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Abstract: In the dynamic landscape of cyberspace, organizations face a myriad of coordinated
advanced threats that challenge the traditional defense paradigm. Cyber Threat Intelligence (CTI)
plays a crucial role, providing in-depth insights into adversary groups and enhancing the detection
and neutralization of complex cyber attacks. However, attributing attacks poses significant challenges
due to over-reliance on malware samples or network detection data alone, which falls short of
comprehensively profiling attackers. This paper proposes an IPv4-based threat attribution model,
IPAttributor, that improves attack characterization by merging a real-world network behavior dataset
comprising 39,707 intrusion entries with commercial threat intelligence from three distinct sources,
offering a more nuanced context. A total of 30 features were utilized from the enriched dataset
for each IP to create a feature matrix to assess the similarities and linkage of associated IPs, and a
dynamic weighted threat segmentation algorithm was employed to discern attacker communities.
The experiments affirm the efficacy of our method in pinpointing attackers sharing a common
origin, achieving the highest accuracy of 88.89%. Our study advances the relatively underexplored
line of work of cyber attacker attribution, with a specific interest in IP-based attribution strategies,
thereby enhancing the overall understanding of the attacker’s group regarding their capabilities
and intentions.

Keywords: cyber threat intelligence; attacker attribution; APT; community discovery

MSC: 68M25

1. Introduction

More recently, the landscape of cyber threats has undergone significant transformation,
with a notable shift toward more collaborative forms of cyber attacks [1]. A typical manifes-
tation of this trend is the strategy employed by Advanced Persistent Threat (APT) groups,
which often utilize an array of IP addresses to probe and compromise a single target. This
approach not only demonstrates the coordinated and multi-faceted nature of modern cyber
attacks but also serves to fulfill their strategic objectives by leveraging collective resources.
Such an evolution represents a marked departure from earlier, more isolated methods,
indicating a complex and interconnected threat environment. As a result, the challenges
of cybersecurity have intensified, presenting formidable obstacles at a global scale. This
macroscopic perspective underscores the urgent need to address the escalating complexities
and collaborative nature of cyber threats in the contemporary security discourse.

Traditional cybersecurity defense measures have primarily focused on identifying
known attack signatures or performing rule-based matching, a method that falls under
reactive defense. While this strategy has proven effective against known threats, its ef-
fectiveness is significantly limited when facing the constantly evolving and increasingly
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complex landscape of unknown threats. Particularly in the context of APTs, which often
operate in a highly covert and organized manner, relying solely on traditional defense mech-
anisms makes it challenging to comprehensively identify and effectively protect against
these sophisticated new threats [2]. Therefore, in response to contemporary cybersecurity
challenges, there is an urgent need to implement more advanced and proactive defense
measures. It should not only detect and respond to known threats but also anticipate and
mitigate emerging threats in a dynamic and collaborative cyber environment.

In this context, the significance of CTI has surged, establishing itself as a fundamental
element of an advanced, proactive defense strategy [3–5]. CTI not only delivers exten-
sive data on known threats but also, more crucially, provides profound insights into the
behavioral patterns, attack strategies, and evolving trends of attackers. This enhanced
capability goes beyond the confines of traditional defense mechanisms, offering security
professionals the predictive tools needed to proactively detect and counteract complex
and cooperated threats. Through comprehensive analysis and real-time monitoring, CTI
transforms security decision-making from being merely reactive—based on historical or
current events—to a proactive stance that anticipates potential future risks. This proactive
shift enables organizations to mitigate threats more effectively by refining security policies,
enhancing defense structures, and bolstering protections for sensitive assets before potential
threats can take effect.

