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Abstract: Accurate traffic prediction is pivotal when constructing intelligent cities to enhance urban
mobility and to efficiently manage traffic flows. Traditional deep learning-based traffic prediction
models primarily focus on capturing spatial and temporal dependencies, thus overlooking the
existence of spatial and temporal heterogeneities. Heterogeneity is a crucial inherent characteristic
of traffic data for the practical applications of traffic prediction. Spatial heterogeneities refer to the
differences in traffic patterns across different regions, e.g., variations in traffic flow between office and
commercial areas. Temporal heterogeneities refer to the changes in traffic patterns across different time
steps, e.g., from morning to evening. Although existing models attempt to capture heterogeneities
through predefined handcrafted features, multiple sets of parameters, and the fusion of spatial–
temporal graphs, there are still some limitations. We propose a self-supervised learning-based traffic
prediction framework called Traffic Prediction with Self-Supervised Learning (TPSSL) to address this
issue. This framework leverages a spatial–temporal encoder for the prediction task and introduces
adaptive data masking to enhance the robustness of the model against noise disturbances. Moreover,
we introduce two auxiliary self-supervised learning paradigms to capture spatial heterogeneities
and temporal heterogeneities, which also enrich the embeddings of the primary prediction task. We
conduct experiments on four widely used traffic flow datasets, and the results demonstrate that
TPSSL achieves state-of-the-art performance in traffic prediction tasks.

Keywords: deep learning; self-supervised learning; traffic prediction; heterogeneity modeling

MSC: 68T07

1. Introduction

The importance of traffic prediction in urban planning and management is self-evident.
Accurate traffic predictions enable effective traffic management, reduce congestion, and
enhance the sustainability of urban transport systems. In particular, grid-based traffic flow
prediction plays a crucial role in understanding and managing the dynamics of urban
mobility. Dividing cities into manageable segments and predicting the traffic flow within
each segment allows for a more detailed analysis of traffic patterns, thus facilitating targeted
interventions and infrastructure planning.

Over the years, traffic prediction methodologies have evolved through three major
stages: traditional statistical models, machine learning techniques, and deep learning
methods. Each stage represents a leap forward regarding prediction accuracy and the ability
to handle complex spatial–temporal data. Adopting deep learning in traffic prediction
marks a significant milestone, thus offering unprecedented levels of accuracy by leveraging
large datasets and capturing intricate patterns in traffic flow. This evolution underscores
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the growing complexity of urban traffic systems and the increasing need for advanced
predictive models to navigate the challenges of modern urban environments.

Traffic data inherently exhibit spatial and temporal heterogeneities, thus reflecting
the variability of traffic flow across different regions and time steps. Figure 1a visualizes
traffic flow data in Beijing, with (a) showing a heatmap of inflow at 9 a.m. on 1 March 2015
(Sunday). It vividly illustrates the differences in traffic volume between various areas, thus
highlighting the concept of spatial heterogeneities. Spatial heterogeneities can arise from
many factors, including road layouts, the positioning of transportation hubs (e.g., subway
and train stations), the distribution of commercial and residential areas, and events specific
to certain regions (e.g., sports events and concerts). Figure 1b shows the changes in inflow
for two selected areas, A and B, on 1 March 2015 (Sunday), and 2 March 2015 (Monday). It
reveals that traffic patterns in different areas change over time steps, e.g., from weekends to
weekdays or from morning to midnight, thereby leading to temporal heterogeneities. These
changes are crucial for understanding the dynamics of urban mobility and necessitate
sophisticated prediction models capable of capturing such complexities. The spatial and
temporal heterogeneities in traffic data not only challenge traditional prediction methods
but also provide an opportunity to improve prediction accuracy by incorporating these
heterogeneities into the modeling process. Therefore, acknowledging and modeling traffic
data’s spatial and temporal heterogeneities are crucial for developing accurate and reliable
traffic prediction models.

Figure 1. Visualization of spatial and temporal heterogeneities in traffic flow data in Beijing. (a) Heatmap
of inflow at 9 a.m. on 1 March 2015 (Sunday). (b) Changes in inflow for two selected areas, A and B,
on 1 March 2015 (Sunday), and 2 March 2015 (Monday).

We have reviewed many studies and found that current traffic prediction models
need to be improved with respect to capturing spatial and temporal heterogeneities. Some
models attempt to incorporate temporal features (e.g., periodicity and holidays) into the
model [1,2] to capture temporal heterogeneities. Still, these are predefined features that
may not fully capture the complexities of urban traffic patterns. Predefined spatial het-
erogeneities features are typically obtained by graph embedding based on an adjacency
matrix [3], thus overlooking the complexities and diversities of regions. This reliance
on handcrafted features limits the models’ ability to adapt and generalize across various
spatial regions and time scales. Models that overlook spatial heterogeneities tend to favor
popular areas with heavy traffic flow [4], thereby leading to an incomplete understanding
of urban traffic flow. Some studies attempt to capture spatial heterogeneities using different
parameters in different regions. Still, this involves many parameters and may lead to sub-
optimal solutions in nonuniform urban environments [5,6]. Meta learning techniques have
recently been introduced into traffic prediction to capture spatial–temporal heterogeneities,
but the model’s effectiveness depends on predefined spatial and temporal features [7,8].
Methods that adopt spatial–temporal graphs address temporal nonuniformity [9,10] but
assume that temporal heterogeneities across the same period are static, which does not
reflect reality.

Furthermore, attempts to actively capture spatial and temporal heterogeneities within
models frequently encounter challenges in effectively balancing the granularity of rep-
resentation with computational efficiency. Models struggle to balance oversimplified as-
sumptions and enormous computational demands when dealing with complex traffic flows
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that include large amounts of data [11]. This gap highlights the necessity for innovative
approaches to inherently understand and the model spatial and temporal heterogeneities
in traffic flow data.

