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Abstract: Cancer, with its complexity and numerous origins, continues to provide a huge challenge in
medical research. Anticancer peptides are a potential treatment option, but identifying and synthesizing
them on a large scale requires accurate prediction algorithms. This study presents an intuitive
classification strategy, named ACP-LSE, based on representation learning, specifically, a deep latent-
space encoding scheme. ACP-LSE can demonstrate notable advancements in classification outcomes,
particularly in scenarios with limited sample sizes and abundant features. ACP-LSE differs from
typical black-box approaches by focusing on representation learning. Utilizing an auto-encoder-
inspired network, it embeds high-dimensional features, such as the composition of g-spaced amino
acid pairs, into a compressed latent space. In contrast to conventional auto-encoders, ACP-LSE
ensures that the learned feature set is both small and effective for classification, giving a transparent
alternative. The suggested approach is tested on benchmark datasets and demonstrates higher
performance compared to the current methods. The results indicate improved Matthew’s correlation
coefficient and balanced accuracy, offering insights into crucial aspects for developing new ACPs. The
implementation of the proposed ACP-LSE approach is accessible online, providing a valuable and
reproducible resource for researchers in the field.

Keywords: anticancer peptide; composition of the g-spaced amino acid pairs; latent-space encoding;
representation learning; auto-encoder
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1. Introduction

Cancer continues to be a major health problem worldwide, taking millions of lives [1–8].
Cancer, rather than being a single ailment, is a broad spectrum of complicated disorders
characterized by uncontrolled cell growth and the propensity to rapidly infect other parts of
the body. The inherent complexity and heterogeneity pose serious challenges in developing
effective anticancer therapies [9].

Conventional methods like radiotherapy and chemotherapy are usually beneficial
but have high costs and considerable adverse effects on normal cells. Furthermore, the
development of resistance by cancer cells to the existing chemotherapeutic drugs presents
a challenging obstacle [10,11]. As a result, there is an ongoing need for the discovery
of novel anticancer drugs. Traditional therapies destroy both cancer and normal cells,
leading to exorbitant medical costs [12–15]. Peptide-based treatment is a promising option
because of its high specificity, enhanced tumor penetration, and minimal toxicity under
normal physiological conditions [16]. The discovery of anticancer peptides has transformed
this landscape by enabling the selective targeting of cancer cells while protecting normal
cells [17–19].

Anticancer peptides (ACPs) have therapeutic potential for numerous malignancies, as
they selectively target cancer cells without affecting normal physiological processes [20,21].

Mathematics 2024, 12, 1330. https://doi.org/10.3390/math12091330 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12091330
https://doi.org/10.3390/math12091330
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9676-6817
https://doi.org/10.3390/math12091330
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12091330?type=check_update&version=1


Mathematics 2024, 12, 1330 2 of 18

ACPs, ranging in length from 5 to 50 amino acids, have cationic amphipathic structures that
interact with the anionic lipid membrane of cancer cells, enabling selective targeting [22,23].
They exhibit broad-spectrum cytotoxicity against many cancer cells while sparing normal
cells due to their electrostatic interaction with the plasma membrane of cancer cells [24].
Over the last decade, several peptide-based therapies have been evaluated in pre-clinical
and clinical trials, highlighting the need to discover novel ACPs for cancer treatment [25].
ACPs, primarily derived from antimicrobial peptides (AMPs), represent a new direction in
anticancer drug development [24,26]. The safety and efficacy of ACPs make them viable
alternatives to traditional broad-spectrum drugs. The extensive research into ACP therapies
in pre-clinical and clinical trials against numerous tumor types indicates a paradigm shift,
though identifying clinically viable ACPs remains a challenge due to the time-consuming
and expensive nature of the experimental methods. Computational methods are, therefore,
essential for efficient ACP identification.

Bioinformatics encompass a myriad of computational methodologies [27–32], with
a particular emphasis on machine-learning-based approaches for identifying anticancer
peptides (ACPs). The pioneering tool, Anti-CP, used a support vector machine (SVM) with
sequence-based features and binary profiles [33]. Chou’s pseudo-amino acid composition
(PseAAC) and local alignment kernel were used in [34] for ACP prediction, while g-gap
dipeptide components were optimized in [35]. The amino acid composition, average
chemical shifts, and reduced amino acid composition were selected in [36]. Several other
methodologies have been proposed, including feature representation learning models [37],
400-dimensional features with g-gap dipeptide features [38], and a generalized chaos
game representation (CGR) method [39]. Notably, the investigation into deep learning
architectures indicated the advantages of recurrent neural networks [40]. ACP prediction
research has grown in popularity over the last decade, with more experimentally validated
ACPs generated from protein sequences [41]. The surge in the accessible proteins from
high-throughput sequencing efforts indicates a rapid growth in potential ACPs. Given the
challenges inherent in experimental procedures, computational approaches, particularly
machine learning, have gained popularity. However, the short length of ACPs makes it
difficult to capture the specificity information.