However, existing research has not fully capitalized on threat intelligence in the proac-
tive detection of coordinated cyber attackers. Typically, the attribution process for a cyber
attack commences with a technical analysis of the data produced during the incident [6], of-
ten focusing on malware sample investigation [7–13]. Malware utilized in APT campaigns
facilitates remote manipulation and data theft from infected devices, highlighting its crucial
role in delineating APT group profiles. Li et al. [7] introduces a machine learning-based
methodology for classifying APT groups by analyzing malware characteristics, employing
behavioral data tagged with APT organizational identifiers, derived from the dynamic
analysis of APT malware collected from Internet of Things (IoT) devices. Beyond malware
analysis, network behavior data is supplemental for cyber attack attribution [14–17], aiding
the identification of distinct patterns in the attackers’ Tactics, Techniques, and Procedures
(TTP) from log data. Bai et al. [15] presents a novel strategy centered on network behavior
for cyber attack grouping, aiming to refine attack classification accuracy by analyzing
attackers’ unique behavioral patterns. A critical limitation of these studies is their reliance
on samples and logs, which often lack a more comprehensive context required for accurate
attacker attribution. This gap hinders the understanding of the attackers’ operational
patterns and goals. Addressing this issue necessitates the integration of diverse threat
intelligence sources, enriching the contextual landscape for a more effective evaluation of
cyber threats.

This paper presents IPAttributor, an IPv4-based cyber attacker attribution model
that refines attack characterization by integrating a real event network behavior dataset
containing 39,707 alarm entries with commercial threat intelligence from three distinct
sources. This amalgamation provides a proactive and comprehensive context for cyber
attacker analysis. A detailed set of 30 features is extracted from this enriched dataset for
each IP address, aiding a feature matrix construction. This matrix enables the detailed
pairwise evaluation of similarities and relationships among associated IP groups. To further
enhance the analysis, a dynamic weighted clustering algorithm is employed to delineate
communities of attackers within this dataset. These communities are indicative of attacker
groups sharing similar behavior patterns or origins, thereby improving the analytical
insight obtained during this event investigation. The efficacy of IPAttributor in pinpointing
attackers with shared origins has been validated through experiments, underscoring its
utility as an effective tool in cybersecurity endeavors. The synergy of in-depth network
behavior analysis and integrated threat intelligence offers a solid framework for attributing
cyber attackers and unraveling the intricate dynamics of attacker communities.
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The contributions of this paper are elaborated as follows:

• Threat Intelligence Enrichment: The paper enhances the analytical dataset by integrat-
ing and evaluating intelligence-based features, which are extracted from commercial
threat intelligence, and behavior-based features, which are extracted from network in-
trusion data. This enriched dataset provides a comprehensive foundation for nuanced
attack characterization and analysis.

• Cyber Attacker Attribution Model: A robust model for cyber attacker attribution
is proposed, specifically focusing on APT groups. Our model capitalizes on the
detailed features identified within the enriched dataset, employing pairwise similarity
analyses and clustering techniques to discern and delineate attacker communities. This
approach facilitates the efficient and precise pinpointing of the origins and associations
of these groups.

• Empirical Validation with Real-world Data: Extensive experiments are conducted us-
ing a real-world dataset that includes a substantial number of alarm entries, combined
with paid commercial threat intelligence. These experiments validate the effective-
ness of the proposed approach, demonstrating its ability to accurately attribute cyber
attacks and uncover the dynamics of attacker groups in a practical setting.

The rest of this paper is organized as follows. Section 2 reviews the related work and
its limitations. Section 3 introduces the system and its core components. A comprehensive
evaluation is presented in Section 4. Finally, Section 5 concludes this paper.

2. Related Work

In related works, we categorize cyber attacker attribution into three main types:
malware-based, behavior-based, and intelligence-based. This tripartite classification forms
the basis for our systematic review of existing research in the field. Our investigation reveals
the strengths and weaknesses of each approach, highlighting the gaps and challenges that
persist in current attribution methodologies.