To address the limitations above, we propose a novel self-supervised learning frame-
work: Traffic Prediction with Self-Supervised Learning (TPSSL). First, this framework
leverages a spatial–temporal encoder to encode traffic data’s spatial and temporal depen-
dencies. Then, we introduce an adaptive data masking strategy to dynamically adjust
the regions that need to be masked based on traffic data characteristics. Recognizing the
complexities of capturing spatial and temporal heterogeneities in traffic data, we introduce
two auxiliary self-supervised learning paradigms. The self-supervised learning paradigm
based on soft clustering is responsible for exploring unique spatial patterns across different
regions to learn spatial heterogeneities. It allows the model to identify and differentiate
the unique traffic patterns across various urban areas without explicitly labeling, thereby
inferring meaningful clusters of spatial regions from the natural distribution of traffic
data. Moreover, we adopt a self-supervised learning paradigm based on positive and
negative samples to incorporate temporal heterogeneities into the model’s feature space.
This paradigm is designed to maintain dedicated representations of traffic dynamics, thus
adapting to the variability in traffic flow across different time steps in a day.

The main contributions of this paper are summarized as follows:

• We propose a novel self-supervised learning framework to model spatial and temporal
heterogeneities in urban traffic flow data. We offer a detailed understanding and new
insights for other spatial–temporal prediction tasks, e.g., weather forecasting.

• We introduce an adaptive data masking strategy that dynamically adjusts the regions
that need to be masked based on traffic data characteristics, thereby enhancing the
model’s robustness against noise disturbances and ensuring that the learned represen-
tations are accurate and generalizable across different traffic conditions.

• Our framework incorporates two auxiliary self-supervised learning tasks, which aim
to enrich the model’s feature space, thus allowing for a deeper exploration of the
underlying patterns of spatial and temporal heterogeneities to enhance the primary
traffic prediction task.

• We conduct experiments on several real-world public datasets, thus demonstrating the
superiority of TPSSL by achieving state-of-the-art results. We also conduct ablation
studies to illustrate the importance of the adaptive data masking strategy and the
two self-supervised learning paradigms. Furthermore, we explain the effectiveness of
TPSSL through case studies.

2. Related Work

Traffic prediction has undergone several stages of development, from traditional
statistical models to machine learning methods and then to deep learning techniques. The
advancements in deep learning techniques have brought breakthroughs to traffic prediction,
thus attracting many researchers’ attention. Self-supervised learning, a highly effective
unsupervised learning paradigm widely used in various fields, has been introduced into
traffic prediction. This section reviews the following research: (1) deep learning in traffic
prediction and (2) self-supervised learning in representation learning.

2.1. Deep Learning in Traffic Prediction

Accurate traffic prediction is crucial for urban planning and traffic management, and
deep learning has emerged as a powerful tool in this domain. Deep learning techniques,
e.g., convolutional neural networks (CNNs), recurrent neural networks (RNNs), graph
neural networks (GNNs), and attention mechanisms, have been widely applied to traffic
prediction tasks [12]. CNNs have been effectively applied to capture spatial dependencies
in traffic data, thus offering significant improvements over traditional methods. Zhang
et al. [1] introduced ST-ResNet, a deep spatial–temporal residual network that leverages
CNNs to forecast citywide crowd flows, thus showcasing the capability of CNNs to model
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complex spatial relationships within urban traffic systems. Traditional CNNs are unable
to address sequence modeling problems, so Bai et al. [13] proposed the temporal convo-
lutional network, which captures temporal dependencies in traffic data by introducing
one-dimensional CNNs. RNNs and their variants, e.g., Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU), have been widely adopted to model temporal depen-
dencies in traffic data. Yao et al. [14] used LSTM to model the correlations between future
traffic demand values and neighboring time steps. Li et al. [15] used GRU to model tempo-
ral dependencies and replaced matrix multiplication in GRU with diffusion convolution.
GNNs have gained attention for their ability to model the graph-structured data commonly
found in traffic networks. ChebNet is a spectral method, and Yu et al. [4] used Chebyshev
first-order approximation graph convolution to obtain neighboring information for nodes.
Due to the ability to model long-range dependencies without the sequential processing lim-
itations of RNNs, attention mechanisms have been explored for traffic prediction. Inspired
by attention-based models, Cai et al. [2] proposed a traffic transformer to parallelly predict
traffic flow for multiple time steps in a nonautoregressive manner. Attention mechanisms
can capture both temporal and spatial dependencies, so Zheng et al. [3] proposed multiple
attention mechanisms to jointly act on traffic prediction tasks. Due to the advantages of
CNNs, RNNs, GNNs, and attention mechanisms, most studies tend to combine them to
improve the accuracy of traffic prediction [2,4,14–17]. In existing research, most models
focus on capturing spatial and temporal dependencies in traffic data, thus often focusing
on popular areas in the city and overlooking less popular areas.

Recent advancements in traffic flow prediction models have demonstrated significant
improvements by integrating cutting-edge deep learning techniques. Naheliya et al. [18]
introduced the MFOA-Bi-LSTM by utilizing a modified firefly optimization algorithm to
enhance the predictive capabilities of Bi-LSTMs through optimal hyperparameter tuning.
Similarly, Redhu et al. [19] employed a particle swarm optimization-enhanced Bi-LSTM
model, thus showcasing the potential of swarm intelligence in refining neural network
performance for traffic prediction. Zhang et al. [20] proposed a Multiattention Hybrid Con-
volution Spatial–Temporal Recurrent Network (MHSRN), which integrates multiattention
mechanisms with hybrid convolutional layers to capture complex spatial–temporal patterns
effectively. Moreover, Chen et al. [21] developed a Traffic Flow Matrix-Based Graph Neural
Network (TFM-GCAM) that employs a novel graph convolution strategy enhanced with
attention mechanisms to improve the accuracy of traffic flow prediction. He et al. [22] pre-
sented a 3D dilated dense neural network that leverages multiscale dilated convolutions to
address the spatiotemporal variations in traffic data more dynamically. Lastly, Bao et al. [23]
introduced the Spatial–Temporal Complex Graph Convolution Network (ST-CGCN), which
uses a complex correlation matrix to model the intricate relationships between traffic nodes,
thereby enhancing both the spatial and temporal feature extraction capabilities.