In recent years, there has been a proliferation of machine-learning-based methods,
notably, efficient feature representation algorithms. While there are several sequence-
based feature descriptors available, combining several types of features to train classifiers
raises concerns about the curse of dimensionality and information redundancy. Efficient
approaches are required to optimize the information contained in feature descriptors.
Furthermore, the integration of physicochemical information has been proposed, as ACPs
considerably vary from non-ACPs in terms of these characteristics [22].

Inspired by the success of deep representation learning [42–44] in natural language
processing, several sequence-based deep representation learning algorithms for proteins
and peptides have emerged [45–52]. Unsupervised or semi-supervised learning methods,
such as ProFET [53], UniRep [46], ProGen [54], and UDSMProt [55], use large datasets
and show promise for protein-related predictions. For instance, in [56], authors reviewed
different deep learning architectures including various embedding techniques used for
the feature extraction and model designing for protein sequences prediction tasks. In [57],
authors have shown that a deep transfer learning using ProteinBERT representations pro-
duces promising results where the labeled data are limited. Transfer learning enables these
models to be employed as pre-training models for novel tasks such as ACP prediction.
While prior techniques have shown promising results, taking into account the dimensional
advantages of the model is critical. Methods like ACP-DA [58] use data augmentation to
improve ACP prediction performance, addressing the curse of dimensionality by concate-
nating binary profile features and physicochemical properties. Similarly, iACP-DRLF [59]
employs deep representation learning and LGBM feature selection, outperforming previous
methods like ACPred-Fuse [60] and AntiCP 2.0 [61].
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In a nutshell, advancements in ACP prediction methods have been substantial, but
there is still a need to enhance prediction accuracy and consider the dimensionality ad-
vantages of the models. Computational methods, particularly those leveraging machine
learning and deep representation learning, hold promise for rapid ACP identification.

While current machine learning approaches provide some advantages in predicting
ACPs, there is still room for improvement. Deep learning models are highly effective, but
their black-box nature can obscure the rationale behind classification decisions. In contrast,
a very simple model may lack the precision required for accurate classification. To this
end, [62] proposed ACP-KSRC, which uses a sparse-representation classification (SRC) tech-
nique [63,64], incorporating polynomial kernel-based principal component analysis (PCA)
embedding to reduce feature space dimensions. Furthermore, it employs the synthetic minor-
ity oversampling technique (SMOTE) with K-Means [65] to balance sample space dimensions,
facilitating the construction of the kernel SRC model.

The ACP-KSRC [62], leveraging a carefully curated feature set and robust signal
processing tools, improves decision-making transparency, resulting in better explainability
in classification. In line with the growing emphasis on explainable machine learning, a
novel deep-latent-space encoding scheme, termed DeepLSE, is introduced. This approach
demonstrates significant advancements in classification outcomes, particularly in scenarios
with a small sample size and an abundance of features [66–69].

The DeepLSE method uses representation learning [42,43] and an auto-encoder (AE)
to project high-dimensional data into a compressed latent space. In contrast to classic
AEs, where compressed representations may not guarantee discriminating features, the
proposed DeepLSE learns a meaningful feature set that is both compact and effective
for classification.

Section 2 provides comprehensive details of the proposed approach, encompassing
datasets, feature encoding techniques, and classification methods. Subsequently, Section 3
presents the results of the experimental analysis and offers a detailed discussion. The paper
concludes in Section 4, summarizing the key findings and outlining potential directions for
future research.

2. Proposed DeepLSE-Based ACP Classification Approach (ACP-LSE)

This section introduces ACP-LSE, a deep-representation-learning-based classification
technique for anticancer peptide sequences. The proposed technique is evaluated with
several protocols and popular datasets. Figure 1 depicts the entire classification process
using a flow chart. The following subsections provide extensive explanations of each step.

Figure 1. Overview of the proposed ACPs classification strategy.
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2.1. Dataset

Several datasets, including those in [34,35,37], are publicly available for research pur-
poses. This study employs two benchmark datasets to develop and evaluate the proposed
ACP classification strategy. The first dataset, identified as ACP344, was taken from [34]
and contained 344 peptide sequences. Of these sequences, 138 are classified as ACPs,
with the remaining 206 being non-ACP samples. The second dataset, denoted ACP740, is
drawn from the research by Chen et al. [35] and Wei et al. [37]. This collection contains
740 peptide sequences, including 376 ACP and 364 non-ACP samples. Additionally, [70]
provides a refined version of the ACP740 dataset. Each dataset is subjected to the design
and evaluation of distinct classifiers by the known protocols in the literature. Specifically,
ACP344 is subjected to both 5-fold and 10-fold cross-validation protocols, whereas ACP740
is only evaluated using a 5-fold cross-validation protocol.