2.1. Malware-Based Methods

Malware serves as a pivotal strategic tool within APT attacks. Consequently, malware
characteristics have emerged as crucial identifiers for APT organizations, playing a signif-
icant role in attacker attribution. Malware attribution can be regarded as a classification
problem; thus, machine learning-based methods have been widely applied in this field.
Li et al. [7] introduced an integrated multi-classification model for attributing APT mal-
ware, wherein highly discriminative features were chosen based on the chi-square value
of the high-dimensional feature vector. Wang et al. [8] utilized API calls to filter functions
and generate paths. Subsequently, they employed time series models to extract critical
local path features. After vectorizing the features, the malware was attributed to different
attack organizations using a classification model. Nataraj et al. [9] introduced a method
for classifying malware based on standard image features. This approach is grounded in
the observation that images from the same malware family exhibit significant similarity
in both layout and texture. In the analysis of malware homology, it is a common strategy
for attackers to employ various malware variants as a means to circumvent detection and
obscure classification. To tackle this challenge, Sahoo et al. [10] developed multi-view
descriptions of malware by extracting and mixing opcodes, bytecodes, and header features.
These descriptions serve to counteract obfuscation techniques effectively. Additionally, the
researchers implemented four distinct machine learning classifiers to facilitate organiza-
tion attribution. Addressing the imbalanced distribution of malware in practical contexts,
Li et al. [11] developed a malware classification framework that employed multimodal
fusion with an adaptive weighting scheme. Their methodology commenced with the
augmentation of the malware feature space through the inclusion of diverse descriptors,
encompassing byte-level, structural, and semantic attributes. The self-learning weights
adaptively adjust during the training process, thereby enhancing the model’s ability to
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accurately attribute new malware samples to the correct family, particularly in scenarios
characterized by imbalanced datasets.

In addition to employing machine learning algorithms to train systems with malware
features, graph techniques also serve as avenues for representing malware behavior and
achieving attribution. Ding et al. [12] proposed the use of generic behavior graphs to repre-
sent the behavioral characteristics of malware families. They employed a graph-matching
algorithm based on maximum weight subgraphs for detecting malware. Ki et al. [13]
employed DNA sequence alignment algorithms to extract API call sequence patterns from
diverse categories of malware. Their findings indicate that malware within the same family
often share numerous common call subsequences.

2.2. Behavior-Based Methods

Cyber attackers often leave distinct characteristics and traces during their activities,
which can be leveraged to trace and identify the perpetrators or the origins of the at-
tacks. However, due to the sensitive nature of openly sourced network behavioral datasets,
the academic community faces a shortage of authoritative data and research in this area.
Wang et al. [14] introduced a high-speed network traffic analysis detection technology,
which entails capturing and parsing network traffic packets in high-speed network envi-
ronments. This method enables the efficient detection of WebShells and tracing of attackers
through feature code matching. Bai et al. [15] extracted intrinsic attribute features and
behavioral characteristics of attackers from alerts to derive profound behavioral patterns.
They devised a feature matrix similarity calculation method based on this analysis and
subsequently attributed alert information to specific attack organizations using community
discovery algorithms. In the realm of industrial control systems, Wang et al. [16] employed
statistical features and function code sequence features of packets from industrial control
honeypots to quantify attack behaviors. They utilized multiple clustering methods to
model feature representations and analyzed homologous attacks, which are created by
the same attackers. Zhang et al. [17] developed a network attack-defense game model,
based on game theory principles, to analyze attacker behavior and attribute network at-
tacks. This model quantifies the payoffs of attack and defense to enhance the accuracy of
attacker attribution.

2.3. Intelligence-Based Methods

CTI provides detailed information on cyber threats, including attack methodologies
and the tools used by adversaries. By analyzing CTI, security professionals can attribute
cyber attacks to specific organizations by matching observed activities with known profiles
and behaviors of threat actors.

