
in PSNR values with increasing embedding capacities against PEEC [24], CPPAE [30],
SHCC [23], and our method. The results, as shown in Figure 9, indicate that although the
PSNR values of our method gradually decrease with the increase in embedding capacity,
the rate of decline is slower than those of the other four methods. This result suggests that
despite the impact of increased embedding capacity on image quality, our method can
effectively control this impact, maintaining a higher level of image fidelity. For instance, at
an embedding capacity of 40,000 bits, the PSNR value of our method on the Baboon image
is 53.73 dB, which is 1.17, 1.15, and 0.41 dB higher than those of PEEC [24], CPPAE [30], and
SHCC [23], respectively. This exceptional performance is attributed to our method’s im-
proved skewed histogram shifting strategy, which provides better error control capabilities,
allowing for the maintenance of higher PSNR values even at high embedding capacities.
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Figure 9. Performance comparison measured with PSNR between PEEC [24], CPPAE [30], SHCC [23],
and the proposed method. (a) Lena. (b) Baboon. (c) Airplane. (d) House. (e) Peppers. (f) Lake.
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4.3. Comparative Performance Evaluation on Kodak Images

We meticulously conducted extensive experiments on the Kodak dataset, which com-
prises 24 images, to evaluate the performance of the proposed method thoroughly. Our
comparative experiments between our proposed method and two advanced algorithms,
CPPAE [30] and SHCC [23], were designed to compare image quality at an embedding
capacity of 50,000 bits, as evaluated by PSNR values. The experimental results, as illustrated
in Figure 10, unequivocally demonstrate that the PSNR values of the proposed method
surpassed those of the CPPAE [30] and SHCC [23] algorithms for the vast majority of
images. This finding underscores the significant advantage of the proposed method in
maintaining image quality. Our meticulous analysis suggests that this advantage arises
from selecting an appropriate predictive context while generating skewed histograms and
constructing more precise extreme predictors, effectively controlling the distortion caused
by data embedding. However, it is also observed that on certain types of images, such as
the 6th, 13th, 17th, and 23rd images, the PSNR values of the proposed method are slightly
lower than those of the SHCC [23]. This may be attributed to the smooth characteristics
of these images, which render the advantage of the proposed method in calculating local
pixel complexity less pronounced. Overall, the experimental results on the Kodak dataset
comprehensively validate the proposed method’s effectiveness and superiority within the
RDH field.
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Figure 10. PSNR performance of the proposed method and existing methods on Kodak images with
50,000 bits of data.

4.4. Performance Analysis

In this paper, we present a novel RDH method and conduct a comprehensive perfor-
mance evaluation. Our method exhibits several advantages in maintaining high PSNR
values even as the data embedding capacity increases from 20,000 to 50,000 bits. On the
Kodak dataset, our technique sustains superior image quality at an embedding capacity
of 50,000 bits. Compared to two leading algorithms, CPPAE [30] and SHCC [23], our tech-
nique consistently offers higher PSNR values, highlighting its advantage in image fidelity.
The strengths of this paper primarily stem from the established correlation model between
the RGB channels of color images, which delves deeply into the inter-channel correlations.
The correlation model plays a crucial role in generating the context for local complexity,
thereby enhancing the accuracy of local pixel complexity calculations. Additionally, during
the skewed histogram generation, we employ an extended predictive context and construct
more precise extreme predictors. This meticulous control mechanism effectively controls
the distortion caused by data embedding, allowing our method to preserve the visual
characteristics of the cover images, especially those with rich textures or complex details.
However, the technique also has certain limitations. On specific types of images, partic-
ularly those with many smooth areas, the performance of our technique only sometimes
prevails. These limitations may be due to our method’s less efficient handling of smooth
regions when calculating local pixel complexity. In summary, despite some limitations
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under certain conditions, the ability of the proposed technique to maintain image quality
at high data embedding capacities, along with its robustness in processing complex images,
demonstrates its broad application prospects in the field of RDH. This potential impact on
the field should inspire further exploration and development.

5. Conclusions

In this paper, we propose an innovative RDH method for color images. This method
comprises several key components: a novel inter-channel correlation modeling method, an
improved pixel local complexity calculation algorithm, and an improved skewed histogram
shifting strategy. The research commences with an in-depth exploration of the inter-
channel correlations of RGB channels, upon which a precise inter-channel correlation
model is established. Subsequently, we expand the method for calculating pixel local
complexity, heightening the algorithm’s sensitivity to image details and enhancing the
calculations’ precision. Building on this, we adaptively select the prediction context and
design three extreme pixel value predictors. We implement data embedding and extraction
through an improved skew histogram shifting strategy, further optimizing the data hiding
process. Experimental results confirm that, compared to existing technologies, our proposed
method achieves higher PSNR values on most datasets, indicating a significant advantage
in maintaining image quality. However, the method’s limitations are evident when dealing
with images with smooth pixels. In the future, we will focus on enhancing the robustness
and adaptability of our algorithm and explore a broader range of application scenarios,
such as privacy protection in medical imaging, hiding sensitive information in secure
communications, and embedding copyright information in digital rights management. Our
goal is to make a more significant contribution to the field of information security.
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