2.2. Feature Space: Composition of g-Spaced Amino-Acid Pairs

Protein or peptide sequences are typically recorded and stored in the FastA format,
where alphabetic symbols represent individual amino acids (see Figure 2 for an illustration).
These sequences, varying in length, are processed by varied sequence encoding techniques,
such as AAC, di-peptide AAC (DAAC), etc., to extract meaningful numerical features. AAC
is the core feature encoding approach, producing a feature vector including the frequency
count of essential amino acids. As a result, the entire length of the AAC feature vector
is equal to the total number of amino acids, which is denoted as 20. Similarly, DAAC
indicates the frequency of peptide pairings, and the total length of the feature vector equals
the number of potential combinations of 20 amino acid pairs (i.e., 20× 20 = 400). As shown
in the Figure 2, the DAAC feature vector includes the frequencies of 0-spaced amino acid
pairs (i.e., the DAAC of amino acid pairs separated by G = 0 residues).

Figure 2. Illustration of the calculations of different feature extraction techniques. Here different
colored blocks represent different k-spaced dipeptides.

Both AAC and DAAC are popular sequence encoding approaches that have success-
fully designed classifiers for diverse protein and peptide sequences [71]. However, these
techniques are limited in their representation since they do not account for the varied
patterns of amino acid pairings. To improve pattern capture in DAAC, a modified version
is presented in [71], where the DAAC feature vectors of most G-spaced amino acid pairs
are concatenated. For instance, with G = 2, ψg must be computed for g = 0, 1, 2, and the
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final Cg-SAAP feature vector, ΨG, is a concatenated version of ψ0, ψ1, and ψ2. Here, g
denotes a gap value used for the calculation of the gth DAAC feature vector (ψg), and G
represents the largest possible gap for which the CGSAAP feature vector ΨG is calculated.
Figure 2 provides an example of the Ψ2 calculation.

2.3. Network Architecture, Loss Function, and Training Configurations (Hyper-Parameters)

The proposed DeepLSE model consists of three modules: (1) encoder E , (2) decoder D,
and (3) classifier C. The encoder E block projects feature space information to latent space.
Here, latent-space encoding refers to the representation learning of compressed data using
the LV number of latent variables.

Let x ∈ RF be a feature vector of size F. The decoder DLV and encoded Ex = E(x)
are used to re-project features to the original feature space Dx = D(Ex). In an ideal
scenario, the decoded feature Dx should be the same as the original feature vector x,
i.e., x = D(E(x)). However, due to the compression constraint on latent space, some
of the less significant information is suppressed. In the proposed DeepLSE, latent-space
representation is further constrained by classifier C loss, which forces the network to
learn compact feature representation that maintains both the most informative and the
discriminating information for inter-class separability. In other words, the class-similar
samples tend to cluster together, whereas the class-invariant samples are projected apart.
Therefore, the redundant information within the representation of data in the latent space
is removed, and only the representative features related to the class and reconstruction of
the data are kept. This creates a fair balance between the classification and reconstruction
tasks, in turn, learning the class-specific as well as sample-specific information inside the
latent-space encoding of the raw data. The DeepLSE model is built using a combination of
fully connected (FC) layers, batch-normalization and dropout layers to avoid over-fitting.
Table 1 summarizes the architecture of the model.

Table 1. Proposed DeepLSE model architecture.

Network Layer Units Activation

Encoder

Input - -

Enc-1 (FC) 50 ReLU

Enc-1 (BatchNorm) - -

Enc-1 (Dropout) 0.3 -

Enc-2 (FC) 25 ReLU

Enc-2 (BatchNorm) - -

Enc-2 (Dropout) 0.3 -

Enc-3 (FC) 10 ReLU

Enc-3 (BatchNorm) - -

Enc-3 (Dropout) 0.3 -

Latent Space LS (FC) LV Sigmoid

Decoder

Dec-1 (FC) 10 ReLU

Dec-1 (BatchNorm) - -

Dec-1 (Dropout) 0.3 -

Dec-2 (FC) 25 ReLU

Dec-2 (BatchNorm) - -

Dec-2 (Dropout) 0.3 -

Dec-3 (FC) 50 ReLU

Dec-3 (BatchNorm) - -

Dec-3 (Dropout) 0.3 -

Dec-out (FC) - Sigmoid

Classifier

C-1 (FC) 10 ReLU

C-2 (FC) 10 ReLU

C-out 2 Softmax
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The DeepLSE network uses binary cross-entropy (BCE) and mean-squared-error (MSE) as
loss functions for the classifier and the auto-encoder networks, respectively. Both the loss
functions have been fused using a loss mixing parameter λ as

LDeepLSE = λ · LClass + (1 − λ) · LRecon,

with

LClass = −(y log(p) + (1 − y) log(1 − p)),

and

LRecon =
1
F

F

∑
i=1

(xi − x̂i)
2,

where y is the binary indicator (0 or 1) for the actual class label, and p is the predicted
probability of observation. x, and x̂ = D(E(x)) are the input and reconstructed feature
vectors of size F, respectively.

The DeepLSE network is trained with various configurations of λ, Gap value G,
and latent variable LV. The experimental results related to the selection of these hyper-
parameters are presented in the Section 3.