Ren et al. [2] proposed a cyber threat platform that supports threat knowledge rep-
resentation, extraction, and practice, and includes the intrusion analysis diamond model
to profile attack organizations. The diamond model provides a structured method for
analyzing and understanding the relationships between adversaries, their capabilities, the
infrastructure they use, and the victims they target. In this work, researchers expanded the
“victim” dimension of the diamond model and refined the classification of “capability” to
sketch different attack events launched by APT attack groups. Noor et al. [18] extracted
attack patterns from CTI reports and profiled network threat actors. Subsequently, they
conducted training and testing of multiple machine learning classifiers utilizing these
profiles. Wang et al. [19] developed a threat intelligence knowledge map to extract tactical
and technical intelligence from data sources such as malware, IP addresses, and domains.
Subsequently, they classified nodes, representing threat intelligence reports, into categories
corresponding to advanced persistent threat organizations using a graph attention neural
network, a type of machine learning model that focuses on important features in graph-
structured data. Xiao et al. [20] introduced an attribution methodology for APT actors,
employing multi-modal and multi-level feature fusion. The multi-modal features, encom-
passing attribute type, natural language text, and topological relationship characteristics,
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are extracted from heterogeneous attribute graphs formed from APT reports and their Indi-
cators of Compromise (IoC). The multi-level features stem from multi-layer heterogeneous
graph attention networks constructed based on APT reports. Perry et al. [21] devised an
innovative algorithm for representing threat intelligence text. They proposed the use of an
enhanced binary bag-of-words model to generate vectors representing reports and then
utilized XGBoost and binary classifiers to classify intelligence into known threat actors
or unknown threat actors. Building upon Perry et al.’s text representation methodology,
Naveen et al. [22] employed a neural network embedding model, Word2Vec, to embed
known vocabulary and perform fuzzy matching embedding for unknown terms. Subse-
quently, they devised a multi-layer neural network model for predicting the classification
of threat actors.

2.4. Discussion

The domain of cybersecurity attribution plays a pivotal role in tracing the origins and
perpetrators of cyber attacks. Malware-based methods attribute similar malware to specific
malware families based on shared code structures, patterns, or features. Nonetheless,
intricate relationships exist among malicious attacker families, as attackers might employ
malware scripts sourced from the same family, rendering it challenging to pinpoint the
actors of attack behavior. Behavior-based methods seek to delineate the behavioral profiles
of attackers using data derived from single traffic or log sources. Nevertheless, these sources
may contain deliberately obfuscated false leads, complicating the attribution process.
Current intelligence-based methods primarily focus on extracting attacker attributes and
attributing threats to attack organizations based on open-source threat intelligence reports.
However, these methodologies often lack contextual grounding in real-world scenarios and
fail to integrate both internal and external threat intelligence, thereby limiting their ability
to provide a comprehensive understanding of attackers’ origins and motivations.

3. Methods

Security logs serve as fundamental data sources for threat detection. However, an
over-reliance on alarm entries alone falls short of supporting effective threat attribution.
This limitation stems from the fact that logs primarily provide a snapshot of the prevailing
situation without a comprehensive context. In light of this, our study not only incorporates
real attack detection datasets but also enriches the analysis by integrating commercial
threat intelligence from three distinct sources. This amalgamation yields more nuanced
and detailed information, which is instrumental for conducting threat attribution analysis.
To address the gaps and shortcomings in the current research, this paper introduces an
advanced analysis framework for attacker origin, anchored in network behavior and
threat intelligence datasets. Through a multi-dimensional analysis of attack behaviors, the
framework elucidates the intricate patterns of attacker activities. Furthermore, it leverages
sophisticated algorithms to facilitate the clustering of attackers, culminating in a robust
attribution analysis methodology.

3.1. Overview

The system’s framework contains four modules, shown in Figure 1. The first module
focuses on the integration of threat intelligence, triggered by real network-based intrusion
logs. The second module formally defines the feature types, and outputs a feature matrix.
The third module computes pairwise IP similarity, utilizing feature embedding techniques.
The fourth module employs a clustering algorithm to perform attribution analysis of the
cyber attackers, which allows for the identification of the various attacking groups.
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3.2. CTI Integration

This module commences with a detailed examination of the complex operations con-
ducted by attackers, as recorded in the intrusion log, which initially comprises 39,707 alarm
entries. These entries, secured through appropriate permissions, lay the foundation for an
in-depth analysis. To enhance analytical capabilities, an extensive preprocessing phase was
undertaken to refine the dataset, aiming to improve its clarity and pertinence.

The preliminary phase of this process involved the identification and elimination of
duplicate records, addressing the issue of redundant representation of certain intrusion
attempts or activities. This elimination was accomplished by scrutinizing the log entries,
focusing on identical attributes such as timestamps, source and destination IP addresses,
and alarm signatures within a brief timeframe. Concurrently, extraneous or irrelevant
data were methodically expunged, employing domain-specific heuristics to identify and
discard non-essential log entries. Thereafter, the dataset was subjected to a normalization
procedure to standardize the various log attributes, ensuring a consistent and analytically
viable format. Following these rigorous preprocessing measures, the dataset was reduced
to a more precise and manageable total of 24,879 entries.