Recent research efforts have begun to explore how better to capture the spatial and
temporal heterogeneities within traffic systems using deep learning methods. Bai et al. [5]
introduced an adaptive module, i.e., a data-adaptive graph generation module, to automat-
ically infer the interdependencies among different traffic series, thus avoiding predefined
graph structures. Pan et al. [6] adopted a matrix factorization approach in neural networks
to decompose region-specific parameters into learnable matrices, thereby modeling latent
region functionality and inter-region correlations. Guo et al. [11] represented spatial hetero-
geneities features by assigning an additional embedding vector to each region and learning
these vectors through model training. The above methods learn spatial heterogeneities
by applying unique parameters to different areas. However, this strategy results in many
parameters and may yield suboptimal results in nonuniformly distributed urban envi-
ronments. Meta learning techniques have also been introduced into traffic prediction to
capture spatial–temporal heterogeneities, but their effectiveness still depends on prede-
fined external spatial and temporal attributes [7,8]. Li et al. [9] generated a temporal graph
and fused it with a spatial graph to form a spatial–temporal fusion graph. Song et al. [10]
captured spatial–temporal heterogeneities in traffic data by constructing a local spatial–
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temporal graph. Although spatial–temporal graphs aim to capture heterogeneities, they
often provide a relatively static representation. If heterogeneities in the traffic network
change over time, these graphs may fail to capture dynamic heterogeneities. The above
methods have made some progress in capturing spatial and temporal heterogeneities in
traffic data, but there are still some limitations.

2.2. Self-Supervised Learning in Representation Learning

Self-supervised learning (SSL) is a technique used in representation learning [24],
thereby allowing models to discover feature detection or classification representations in
raw data automatically. Unlike supervised learning, which requires manually annotated
labels, SSL uses inherent structures in the data to generate supervisory signals. This method
enables models to learn rich data representations from any observed part of the input data
by predicting any unobserved or hidden part. Self-supervised learning has been used in
various fields, including Natural Language Processing (NLP) and Computer Vision (CV).
In NLP, SSL has been used to learn word embeddings or language models from large,
unannotated text corpora, such as BERT and GPT [25,26]. In CV, SSL techniques have been
used to pretrain models on large image datasets, thus enabling them to recognize visual
patterns and objects without relying on labeled datasets, such as SimCLR and MoCo [27,28].

Contrastive learning and generative models are the two prominent methods used in
SSL [29]. Contrastive learning methods learn representations by contrasting positive and
negative sample pairs, thus pulling similar samples closer in the representation space and
pushing dissimilar samples further apart. On the other hand, generative models focus
on learning to reconstruct or generate data, thereby capturing the data distribution and
learning features.

However, the application of self-supervised learning in traffic prediction still needs to
be improved. Researchers have explored using self-supervised learning in traffic prediction,
and their work has shown promising results. Ji et al. [30] adopted a self-supervised learning
paradigm based on temporal continuity to examine the context information of traffic data,
thereby better understanding and predicting the dynamic changes in traffic flow. Another
study by Ji et al. [31] proposed a contrastive learning-based traffic prediction framework
and learned the representation of traffic data through auxiliary tasks to improve traffic
prediction accuracy. Our approach differs from these studies because we spatially model
traffic flow data as regular grids rather than as a graph. Consequently, our self-supervised
learning tasks focus more on learning the spatial and temporal features of regular grid-
based data.

3. Methodology

In this section, we first clarify the key concepts and problem definition of grid-based
short-term traffic prediction tasks, then introduce the overall architecture of TPSSL that we
propose, and finally describe the critical components of the framework in detail.

3.1. Problem Definition

In addressing the grid-based short-term traffic prediction task, it is essential to clearly
define key concepts and the specific formulation of the problem.

Definition 1. Spatial Region: A spatial region refers to a spatial area within a city designated
for analysis. In grid-based traffic prediction models, the city is divided into numerous equally
sized grids, each representing a spatial region. These regions are the basic units for collecting and
analyzing traffic flow data within their boundaries.

Definition 2. Inflow/Outflow: Inflow denotes the quantity of traffic entering a spatial region
within a specified time interval, which encompasses all forms of traffic movement, including vehicles,
bicycles, or pedestrians. Conversely, outflow signifies the quantity of traffic exiting a spatial region
within the same time interval.



Mathematics 2024, 12, 1290 6 of 18

We have historical traffic flow data X = [xt−T+1, xt−T+2, . . . , xt], where xt ∈ RM×N×2

represents the traffic flow matrix at time step t. M and N denote the city divided into M
rows and N columns of grids. The value of 2 represents the number of channels, where
channel 0 denotes inflow, and channel 1 denotes outflow. The objective of the short-term
traffic flow prediction problem is to obtain the traffic flow matrix yt+1 ∈ RM×N×2 at time
step t + 1. The problem can be formally described as

yt+1 = f (X) (1)

f (·) represents the traffic prediction model that maps historical traffic flow data X to future
traffic flow data yt+1 at the next time step.

3.2. Architecture

We propose a traffic prediction model called TPSSL. Its purpose is to improve the
accuracy of traffic flow data prediction by capturing spatial and temporal heterogeneities
through self-supervised learning. As seen in Figure 2, the overall architecture of TPSSL
consists of four key modules: a spatial–temporal encoder, adaptive data masking, spatial
heterogeneity modeling, and temporal heterogeneity modeling. The spatial–temporal
encoder generates a similarity matrix and prediction embeddings while capturing the
spatial–temporal dependencies in traffic flow data. Adaptive data masking enhances the
model’s robustness by dynamically selecting spatial regions to be masked. Spatial hetero-
geneity modeling and temporal heterogeneity modeling delve deeper into the complexity
of traffic data, thus capturing spatial and temporal heterogeneities in traffic flow data and
enriching the feature space of the model.

Figure 2. The architecture of TPSSL. There are four key modules: Spatial–Temporal Encoder (STEn-
coder), Adaptive Data Masking (ADM), Spatial Heterogeneity Modeling (SHM), Temporal Hetero-
geneity Modeling (THM).

3.3. Spatial–Temporal Encoder

The spatial–temporal encoder in our model is designed to effectively capture both
spatial and temporal dependencies of traffic flow data, thus providing rich spatial–temporal
embeddings for subsequent modules. The encoder is composed of several essential layers,
each of which uniquely contributes to the overall ability of the model to process and
interpret traffic flow data.

Initially, the traffic data undergoes processing through two 3D convolutional layers. The
3D convolutional layers handle data across spatial and temporal dimensions, thereby allowing
interactions between neighboring regions and time steps to extract features that reflect traffic
flow dynamics. The following formula can summarize this sequential processing:

X′ = ReLU(Conv3D2(ReLU(Conv3D1(X)))) (2)



Mathematics 2024, 12, 1290 7 of 18

where X ∈ RT×M×N×2 represents the input traffic flow data, X′ ∈ RT×M×N×D denotes the
embedding after processing by the convolutional layers, and D represents the embedding size.