2.4. Evaluation Protocol

The proposed algorithm has been evaluated on various performance assessment
metrics, including the true positive rate (TPR) or sensitivity (Sn), true negative rate (TNR)
or specificity (Sp), prediction accuracy (Acc), Matthew’s correlation coefficient (MCC), balanced
accuracy (Bal.Acc.), Youden’s index (YI), and F1 Score. Here,

Sn :=
trueP

trueP + falseN
,

Sp :=
trueN

trueN + falseP
,

Acc. :=
trueP + trueN

trueP + trueN + falseP + falseN
,

MCC :=
trueP · trueN − falseP · falseN√

(Ω)
,

Bal. Acc. :=
Sn + Sp

2
,

YI := Sn + Sp − 1,

F1 Score := 2 · Pr · Sn

Pr + Sn
,

where trueP, falseP, trueN, and falseN represent the true positive, false positive, true
negative, and false negative, respectively. The measure of precision (Pr) and Ω are given by
Pr := trueP/(trueP + falseP) and Ω := (trueP + falseP)(trueN + falseN)(trueP + falseN)
(trueN + falseP).

3. Experimental Results

This section provides a detailed study of the DeepLSE approach, utilizing several
numerical experiments. The proposed DeepLSE-based anticancer peptide classification
method, ACP-LSE, is validated in terms of methodology, and supporting experiments offer
a rationale for hyperparameter selection. The experiments are organized in the following
order. Section 3.1 focuses on demonstrating how the proposed DeepLSE more effectively
compresses feature dimensions compared to a conventional auto-encoder and the orig-
inal feature space. In the same section, the impact of different values of G in Cg-SAAP
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embeddings on model performance is also analyzed. In Section 3.2, the influence of the
feature and latent-space dimension is investigated for different values of λ. In Section 3.3,
the effect of λ on the latent space is also analyzed. Section 3.4 evaluates the robustness of
ACP-LSE against random mutations. Section 3.5 examines the performance consistency
of ACP-LSE for various training and testing sample split ratios. Finally, Section 3.6 dis-
cusses the findings from comparing the performance of ACP-LSE to existing state-of-the-art
approaches.

3.1. Latent Space: Latent-Space Encoding of Cg-SAAP

Modern machine learning methods need vast amounts of training data to achieve
better generalization and performance. However, a phenomenon known as the curse of
dimensionality occurs when the quantity of measurements or samples is limited but the
attributes proliferate (F > S). Here, F and S represent the number of features/attributes and
samples, S = Ns + Ps, where Ns and Ps are the numbers of negative and positive samples in
the dataset, respectively. In the context of this study, the dataset consists of a small number
of samples (e.g., 344, 740, etc.), although the attributes may number in the thousands. For
example, the description of the Cg-SAAP with G = 9 has 4000 attributes. The curse of
dimensionality not only makes our classification task theoretically ill-posed but it also poses
a significant challenge in developing an effective latent-space representation for compressed
representation, particularly when F >> S. To address this, the proposed ACP-LSE removes
the least representative dimensions, reducing the original feature space of F × S = 4000× S
to a deep latent-space representation of size LV × S, where LV << S << F.

To assess the performance of the proposed ACP-LSE method, a comparison of the
generalized multi-dimension distribution overlap (GMDM) [72,73] scores is presented in
Figure 3. To that end, two models with identical encoder and decoder settings undergo
training for 10-fold cross-validation on the ACP344 dataset. For both models, the number
of latent-space variables (LV) was fixed to 5. The latent-space encoded features from these
models are fed into the GMDM function to measure the degree of overlap between the
feature spaces of two classes. Specifically, one model with λ = 0 is a conventional auto-
encoder without a classification constraint, while the other is the DeepLSE with λ = 0.5,
incorporating a constraint on the latent-space representation. As a baseline, the original
feature space is also evaluated for GMDM scores, and the process is repeated for 10 different
values of gaps (G) in Cg-SAAP.
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Figure 3. Comparison of GMDM [73] scores of AE and DeepLSE encoded latent-spaces.
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It is evident from Figure 3 that the original feature space is highly cluttered, resulting
in very low class separability. In contrast, both the auto-encoder and the proposed DeepLSE
effectively compress the feature dimensions, leading to higher relative class separability
scores. It is noteworthy that the GMDM suggests using a weighted contribution of the
projected variables based on their eigen-spread values. However, since the goal of this
experiment is to assess overlap in the original space without noise removal, no PCA
embedding is employed during the GMDM calculation. Furthermore, to prevent data
leakage, no training sample is used to calculate GMDM scores, and the average results of
the 10-fold cross-validation are plotted.

The above experiment is focused on demonstrating, through GMDM, how the pro-
posed DeepLSE more effectively compresses feature dimensions compared to a conven-
tional auto-encoder and the original feature space. From the analysis, we can conclude that
the higher values of G bring some useful information that is cluttered by other redundant
features/information. Unlike conventional AE, where cluttered information is encoded
in an ineffective way, unable to harness useful discriminating information, the proposed
DeepLSE efficiently represents them in a compact discriminating feature space.