Upon preprocessing the intrusion logs, 892 attackers’ source IPs were extracted to initi-
ate the CTI-acquiring process. For our research, we accessed three commercial CTI sources.
Retrieving intelligence from these sources was facilitated through the use of Application
Programming Interfaces (APIs). These APIs enabled an automated query and retrieval
mechanism, allowing us to efficiently collect relevant IP threat data. The intelligence
obtained from these sources was primarily in JSON (JavaScript Object Notation) format,
which facilitated the integration and analysis of the data within our research framework.
This step allowed for a structured and systematic analysis of the cyber threats associated
with the identified IP addresses, enriching the intrusion data with threat intelligence.

Following the retrieval of CTI from multiple sources, an integration phase was con-
ducted to amalgamate the data from three distinct vendors. This step was crucial in
synthesizing a comprehensive threat profile for the implicated IP addresses. Each vendor
contributes a unique perspective to the security threat associated with the IP address,
offering diverse insights that enhance the depth of the threat analysis. To ensure the in-
tegrity and utility of the integrated dataset, we implemented a deduplication step. While
repeated data points such as geographical location were identified and merged to eliminate
redundancies, we preserved the distinct features provided by each vendor. This meticulous
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approach to integration allowed for the retention of the unique value offered by each source,
thereby enriching the overall dataset with a multifaceted view of the threat landscape.

3.3. Feature Engineering

The second module of our study focused on feature engineering. In this phase, we first
defined and categorized features within the enriched dataset to facilitate a layered classifi-
cation approach. The classification was divided into two primary categories: intelligence
features and attack features.

Intelligence features encompassed attributes directly related to the attacker’s profile
and the nature of the threat, including the attacker’s IP address, geographical location,
and the type of threat posed. These features were instrumental in constructing a com-
prehensive profile of the threat actors and their operational domains. Conversely, attack
features were defined to capture the technical specifications of the cyber attack incidents,
encompassing the attack payload, descriptive narratives of the incidents, and the network
characteristics involved in the attack. These features provided a granular view of the
attack methodologies and the technical vectors employed. Key features identified in our
study are systematically presented in Table 1, illustrating the dual categorization and
providing a foundational framework for subsequent analytical processes. This structured
approach to feature engineering was designed to enhance the dataset’s utility for deeper
analytical insights.

Table 1. Feature definition and classification.

Feature
Category

Feature
Type Feature

intelligence
feature

basic
location
carrier

threat type
malicious label

ttps
http request

appear time occurrences

attack
feature

network
ips

ports

execution
payload
behavior

temporal pattern time
frequency

In intelligence features, Basic Intelligence encompasses foundational data about the
threat source, including location details and carrier information. Location data pinpoints
the geographical origin of the IP address, while carrier information identifies the network
provider hosting the IP. This category forms the bedrock of threat intelligence, offering
essential context about the attacker’s infrastructure. Threat-type intelligence reflects the
historical threat activities associated with the IP, including the types of attacks and the
associated malicious families. This category extends to the specific tactics used, such as the
payload delivered, user agent strings, and HTTP request details (body and parameters).
It serves as a crucial element for attacker identification and understanding the modus
operandi, enriching the profile of past IP-related threats. Appear Time intelligence is
segmented into 12 intervals over the past year, providing a temporal analysis of threat
occurrences. This helps in understanding the frequency and timing of past activities,
offering a time-based perspective that enriches the overall threat intelligence. Such temporal
insights are valuable for identifying patterns and predicting future threat behaviors.