Next, an essential aspect of the encoder is the computation of the similarity matrix A ∈
RT×M×N derived from the embedding X′. This matrix is intended for use in adaptive data
masking, thus facilitating the augmentation of the model’s training data by emphasizing
similarities between traffic patterns. The calculation of the similarity matrix is as follows:

A = Softmax(AvgPool3D(X′)) (3)

where AvgPool3D refers to the average pooling operation across the feature channels.
Softmax is applied to normalize the values and emphasize the relative importance of
different time steps in the traffic data.

Then, the core of the spatial–temporal encoder is the Convolutional LSTM (ConvLSTM)
layer [32], which has been chosen for its proficiency in capturing spatial and temporal
dependencies within the data. Unlike the standard LSTM, which processes temporal
data, ConvLSTM extends its capability to spatial dimensions, thus making it particularly
suitable for traffic prediction tasks where spatial relationships are crucial. The ConvLSTM
layer effectively integrates spatial information with temporal dynamics, thus enhancing
the model’s predictive performance. Following processing by the ConvLSTM layer, we
obtain a richer spatial–temporal embedding H ∈ RM×N×D, which is an important input
for subsequent modules.

3.4. Adaptive Data Masking

The adaptive data masking module is pivotal with respec to enhancing our traffic
prediction model’s robustness and generalization capability. Unlike traditional random
masking techniques, we design a targeted data masking strategy employing the similarity
matrix A obtained from the spatial–temporal encoder. This strategy ensures that the aug-
mentation focuses on the most informative parts of the traffic flow data, thereby challenging
the model to learn to simulate natural and challenging traffic scenarios.

The similarity matrix A represents the normalized importance of each spatial region
at each time step. We aim to mask a percentage of the data that is inversely proportional
to its similarity score, meaning regions with lower similarity scores are more likely to be
masked. This is achieved by calculating a masking probability distribution from A, where
the probability of masking a given spatial region is higher if its corresponding similarity
score is lower. Formally, the masking probability for each spatial region is determined
as follows:

Pt,i,j =
1 − At,i,j

∑T
t=1 ∑M

i=1 ∑N
j=1(1 − At,i,j)

(4)

where Pt,i,j represents the masking probability for spatial region ri,j at time step t, and At,i,j
denotes the corresponding element in the similarity matrix A.

The masking operation involves selecting regions to be masked based on P, and a
predefined masking ratio determines the total number of masked regions. The inflow and
outflow of the selected spatial regions are then set to zero, thus simulating the absence
of traffic flow information in these regions. This approach challenges the model to make
predictions without specific data but encourages it to leverage its understanding of spatial
and temporal dependencies to fill in the missing information. The augmented data obtained
through adaptive data masking are denoted as X̃. The embedding obtained after X̃ passes
through the spatial–temporal encoder is denoted by H̃.

3.5. Spatial Heterogeneity Modeling

As illustrated in Figure 2, spatial heterogeneity modeling is a crucial component of
our traffic prediction framework. We designed a self-supervised learning task based on
soft clustering to capture the underlying spatial heterogeneities in traffic data through
self-supervised signals, as shown in Figure 3. Specifically, we mapped the embeddings
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of different spatial regions to prototypes corresponding to different urban functions (e.g.,
residential areas, office areas, transportation hubs). We obtained the embeddings of the
original data and the augmented data through the spatial–temporal encoder, which are
denoted as H and H̃, respectively. We will refer to H and H̃ as the original and augmented
embeddings. The original embedding and the augmented embedding of the region ri,j

are denoted as hi,j and h̃i,j, respectively. The prototypes representing the K clusters are
denoted as {c1, . . . , cK}. The following formula achieves the clustering results of the
augmented embedding:

z̃i,j,k = c⊤k h̃i,j (5)

where z̃i,j,k represents the similarity score between the augmented embedding h̃i,j of region
ri,j and the prototype ck. Thus, the clustering assignment of region ri,j can be represented as
z̃i,j = (z̃i,j,1, . . . , z̃i,j,K). Similarly, ẑi,j,k is the similarity score between the original embedding
hi,j and the prototype ck: ẑi,j,k = c⊤k hi,j. We designed the learning task to maximize the
similarity of the original embedding hi,j and the augmented embedding h̃i,j in the clustering
space. The following formula can express the optimization process:

L(z̃i,j, ẑi,j) = −
K

∑
k=1

log

(
exp(z̃i,j,k/τ)

∑K
l=1 exp(z̃i,j,l/τ)

)
−

K

∑
k=1

log

(
exp(ẑi,j,k/τ)

∑K
l=1 exp(ẑi,j,l/τ)

)
(6)

where τ is the temperature parameter, which controls the sharpness of the distribution
output by the Softmax function. The sum of the loss functions for all regions is used as the
final loss of the model, i.e.,

Ls =
M

∑
i=1

N

∑
j=1

L(z̃i,j, ẑi,j) (7)

By minimizing the crossentropy of the original embedding and the augmented embedding
in the clustering space, these two types of embeddings are made as close as possible
regarding clustering assignments.

Figure 3. Spatial heterogeneity modeling in TPSSL. Different shapes of embeddings represent
different prototypes. Blue embeddings are generated from the original data, and orange embeddings
are generated from the augmented data. This module is implemented based on soft clustering, thus
using the similarity of original and augmented embeddings in the clustering space to guide learning
spatial heterogeneities.

In the above approach, we generated the clustering assignment matrices Z̃ ∈ RM×N×K

and Ẑ ∈ RM×N×K to serve as self-supervised signals for spatial heterogeneity modeling.
We must address two issues to ensure that the regional features conform to the proper
distribution of urban space. First, we need to ensure that the sum of the clustering as-
signment matrices for each region is 1. Second, we must avoid situations where all areas
receive the same assignment. We introduced the Sinkhorn algorithm [33], which is a
regularization-based optimization method to address these two issues. It was used to
adjust the clustering assignment matrices to satisfy certain normalization conditions, i.e.,
the sum of the assignments for each spatial region over all clusters is 1, and the sum for
each cluster over all spatial regions is also 1. By alternately normalizing over the spatial
region and cluster dimensions, the Sinkhorn algorithm can achieve a balanced clustering
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assignment strategy. Using Equation (7), we applied the Sinkhorn algorithm to Z̃ and Ẑ
and replaced the original assignment matrices with the results of the algorithm.