To further showcase the impact of different values of G on the model performance,
size, and number of features, the additional results are presented in Table 2, highlighting
DeepLSE classification results for different values of Gap (G) in terms of the MCC score.
Similar to the previous analysis, the results presented in Table 2 clearly show that higher
values of G provide additional discriminating information and help improve classification
performance at the cost of model complexity, which is evident in the number of input
features generated by Cg-SAAP for different values of G. It is also noteworthy that the
larger models often need more training data, therefore, we can see that after the gap value
of G = 3, the model performance is capped to the MCC value of 0.87.

Table 2. Effect of the Gap (G) parameter on the overall performance of the proposed method. Similar
to the previous experiment, here, the number of latent-space variables is kept as LV = 5.

Gap (G) Input Size Total Parameters
MCC Score

λ = 0.5

0 400 44,454 0.72

1 800 84,854 0.79

2 1200 125,254 0.82

3 1600 165,654 0.87

4 2000 206,054 0.87

5 2400 246,454 0.83

6 2800 286,854 0.87

7 3200 327,254 0.85

8 3600 367,654 0.86

3.2. Analyzing the Effect of Feature and Latent-Space Dimension for Different Values of λ

In the proposed DeepLSE-based ACP classification approach, several parameters can
affect the classification performance. For instance, the GAP (G) between two amino-acid
pairs in Cg-SAAP controls the length of the feature space. Similarly, the latent-space
dimension (LV) controls the size of the output of the encoder module, and loss mixing
weight (λ) controls the training priority for a specific loss. To analyze the sensitivity of
DeepLSE for the aforementioned hyperparameters, for each λ, seventy experiments are
performed, where each experiment is a 10-fold cross-validation on the ACP344 dataset.

In particular, for five different values of λ = [0.01, 0.25, 0.5, 0.75, 0.99], seven combina-
tions of LV = [2, 3, 4, 5, 6, 7, 8] and ten GAP values G = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] are evaluated,
resulting in 700 training and testing trials. The findings of this exhaustive analysis are
summarized through surface plots in Figure 4. It is seen that irrespective of the choice of LV,
GAP G, and λ, the overall test classification performance in terms of balanced accuracy is
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somewhat consistent in the range of 0.80∼0.98. Table 3 summarizes the results in the form
of a comparison of the best mean statistics of 10-fold cross-validation results for different λ
values. This demonstrates the adaptability of the proposed DeepLSE method for learning
effective solutions for the given problem under variable conditions.
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Figure 4. Surface plots for five different values of λ = [0.01, 0.25, 0.5, 0.75, 0.99], seven combinations
of LV = [2, 3, 4, 5, 6, 7, 8] and ten GAP (G) values G = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], resulting in 700 training
and testing trials in total. In each sub-figure, the classification statistics from the test dataset are
visualized. In particular, Accuracy (ACC), Mathew Correlation Coefficient (MCC), Balanced Accuracy
(Bal.Acc), Youden’s-index (YI), F1-score, and Mean Squared Error (MSE) in decibel (dB) are provided.

Table 3. Comparison of the best configurations of the 10-fold cross-validation experiment on ACP344
database for different values of λ.

λ LV GAP Accuracy Sensitivity Specificity F1-Score MCC Balanced
Accuracy Youden’s Index AUC AUPR MSE (dB)

0.01 4 3 0.945 ±0.04 0.964 ± 0.05 0.932 ± 0.07 0.935 ± 0.04 0.895 ± 0.07 0.948 ± 0.03 0.897 ± 0.07 0.967 ± 0.02 0.957 ± 0.03 −24.33 ± 0.26

0.25 2 7 0.947 ± 0.03 0.927 ± 0.07 0.961 ± 0.04 0.933±0.04 0.893 ± 0.07 0.944 ± 0.04 0.888 ± 0.07 0.957 ± 0.04 0.959 ± 0.04 −8.26 ± 2.38

0.5 7 6 0.95 ± 0.03 0.905 ± 0.06 0.98 ± 0.03 0.935 ± 0.04 0.90 ± 0.06 0.943 ± 0.03 0.886 ± 0.07 0.963 ± 0.02 0.962 ± 0.02 −6.77 ± 1.79

0.75 4 4 0.95 ± 0.04 0.927 ± 0.07 0.966 ± 0.04 0.937 ± 0.05 0.899 ± 0.08 0.946 ± 0.04 0.893 ± 0.08 0.965 ± 0.03 0.96 ± 0.03 −6.33 ± 0.49

0.99 4 4 0.959 ± 0.02 0.92 ± 0.06 0.985 ± 0.02 0.946 ± 0.03 0.917 ± 0.06 0.953 ± 0.03 0.906 ± 0.06 0.972 ± 0.02 0.97 ± 0.02 −6.05 ± 0.01