In attack features, Network Attributes are key characteristics of network communica-
tions, defining the source and destination of data flow and the services involved. These
include the Source IP, identifying where the traffic originates, and the Destination IP, pin-
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pointing the target. Additionally, the Destination Port specifies the service or application
targeted at the recipient, while the Source Port helps trace the origin of the activity. Together,
these components are crucial for mapping network pathways and analyzing traffic patterns.
Attack Execution Details refer to the specific aspects of how a cyber attack is carried out,
capturing the method and nature of the attack. Key components include the Payload,
which is the actual malicious data or code transmitted during the attack, revealing the
attack’s intent and mechanism. Behavior describes the qualitative aspect of the attack,
offering insights into how the attack manifests in network or system logs. These details are
crucial for understanding the technical execution of cyber threats. Temporal Patterns in the
cyber security context refer to the timing and frequency of network attacks, highlighting
when and how often certain events occur. It includes the Activity Pattern, which tracks the
occurrence of incidents over specific time intervals, represented in hourly segments across
24 h. These patterns provide insights into the regularity and timing of attacks, identifying
peak activity times and potential automated behavior.

In the final step of feature engineering, we constructed a feature matrix to systemati-
cally analyze attacker behaviors. The matrix columns represent each distinct IP address
identified as a potential source of threat, while rows indicate the individual features derived
from the previous phase of CTI integration. The matrix facilitated a comprehensive and effi-
cient portrayal of attacker behaviors, enabling a detailed examination of the characteristics
and patterns associated with each IP address. The feature matrix serves as a pivotal tool for
analyzing the multidimensional aspects of cyber threats. It allows for the aggregation of
disparate data points into a coherent framework, where the interactions and correlations
between different features can be analyzed. By transforming qualitative intelligence and
attack features into a quantifiable format, the matrix enhances the analytical capabilities,
enabling the identification of trends and patterns in cyber threat activities.

3.4. Similarity Computation

In the context of similarity analysis, our first step is to transform raw data features into
structured, interpretable formats suitable for computation. This transformation, known
as embedding, involves converting various types of data into numerical or vector rep-
resentations that encapsulate the inherent characteristics of the data. Subsequently, we
employ a variety of algorithms tailored to the nature of these embedded features to calcu-
late their similarities. This approach ensures a nuanced analysis that accurately reflects the
underlying patterns and relationships within the data.

To encode the semantic content of features within our dataset, we employ the
Word2Vec [23] embedding technique. This method involves training a Word2Vec model on
a corpus of malicious payloads [24] to acquire a high-dimensional vector representation for
each word or token. This representation is crucial as it captures the contextual relationships
and semantic similarities among different data fields, facilitating a nuanced analysis of the
malicious content. By projecting data into a 100-dimensional continuous vector space, we
enhance our capacity to quantify and analyze the textual content of cyber threats. This
improvement is pivotal in augmenting the detection and classification of complex attack
vectors. For less complex features, we employ straightforward encoding techniques such
as one-hot encoding or label encoding, which are sufficient for capturing the necessary
categorical distinctions without the need for semantic depth.

Upon completing the feature embedding process, we proceed to compute the similarity
between IP addresses, employing diverse methods tailored to the types of data features.

For time features and payload: We utilize cosine similarity to assess the similarity
between time features and payloads. This method calculates the cosine of the angle between
two vectors in an n-dimensional space, effectively capturing the semantic relationships
between time sequences and payload data. The cosine similarity is calculated as follows:

Simcosine (A, B) =
A·B

∥ A ∥∥ B ∥ (1)
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where A·B is the dot product of vectors A and B, and ∥ A ∥ and ∥ B ∥ are the magnitudes
(or Euclidean norms) of the vectors.

For alert information: We employ the TF–IDF (Term Frequency–Inverse Document
Frequency) [25] method to evaluate the similarity of textual content in alert messages. This
technique quantifies the importance and relevance of words by analyzing their frequency
in a document against their distribution across the entire dataset, providing insight into
text-based similarities. TF–IDF similarity Simtfidf is structurally similar to cosine similarity.

For threat intelligence labels: The Jaccard coefficient is used to measure the similarity
between sets of threat intelligence labels. By calculating the proportion of the intersection
to the union of two label sets, the Jaccard coefficient is particularly suited for analyzing the
similarity in categorical data and label sets. The Jaccard coefficient is calculated as follows:

SimJaccard (A, B) =
|A ∩ B|
|A ∪ B| (2)

where |A ∩ B| is the number of elements in the intersection of sets A and B, and |A ∪ B| is
the number of elements in the union of A and B.