3.6. Temporal Heterogeneity Modeling

To inject temporal heterogeneities into TPSSL, we designed a self-supervised learning
task based on contrastive learning, as shown in Figure 4. This task aims to identify and
capture changes in traffic patterns at different time steps through contrastive learning,
thereby enhancing the model’s dynamic understanding of time. First, we fused the original
embedding hi,j and the augmented embedding h̃i,j of region ri,j at time step t to obtain the
region-level embedding ut,i,j:

ut,i,j = w1 ⊙ ht,i,j + w2 ⊙ h̃t,i,j (8)

where w1 and w2 are learnable weights, and ⊙ denotes elementwise multiplication. Then,
we generated the city-level embedding st based on ut,i,j. Specifically, we averaged ut,i,j
across its spatial dimensions and applied a sigmoid activation function to obtain st:

st = σ

(
1

M × N

M

∑
i=1

N

∑
j=1

ut,i,j

)
(9)

Subsequently, we used the city-level embedding st as the summary information, the region-
level embedding ut,i,j as the positive sample, and the region-level embedding ut′ ,i,j at other
time steps as the negative sample. We introduced a bilinear discriminator to evaluate the
congruence of the summary information st with the positive and negative samples. The
congruence score of the summary information st with the positive sample ht,i,j obtained
through the discriminator can be calculated using the following formula:

g(ht,i,j, st) = h⊤t,i,jWst + b (10)

where W ∈ RD×D is a learnable weight matrix, and b is a bias term. To optimize temporal
heterogeneity modeling, we contrasted the congruence scores of the summary information
st with the positive sample ht,i,j and the negative sample ht′ ,i,j.

L(st, ht,i,j, ht′ ,i,j) = −
(

log σ(g(ht,i,j, st)) + log(1 − σ(g(ht′ ,i,j, st)))
)

(11)

The sum of the loss functions for all regions is used as the final loss:

Lt =
M

∑
i=1

N

∑
j=1

L(st, ht,i,j, ht′ ,i,j) (12)

This positive and negative sample contrastive learning mechanism ensures that the predic-
tion results are consistent with the traffic pattern at a specific time step while distinguishing
other traffic patterns at different time steps and learning temporal heterogeneities.
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Figure 4. Temporal heterogeneity modeling in TPSSL. This module is implemented based on con-
trastive learning, thus capturing changes in traffic patterns at different time steps through the
congruence of the summary information of spatial regions with positive and negative samples.

3.7. Model Training

In TPSSL, we used a Multilayer Perceptron (MLP) to predict traffic flow, which can be
expressed by the following formula:

ŷt+1,i,j = MLP(ht,i,j) (13)

where ŷt+1,i,j represents the predicted traffic flow value for region ri,j at time step t + 1. The
prediction loss Lp is calculated using the mean absolute error:

Lp =
M

∑
i=1

N

∑
j=1

λ|ŷ0
t+1,i,j − y0

t+1,i,j|+ (1 − λ)|ŷ1
t+1,i,j − y1

t+1,i,j| (14)

where λ is a hyperparameter used to balance the traffic flow prediction values of different
channels, and yt+1,i,j represents the true traffic flow value for region ri,j at time step t + 1.
Finally, the overall loss function L of TPSSL is the weighted sum of the three loss functions:

L = αLs + βLt + γLp (15)

where α, β, and γ are weights. We adopted a dynamic weight adjustment mechanism
to accommodate the varying scales and complexities of different tasks, i.e., the dynamic
weight averaging (DWA) technique. Initially, the weights α, β, and γ were set to [1, 1, 1],
thus providing equal importance to each loss. The DWA technique recalibrates the weights
based on the relative learning progress of each task, thus ensuring a balanced optimization
among different modules.

The training process of TPSSL can be summarized as follows: First, the original
traffic flow data X is input into the spatial–temporal encoder, thus obtaining the original
embedding H and the similarity matrix A. Then, the adaptive data masking module
utilizes the similarity matrix A to generate augmented data X̃. X̃ is input into the spatial–
temporal encoder, thereby obtaining the augmented embedding H̃. Next, H and H̃ are
fed into the spatial heterogeneity modeling, temporal heterogeneity modeling, and MLP
to obtain the final loss function L. Finally, we optimize the model’s parameters using the
backpropagation algorithm to minimize the loss function L.

4. Experiment

In this section, we first introduce four datasets and evaluation metrics used in the
experiments and then describe the baseline models and the details of the implementation of
TPSSL. Finally, we evaluate the performance of TPSSL through comparative experiments,
ablation studies, and case studies.

4.1. Data Description

We utilized four publicly available traffic flow datasets: BJTaxi [1], NYCBike1 [1],
NYCBike2 [34], and NYCTaxi [34]. The NYCBike1 and NYCBike2 datasets are based on the
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bike rental systems of New York City, while the BJTaxi and NYCTaxi datasets are based on
the taxi systems of Beijing and New York City, respectively. A detailed overview of each
dataset, including the number of grids, time intervals, start and end dates, and the number
of bikes or taxis, is provided in Table 1. These datasets differ in geographical location, time
span, and traffic volume, which enables our model to be comprehensively evaluated across
various traffic conditions.

These datasets were constructed using a sliding window strategy to generate input–
output pairs. The input data comprise traffic flow data for the four hours preceding the
predicted time step, traffic flow data from the same time step on the previous three days,
and the two hours before and after that time step. After the generation of input–output
pairs, which preserve the continuous chronological order, the dataset was divided into
training, validation, and testing sets with a ratio of 7:1:2. Specifically, the initial 70% of
the sequentially ordered data was allocated for training, thus ensuring that the validation
and testing sets representing the subsequent 10% and 20%, respectively reflect the original
temporal order to maintain the inherent time series structure and prevent data leakage.

Table 1. Detialed information of datasets.