However, it can also be seen that the model is sensitive to the choice of these parame-
ters, and the a carefully selected combination can help in designing a better classification
model. In this regard, the best performance of the model was observed for λ = 0.99 with
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LV = 4 and a GAP value of G = 4. Figure 5 illustrates the MCC values for different λ
with LV = 4 and a GAP value of G = 4. This is interesting because on one hand, higher
values of λ = 0.99 tend to favor classification over reconstruction (see Figure 4e: high
MSE(dB) with good MCC), and lower values such as λ = 0.01 prioritize reconstruction
loss (see Figure 4a: lowest MSE(dB) with comparable MCC). A general assumption is that
the classifier trained solely for the classification task must produce the best results, but it
is observed from Figure 5 that the reconstruction constraint on latent space could help in
learning additional useful information that can aid during the inference phase. A more
prominent gain could be seen in larger feature spaces. For example, with GAP (G = 7), a
model with λ = 0.25 achieved the best results; see Table 3. Similarly, a model with λ = 0.50
achieved the best results for GAP (G = 6). This further strengthens the proposed claim
about using representational learning.
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Figure 5. Matthew’s correlation coefficient (MCC) versus loss-mixing weight λ.

3.3. Analyzing the Effect of λ on Latent-Space

By choosing a suitable value of the loss mixing hyperparameter λ from 0 < λ < 1, one
can control the contribution of reconstruction and classification losses. To analyze the effect
of λ on the learned representation of features, deep latent-space encodings (output of the
encoder block) are visualized for three values: λ = 0.01, λ = 0.5, and λ = 0.99.

For this experiment, the ACP-LSE model is trained on the ACP344 dataset with the
aforementioned values of λ, Gap G = 6, and latent space of the size LV = 7. Since the
output of the latent space is relatively large for easy visualization, it is first reduced to a 2D
projected version using PCA and TSNE [74].

Figure 6 shows scatter plots of the PCA and TSNE-based 2D projections of the encoded
outputs. The findings show that with a large value of λ = 0.99, the DeepLSE model focuses
on classification accuracy and projects samples of the same class closer together. With the
lower value of λ = 0.01, the model reduces classification accuracy and focuses on reducing
reconstruction loss. Ideally, it is better to have the best classification accuracy; however,
a large value of λ gives the classifier more freedom during the training phase and might
lead the model to overfit the training data. Therefore, for better generalization, λ should
be balanced. This enables the encoder to learn variability in input features, while the
latent-space representation constrains the classifier module to learn a decision boundary
that maximizes inter-class separability.
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Figure 6. Scatter plots of PCA and TSNE-based 2D projection of encoded outputs. For λ = 0.99, the
model emphasizes more on classification accuracy and projects samples of the same class closer to
each other. For λ = 0.01, the model relaxes classification accuracy but emphasizes minimizing the
reconstruction error.

3.4. Analyzing the Robustness of DeepLSE against Random Mutations

Figure 7 shows the original (unmutated) ACP344 dataset alongside two of its mutation
variants. This experiment attempts to evaluate the robustness of the proposed ACP-LSE
method against mutations in ACP sequences. Specifically, the TSNE [74] plots of Cg-SAAP
(with G = 8) features from the original ACP344 dataset are compared to mutants of 138
ACPs derived from the ACP344 dataset. The purpose of this experiment is to determine
the susceptibility of latent-space encoding to random mutations.

The findings show that in the original feature space, the separability of ACPs and non-
ACPs in empirical distributions reduces significantly with the mutation rate. When more
amino acids in ACPs are mutated, the chance increases that these mutant ACP features
will not have anticancer properties. However, the proposed ACP-LSE, which was trained
purely on original (unmutated) data, retains class separability even when three amino acids
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are randomly mutated or replaced. This demonstrates the effectiveness of representation
learning in extracting robust representations.
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Figure 7. Scatter plot of 2-components of the TSNE showing different levels of mutations and their
effect on the (Top) Cg-SAAP composition features space and (Bottom) deep latent-space encoding.
(Left) original feature space and its latent-space representation; (Middle) randomly mutated ACPs
with the replacement of 1 Amino Acid type; (Right) randomly mutated ACPs with the replacement
of 3 amino acid types.

3.5. Analyzing Performance Consistency versus Ratio of Training and Testing Samples Splits

To assess the influence of dataset size on the performance and consistency of the
proposed method, an experiment is designed where the performance of the proposed
ACP-LSE is evaluated on various train and test dataset split ratios. For this experiment, the
latent-space feature (LV) value was set to LV = 7 and Gap was set to G = 1, allowing us to
perform comprehensive testing in comparatively less time. Figure 8 displays the Matthew’s
correlation coefficient (MCC) values for models trained and tested on the ACP344 dataset for
various sample sizes.

For a fair comparison, both the DeepLSE and conventional DNN models are designed
with identical numbers of neurons in their feature extraction (encoder) and classifica-
tion modules. The DeepLSE was trained with a default weight mixing ratio of λ = 0.5.
For the standard DNN, the loss mixing ratio was set to λ = 1 (because there is no de-
coder/reconstruction loss).