Dataset # Regions Time Interval Start Date End Date # Bikes/Taxis

BJTaxi [1] 32 × 32 30 min 1 March 2015 30 June 2015 34k+
NYCBike1 [1] 16 × 8 1 h 1 April 2014 30 September 2014 6.8k+

NYCBike2 [34] 10 × 20 30 min 1 July 2016 29 August 2016 2.6m+
NYCTaxi [34] 10 × 20 30 min 1 January 2015 1 March 2015 22m+

Note: # Regions represents the number of spatial regions in the dataset. # Bikes/Taxis represents the number of
bikes or taxis. The symbol + indicates the actual number is greater than the displayed value.

4.2. Evaluation Metrics

To evaluate the accuracy of TPSSL, we used two widely accepted metrics: Mean
Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). Both metrics are
essential to assess the performance of traffic flow predictions, with lower values indicating
better predictive performance. The MAE measures the average magnitude of prediction
errors and is calculated as follows:

MAE =
1
M

1
N

M

∑
i=1

N

∑
j=1

∣∣yi,j − ŷi,j
∣∣ (16)

where yi,j and ŷi,j represent the true and predicted values, respectively. The MAPE provides
a percentage measure of predictive accuracy, which is particularly useful for understanding
the magnitude of prediction errors relative to the true values. It is defined as

MAPE =
100%

M × N

M

∑
i=1

N

∑
j=1

∣∣∣∣∣yi,j − ŷi,j

yi,j

∣∣∣∣∣ (17)

where yi,j and ŷi,j have the same meaning as in Equation (16).

4.3. Baselines

To evaluate the performance of TPSSL, we compared it against a series of baseline
models encompassing traditional time series models, machine learning algorithms, and
deep learning models. These models have been categorized as follows:
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Traditional Models:

• Autoregressive Integrated Moving Average (ARIMA) [35]: It is a classic model in time
series forecasting that combines autoregressive, differencing, and moving average
components to model various time series data.

• Support Vector Regression (SVR) [36]: It provides a powerful mechanism for capturing
linear relationships in data by using support vector machines for regression tasks.

Dependency-Aware Traffic Prediction Models:

• Spatiotemporal Residual Network (ST-ResNet) [1]: It captures the spatial and temporal
dependencies of traffic data through residual connections and convolutional operations.

• Spatiotemporal Graph Convolutional Network (STGCN) [4]: It integrates graph con-
volutional networks with temporal convolutional networks, thus simultaneously
modeling spatial and temporal dependencies in traffic data.

• Graph Multiattention Network (GMAN) [3]: It introduces multiple attention mecha-
nisms, thus allowing the model to dynamically adjust its focus on different regions
and time steps of the traffic network.

Heterogeneity-Aware Traffic Prediction Models:

• Adaptive Graph Convolutional Recurrent Network (AGCRN) [5]: It combines node-
adaptive parameter learning and data-adaptive graph generation modules to capture
fine-grained spatial and temporal correlations without predefined graphs automatically.

• Spatial–Temporal Synchronous Graph Convolutional Network (STSGCN) [10]: It
captures complex local spatial–temporal correlations through a synchronous modeling
mechanism and the heterogeneities of local spatial–temporal graphs through multiple
modules at different time periods.

• Spatial–Temporal Fusion Graph Neural Network (STFGNN) [9]: It generates a time
graph and fuses it with the spatial graph to parallelly process data from different
periods, thus effectively learning hidden spatial–temporal dependencies.

These baseline models provide a wide range of approaches to traffic flow prediction,
from traditional methods to state-of-the-art models that integrate complex spatial and
temporal dependencies and heterogeneities. The heterogeneity-aware traffic prediction
models capture the complexity and diversity of traffic data by assigning different parame-
ters to different regions and time steps, which makes them particularly useful for traffic
prediction tasks.

4.4. Implementation Details

The TPSSL model was built using the PyTorch framework, and we carried out all
experiments on a single GeForce RTX 4090 GPU. The model has an embedding size of
64, and all convolution operations adopt a kernel size of three, which balances model
complexity and computational efficiency. We used an adaptive data masking strategy with
a masking rate 0.1 to introduce variations into the training data without significant informa-
tion loss. For efficient convergence to the optimal solution, the training process leverages
the adaptive learning rate capabilities of the Adam optimizer. Some hyperparameters were
set: the learning rate was 0.001, the weight decay was 0, the batch size was 32, and the
number of training epochs was 100. We used an early stopping strategy, which terminates
the training process early if the loss value on the validation set does not improve for 15
consecutive epochs.

4.5. Results

In this study, we evaluated the performance of TPSSL on four widely used public
traffic flow datasets: BJTaxi, NYCBike1, NYCBike2, and NYCTaxi. We compared TPSSL
against a diverse set of baseline models, including traditional models such as ARIMA
and SVR; dependency-aware traffic prediction models such as ST-ResNet, STGCN, and
GMAN; and heterogeneity-aware traffic prediction models such as AGCRN, STSGCN,
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and STFGNN. Additionally, we included the backbone network ConvLSTM of the spatial–
temporal encoder as a baseline to demonstrate the effectiveness of our self-supervised
learning paradigms. To ensure fairness, we trained ConvLSTM and TPSSL with five
different seeds, just like the baseline models whose results come from Ji et al. [31].

Our results show that TPSSL outperformed all other models on all datasets, whether
from the perspective of MAE or MAPE. Bolded numbers represent the best results, and
underlined numbers represent the second-best results. This success was mainly due to our
choice of an appropriate backbone model for the spatial–temporal encoder. ConvLSTM
also perforeds well when making spatial–temporal predictions of traffic data alone, as seen
from the underlined data in Tables 2 and 3. However, the two self-supervised learning
tasks introduced in TPSSL further improved the predictive performance of ConvLSTM.

Moreover, we observed some interesting phenomena from Tables 2 and 3. Deep
learning-based traffic prediction models were found to be far superior to traditional time
series and machine learning methods regarding prediction accuracy. Additionally, there
was no strict distinction between dependency-aware and heterogeneity-aware models
regarding their predictive performance. They exhibited different strengths on different
datasets. On the BJTaxi dataset, the predictive performance of heterogeneity-aware models
was worse than that of the dependency-aware models. We believe heterogeneity-aware
models introduce additional parameter space, thus affecting the model’s judgment of
dependencies while attempting to capture heterogeneities.

Table 2. Predictive performance of each model on inflow for the four datasets.

Dataset BJTaxi NYCBike1 NYCBike2 NYCTaxi

Metric MAE MAPE MAE MAPE MAE MAPE MAE MAPE

ARIMA 21.48 23.12 10.66 33.05 8.91 28.86 20.86 21.49
SVR 52.77 65.51 7.27 25.39 12.82 46.52 52.16 65.10

ST-ResNet 12.12 ± 0.11 15.50 ± 0.26 5.53 ± 0.06 25.46 ± 0.20 5.63 ± 0.14 32.17 ± 0.85 13.48 ± 0.14 24.83 ± 0.55
STGCN 12.34 ± 0.09 16.66 ± 0.21 5.33 ± 0.02 26.92 ± 0.08 5.21 ± 0.02 27.73 ± 0.16 13.12 ± 0.04 21.01 ± 0.18
GMAN 13.13 ± 0.43 18.67 ± 0.99 6.77 ± 3.42 31.72 ± 12.29 5.24 ± 0.13 27.38 ± 1.13 15.09 ± 0.61 22.73 ± 1.20

AGCRN 12.30 ± 0.06 15.61 ± 0.15 5.17 ± 0.03 25.59 ± 0.22 5.18 ± 0.03 27.14 ± 0.14 12.13 ± 0.11 18.78 ± 0.04
STSGCN 12.72 ± 0.03 17.22 ± 0.17 5.81 ± 0.04 26.51 ± 0.32 5.25 ± 0.03 29.26 ± 0.13 13.69 ± 0.11 22.91 ± 0.44
STFGNN 13.83 ± 0.04 19.29 ± 0.07 6.53 ± 0.10 32.14 ± 0.23 5.80 ± 0.10 30.73 ± 0.49 16.25 ± 0.38 24.01 ± 0.30

ConvLSTM 11.70 ± 0.11 16.05 ± 0.49 5.15 ± 0.04 24.80 ± 0.35 5.05 ± 0.01 22.61 ± 0.07 12.05 ± 0.12 17.69 ± 0.38
TPSSL 11.28 ± 0.02 15.07 ± 0.15 4.96 ± 0.02 23.38 ± 0.12 5.00 ± 0.02 22.15 ± 0.12 11.85 ± 0.06 16.39 ± 0.26

Bolded numbers represent the best results, and underlined numbers represent the second-best results.

Table 3. Predictive performance of each model on outflow for the four datasets.

Dataset BJTaxi NYCBike1 NYCBike2 NYCTaxi

Metric MAE MAPE MAE MAPE MAE MAPE MAE MAPE

ARIMA 21.60 20.67 11.33 35.03 8.70 28.22 16.80 21.23
SVR 52.74 65.51 7.98 27.42 11.48 41.91 41.71 64.06

ST-ResNet 12.16 ± 0.12 15.57 ± 0.26 5.74 ± 0.07 26.36 ± 0.50 5.26 ± 0.08 30.48 ± 0.86 10.78 ± 0.25 24.42 ± 0.52
STGCN 12.41 ± 0.08 16.76 ± 0.22 5.59 ± 0.03 27.69 ± 0.14 4.92 ± 0.02 26.83 ± 0.21 10.35 ± 0.03 20.78 ± 0.16
GMAN 13.20 ± 0.43 18.84 ± 1.04 7.17 ± 3.61 34.74 ± 17.04 4.97 ± 0.14 26.75 ± 1.14 12.06 ± 0.39 21.97 ± 0.86

AGCRN 12.38 ± 0.06 15.75 ± 0.15 5.47 ± 0.03 26.63 ± 0.30 4.79 ± 0.04 26.17 ± 0.22 9.87 ± 0.04 18.41 ± 0.21
STSGCN 12.79 ± 0.03 17.35 ± 0.17 6.10 ± 0.04 27.56 ± 0.39 4.94 ± 0.05 28.02 ± 0.23 10.75 ± 0.17 22.37 ± 0.16
STFGNN 13.89 ± 0.04 19.41 ± 0.07 6.79 ± 0.08 32.88 ± 0.19 5.51 ± 0.11 29.98 ± 0.46 12.47 ± 0.25 23.28 ± 0.47

ConvLSTM 11.78 ± 0.10 16.15 ± 0.47 5.45 ± 0.02 25.46 ± 0.31 4.72 ± 0.03 21.37 ± 0.25 9.84 ± 0.15 18.27 ± 0.42
TPSSL 11.38 ± 0.03 15.21 ± 0.17 5.27 ± 0.02 24.26 ± 0.08 4.65 ± 0.02 21.14 ± 0.12 9.65 ± 0.14 16.77 ± 0.14

Bolded numbers represent the best results, and underlined numbers represent the second-best results.
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In contrast, the proposed TPSSL framework uses independent modules to capture
dependencies and heterogeneities without affecting each other. This indicates that the
self-supervised learning paradigms in TPSSL are very effective in traffic flow prediction
tasks. It also suggests that incorporating self-supervised learning into traffic prediction
models could be a promising direction for future research.

In a broader comparison across baseline models, TPSSL outshined traditional models like
ARIMA and SVR, which, while robust in simpler scenarios, struggled with the complex spatial
and temporal dynamics that are typical of urban traffic data. Such observations underscore the
limitations of models that fail to integrate advanced spatial–temporal mechanisms.

Among the deep learning approaches, TPSSL showed clear advantages over models
such as ST-ResNet, STGCN, GMAN, AGCRN, STSGCN, and STFGNN. Unlike these mod-
els, which may excel in spatial or temporal settings but not uniformly across both, TPSSL’s
architecture allows it to adeptly manage and synthesize these dimensions. The effective-
ness of TPSSL was particularly notable in environments with intricate spatial–temporal
interactions, where it maintained high accuracy and robustness, thus suggesting a superior
ability to generalize across varied traffic conditions.

Each model brings certain strengths to traffic prediction: ST-ResNet and STGCN are
praised for their spatial and temporal resolution; GMAN is known for its attention mecha-
nisms that finely tune its focus across the network; AGCRN adapts well to dynamic graph
structures; STSGCN synchronizes spatial–temporal elements effectively; and STFGNN
explores novel graph fusion techniques for enhanced prediction. Unlike STGCN, GMAN,
AGCRN, and STFGNN, which utilize complex graph-based approaches, ST-ResNet and
TPSSL employ grid-based data structures. TPSSL differentiates itself by integrating adap-
tive data masking and heterogeneity-aware modules that optimize spatial and temporal
dependencies within this grid framework. The integration of these features reduces the
computational demands compared to graph-based models. It improves prediction accuracy,
thereby enabling TPSSL to consistently excel in head-to-head comparisons on inflow and
outflow predictions across all listed datasets.