Both models were evaluated for nine different train–test split ratios ranging from
10% training and 90% testing samples to 90% training and 10% training samples. In each
experiment, the training and testing samples were randomly shuffled, and weights were
reinitialized to random values. To obtain statistically meaningful results, all experiments
were repeated five times, and the mean results were compared.

The findings in Figure 8 show that the proposed method is more robust in classification
performance compared to standard DNN and produces superior outcomes with consistency.
The proposed method outperforms the standard DNN classifiers in both extreme cases:
10% training, 90% testing samples and 90% training, 10% testing samples. Similarly, for
other distributions of training and testing sample splits, the classification performance of
DeepLSE is either high or comparable to that of the standard DNN. This highlights the
superiority of the proposed representation-learning approach, where the latent space is
constrained by reconstruction loss, allowing for the learning of useful features using large
models even when the number of training samples is extremely low.
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Figure 8. Matthew’s correlation coefficient (MCC) consistency analysis of proposed DeepLSE and
standard deep neural network (DNN) using the ACP344 dataset with different training and testing
dataset distributions. Both the DeepLSE and DNN models consist of an identical number of neurons
in their feature-extraction (encoder) and classification modules. The DeepLSE was trained with a
default weight mixing ratio of λ = 0.5, while for DNN, there is no decoder/reconstruction loss that is
equivalent to λ = 1.

3.6. Comparison with State-of-the-Art ACP Classification Approaches

This section compares the performance of the proposed anticancer peptide classi-
fication method, ACP-LSE, which is based on DeepLSE, to the current state-of-the-art
ACP classification algorithms. The assessment uses two standard datasets: ACP344 [34]
and ACP740 [70]. It is critical to emphasize that for a fair comparison, the training and
testing samples across all methodologies are kept comparable, as outlined in the previous
works. Specifically, the ACP344 dataset is assessed using 5-fold and 10-fold cross-validation
protocols, whereas the ACP740 dataset is examined using a 5-fold cross-validation ap-
proach. Table 4 summarizes the hyperparameters used in this study, while any additional
specifications about each experiment are presented in the respective subsections.

Table 4. Configuration of best-performing models. Here, n is the number of folds in cross-validation,
and G is the maximum space between Cg-SAAP.

Dataset n G LV Training Epochs Optimizer Learning Rate Early Stopping
Patience Pre-Processing

ACP-344 5 6 8 1000 RMSProp 1 × 10−4 100 -

ACP-344 10 6 7 1000 RMSProp 1 × 10−4 100 -

ACP-740 5 8 4 1000 RMSProp 1 × 10−4 100 l2-Norm

3.6.1. ACP344 Dataset

To guarantee a fair comparison, we analyze the proposed method on the ACP344 dataset
using two well-known evaluation protocols reported in the literature. Tables 5 and 6 show the
performance statistics of several algorithms on the ACP344 dataset using 5-fold and 10-fold
cross-validation, respectively. Given the imbalanced nature of the dataset, conventional
accuracy metrics are deemed inadequate to describe the overall performance. As a result,
class-specific assessment criteria such as MCC and Youden’s index are employed to assess
the comprehensive classification capability of classification models.
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Table 5. Performance comparison of the ACP-LSE with contemporary methods on 5-fold cross-
validation on ACP344 dataset.

Methods Sn Sp Acc. Bal. Acc. MCC YI F1-Score Year

ZH method [34,75] 85.23% 92.73% 89.76% 88.00% 0.78 0.77 0.89 2014

IACP [75,76] 88.00% 89.10% 94.80% 93.05% 0.89 0.87 0.91 2015

Li method [35,75] 90.60% 96.70% 94.25% 93.05% 0.87 0.87 0.93 2016

EnACP [75] 92.20% 98.10% 95.41% 95.00% 0.91 0.90 0.94 2020

AntiCP (Model2) [77] 81.32% 90.02% 86.90% 85.07% 0.71 0.71 0.82 2021

ACP-KSRC [62] 96.07% 82.97% 90.02% 89.10% 0.81 0.79 0.92 2023

ACP-LSE 89.87% 97.07% 94.18% 93.47% 0.88 0.87 0.92 2024

In 5-fold cross-validation, the proposed method achieves the third-best MCC score,
demonstrating its effectiveness in differentiating the ACP features. The proposed ACP-
LSE has an MCC value of 0.88, which is only 3.4% and 1.1% lower than the values re-
ported for EnACP [75] and IACP [75,76], respectively. It is also worth mentioning that the
ACP344 dataset is severely unbalanced, with just a limited number of training samples
(110 ACPs and 165 non-ACPs) available for learning in 5-fold cross-validation. Given that
the auto-encoder model does not require classification labels, it might be interesting to
investigate DeepLSE with pre-trained models to determine its potential impact on perfor-
mance improvement. To investigate the influence of a larger training dataset, a 10-fold
cross-validation protocol is used.

Table 6. Performance comparison of the proposed ACP-LSE with contemporary methods on 10-fold
cross-validation on ACP344 dataset.

Methods Sn Sp Acc. Bal. Acc. MCC YI F1-Score Year

SAP [38] 86.23% 95.63% 91.86% 90.93% 0.83 0.81 0.89 2018

ACP-DL [70] 75.82% 86.32% 82.16% 81.07% 0.62 0.62 0.77 2019

ACP-LDF (SVM) [78] 87.70% 96.10% 92.73% 91.90% 0.85 0.83 0.92 2020

ACP-LDF (LibD3C) [78] 85.50% 96.10% 92.15% 91.05% 0.84 0.82 0.92 2020

ACP-LDF (RF) [78] 86.20% 97.10% 92.70% 91.65% 0.85 0.83 0.92 2020

ACP-KSRC [62] 97.07% 86.97% 93.02% 91.89% 0.85 0.84 0.94 2023

ACP-LSE 90.55% 98.1% 95.1% 94.32% 0.90 0.89 0.94 2024

Significantly, the proposed method outperforms 10-fold cross-validation, demonstrat-
ing its effectiveness in classifying the features of ACP. Specifically, the proposed ACP-LSE
achieved the highest MCC value of 0.90, outperforming other methods. This value is 31.11%
higher than that of ACP-DL [70], 6.67% higher than ACP-LDF [78] with the LibD3C, 5.55%
higher than ACP-SKRC [62], ACP-LDF [78] with RF and SVM classifiers, and 7.78% higher
than SAP with the SVM classifier [38]. This substantiates the argument that the proposed
method has the potential to predict novel ACPs or ACP-like peptides. Other assessment
metrics support this efficacy, emphasizing the substantial difference between ACPs and
non-ACPs.

3.6.2. ACP740 Dataset

This section compares the proposed ACP-LSE on the ACP740 dataset to several
state-of-the-art ACP classification methods, such as ACP-DL [70], ACP-DA [58], ACP-
MHCNN [79], and ACP-KSRC [62]. Table 7 summarizes the comparison results. The
findings show that the proposed method outperforms the ACP-DL [70], ACP-DA [58], and
ACP-KSRC [62] algorithms, as indicated by the class-specific evaluation parameter MCC.
The improvements are significant, with margins of 0.10, 0.09, and 0.06, respectively.

Notably, the ACP-LSE achieves the highest MCC value of 0.73, outperforming ACP-
DL, ACP-DA, and ACP-KSRC by 13.7%, 12.3%, and 8.2%, respectively. In addition, the
performance of the proposed representation-based approach slightly outperforms the
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powerful ACP-MHCNN [79] method. This efficacy is consistent across various evaluation
metrics, demonstrating the capability of the proposed ACP-LSE to distinguish between
ACPs and non-ACPs. These findings indicate that the proposed method is promising for
predicting ACPs or ACP-like peptides.

Table 7. Performance comparison of ACP-LSE with contemporary methods on 5-fold cross-validation
on ACP740 dataset.

Methods Sn Sp Acc. Bal. Acc. MCC YI F1-Score Year

ACP-DL [70] 82.61% 80.59% 83.48% 83.30% 0.63 0.62 0.71 2019

ACP-DA [58] 86.98% 83.26% 82.03% 85.12% 0.64 0.70 0.85 2021

ACP-MHCNN [79] 88.90% 83.10% 86.00% 86.00% 0.72 0.71 0.86 2021

ACP-KSRC [62] 86.23% 81.62% 83.91% 83.94% 0.67 0.67 0.84 2023

ACP-LSE 83.00% 89.29% 86.10% 86.13% 0.73 0.72 0.86 2024

4. Conclusions

The diagnosis and treatment of cancer, a complex disease with diverse causes, are
challenging in the field of medical research. Anticancer peptides (ACPs) are a promising ap-
proach in targeted therapy with the potential for precise and accurate treatment. However,
for large-scale identification and synthesis, credible prediction approaches are required. In
this paper, an intuitive yet powerful representation-learning-based method, ACP-LSE, is
proposed, which shows significant improvements in classification performance, particularly
in cases with small sample sizes and a large number of features.

For investigation, the results on two benchmark datasets (and three protocols) were
analyzed, suggesting that the higher number of training samples either with 10-fold cross
validation in ACP-344 or 5 fold cross validation in ACP-740; show a superior classification
performance. Various experimental analyses show that the proposed method achieves im-
proved classification performance and aids in learning compact latent-space representation.
The suggested approach is tested for different quantitative and qualitative metrics and
demonstrates a higher performance compared to the current methods. A key limitation of
the proposed ACP-LSE method is that unlike contrastive learning, where a successfully
trained model could learn maximum allowable class separability (i.e., infinite), in the
proposed method, maximum class separability is bounded to unity. Additionally, unlike
DNN where there is no decoder, the training steps in the proposed method involve learning
a high number of training parameters due to the decoder network. Finally, for effective
model designing using DeepLSE, the tuning of additional hyperparameters, e.g., λ, LV, etc.,
require computationally complex ablation studies, which take time. In the future research,
I would like to investigate techniques to deal with the aforementioned limitations.
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