The distinct modular approach of TPSSL, which independently but cohesively handles
both spatial and temporal data variances, sets it apart from other models. This dual
capability positions it as a benchmark model in traffic flow prediction and a highly adaptive
framework suitable for the evolving demands of urban traffic management and planning.

4.6. Ablation Study

To analyze the impact of each submodule on the performance of TPSSL, we conducted
ablation studies. We proposed three variants for the ablation study, i.e., TPSSL-SHM,
TPSSL-THM, and TPSSL-RM. TPSSL-SHM disables the temporal heterogeneity modeling
module in TPSSL, while TPSSL-THM disables the spatial heterogeneity modeling module
in TPSSL. TPSSL-RM uses a random data masking strategy to replace the adaptive one.

Figure 5 shows the results of the ablation study. The results indicate that each sub-
module plays a significant role in the model’s performance. Specifically, the TPSSL-SHM
variant, which lacks temporal heterogeneity modeling, tended to perform worse than the
full TPSSL model, with increases in both the MAE and MAPE across all datasets. Thus
was particularly evident in the outflow predictions for NYCTaxi, thus underscoring the
importance of temporal heterogeneity modeling in traffic prediction tasks. When spatial
heterogeneity modeling was removed from TPSSL, there was a decline in performance.
This effect was observed across all datasets for inflow and outflow predictions, which
underscores the significance of spatial heterogeneity modeling in understanding the com-
plex patterns of urban traffic. The TPSSL-RM variant, which employs a random masking
strategy, showed an inferior performance compared to the adaptive strategy used in TPSSL.
This was consistent across all datasets, thus reinforcing the value of the adaptive data
masking strategy in improving prediction accuracy.
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Figure 5. Ablation Study of TPSSL. We compared TPSSL with its three variants: TPSSL-SHM, TPSSL-
THM, and TPSSL-RM. The results demonstrate that each submodule plays a significant role in the
model’s performance.

Despite the performance improvements of TPSSL over its variants, the error rates
may still appear relatively high. This can be attributed to the inherent complexity and
variability of urban traffic data across different datasets and channels (inflow/outflow). The
datasets used in our studies represent a range of urban environments and traffic conditions
that can influence the predictability and, hence, the resulting error metrics. Furthermore,
the auxiliary self-supervised tasks of spatial and temporal heterogeneity modeling and
the data augmentation strategy random masking are designed to enhance the primary
prediction task’s generalization and robustness. Still, they do not independently determine
the model’s overall predictive accuracy. In practice, the primary predictive performance of
TPSSL during testing is derived from its core component, the spatial–temporal encoder,
without the involvement of the auxiliary tasks.

4.7. Case Study

To further validate the performance of TPSSL, we conducted case studies on the BJTaxi
dataset. The BJTaxi dataset, comprising detailed geotagged taxi trajectories within Beijing,
provides a pertinent example due to its extensive coverage of densely populated urban
areas and less congested suburban zones. This diversity makes it an exemplary case for
testing the spatial–temporal modeling prowess of TPSSL.

Figure 6a shows the grid segmentation of the BJTaxi dataset, with the underlying
map taken from Google Maps. With the t-SNE algorithm’s help, the two models’ hidden
embeddings were projected into the 2D space. As shown in Figure 6b,c, we used the k-
means clustering algorithm [37] to cluster the 2D embeddings. Furthermore, we visualized
the clustering results in the grid space, as shown in Figure 6d,e.

We can see from Figure 6b,c that the hidden embeddings of TPSSL are more compact
in space. At the same time, we can see from Figure 6d,e that TPSSL could accurately
identify different types of areas, e.g., the traffic hub area marked in red and the suburbs
marked in brown and green. Not all green and brown grids denote suburban areas; some
represent central residential districts with lower taxi flow, like the Hutongs in Beijing. The
lower taxi flow in the Hutongs can be attributed to their narrow alleyway configurations,
which restrict vehicle access and discourage heavy traffic. This precision in classification
demonstrates TPSSL’s superior capability in discerning complex urban traffic structures
compared to ConvLSTM.
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Figure 6. Visualization of the case studies of TPSSL and ConvLSTM. (a) is the grid segmentation
of the BJTaxi dataset. (b,c) are the t-SNE projections of the hidden embeddings of TPSSL and
ConvLSTM in the 2D space, respectively. (d,e) are the reconstructed visualizations of (b,c) in the grid
space, respectively.

All these insights confirm that TPSSL excels at capturing the spatial heterogeneities
inherent in urban traffic more effectively than ConvLSTM. The expanded case study
validates TPSSL’s enhanced performance and underscores its potential applicability in
real-world urban planning and traffic management scenarios.

5. Conclusions

In this paper, we proposed a new self-supervised learning framework to improve the
performance of traffic prediction models. TPSSL uses a spatial–temporal encoder and two
self-supervised learning tasks to capture the dependencies and heterogeneities of traffic
data, respectively. The generation of augmented data based on the adaptive data masking
strategy can enhance the robustness and generalization of the model while providing more
information for subsequent self-supervised tasks. The self-supervised paradigm based on
soft clustering and positive–negative sample pairs can capture traffic data’s spatial and
temporal heterogeneities separately without negatively affecting the model’s predictive
performance. We conducted experiments on four public datasets, and the results show that
TPSSL achieved the best predictive performance on all datasets. We also conducted ablation
and case studies, thus verifying the accuracy and effectiveness of TPSSL and providing
further explanations for the model’s outstanding performance.

In the future, we will explore incorporating self-supervised learning techniques into
other traffic prediction models to improve the predictive accuracy further. Additionally,
we aim to investigate the application of TPSSL to real-time traffic data from area traffic
control sensors, such as induction loops. This will enable us to leverage current data for
learning and prediction, thereby enhancing model validation with actual traffic conditions
observed over extended periods. At the same time, we will also study how to apply TPSSL
to spatial–temporal data prediction tasks in other fields.
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