To compute the sum of these features, the similarity scores are aggregated into a single
metric, a weighted sum based on the relevance of each feature, as shown in Equation (3):

Sim = w1·Simcosine (A, B) + w2·Simtfidf (A, B) + w3·SimJaccard (A, B) (3)

where w1, w2, and w3 are weights that reflect the relative importance of various features.
The choice of weights depends on the specific context and importance of each similarity
measure adaptive to the overall analysis.

In Equation (3), we only compute the weighted sum for an individual data source to
assess the similarity score between two IP addresses. However, to accommodate expansions
in data sources, we need to extend this approach to integrate results from multiple sources,
such as the alarm info and threat intelligence from three sources in our case. By doing so,
we can maintain the analytical capabilities of the existing data sources while seamlessly
integrating additional sources in the future, thus forming a comprehensive assessment of
similarity. Specifically, we will calculate the weighted sum for each data source and then
aggregate these sums into a single similarity metric. The similarity Sij is calculated as:

Simxy = ∑n
i=1 wi·Simi(x, y) (4)

Formally, Simi (x, y) represents the similarity measure between IP address x and y in
the ith data source, where n is the total number of data sources; wi is the corresponding
weight assigned to each data source, indicating its importance.

3.5. Attacker Attribution

To enhance the detection of potential attack organizations within the entire dataset,
we will employ a clustering algorithm. This approach is aimed at facilitating improved
community discovery, enabling us to identify and analyze clusters of data that may repre-
sent coordinated attack behaviors. By leveraging the inherent patterns and relationships
within the data, the clustering algorithm can segregate the dataset into distinct groups
based on their similarities. This method not only helps in pinpointing anomalous activities
that signify potential threats but also aids in understanding the underlying structure of
the data, leading to more effective monitoring and preemptive security measures against
organized cyber threats.

The initial step before executing clustering is to construct a similarity matrix, which
is based on the previously calculated pairwise similarities between IP addresses. This
matrix serves as a foundational element that encapsulates the relationships and degree of
resemblance between the various IP entities. By systematically arranging the similarity
scores, the matrix provides a comprehensive view of how each IP is related to the others,
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thereby enabling a structured and informed approach to subsequent clustering processes.
This construction of a similarity matrix is crucial as it directly influences the effectiveness
and accuracy of the clustering algorithm in identifying and grouping related IP addresses.

Building on the foundational similarity matrix, which quantifies pairwise similarities
between IP addresses, we employ the K-means clustering algorithm to categorize these
IP addresses into distinct groups. The algorithm initiates by selecting ‘K’ initial centroids,
which can be chosen either randomly or based on predefined heuristic criteria. It then
proceeds iteratively: each IP address is assigned to the nearest centroid based on the
calculated Euclidean distance within the similarity matrix. This step clusters IPs with high
mutual similarity. After each assignment, the centroids are recalculated by determining the
arithmetic mean of all IPs within each cluster. This iterative reassignment and recalculation
continues until the centroid positions stabilize, indicating that the clusters have converged
and no further significant shifts occur in their composition. This method not only segments
IP addresses into coherent groups reflecting their similarity-based relationships but also
utilizes the detailed insights from the similarity matrix to ensure that the clustering is both
accurate and meaningful in delineating underlying patterns among the IPs.

We present the dynamic weighted threat segmentation algorithm, an adaptive method
that fine-tunes its focus based on the varying significance of each feature for every data
source. This algorithm goes beyond traditional clustering by employing a heuristic opti-
mization technique to dynamically allocate weights to features, based on expert feedback,
thereby sharpening the resolution of our similarity assessments. Through iterative refine-
ment, the algorithm determines the optimal congregation of IP addresses into clusters
that signify potential coordinated attack behavior. The complete algorithm is illustrated in
Algorithm 1.

Algorithm 1 Dynamic weighted threat segmentation algorithm

Input:
Dataset X = {X1, X2, . . . , Xn}; each Xi is a multi-featured representation of an IP.

Security threshold δ; heuristic parameter for the optimization algorithm.
Number of clusters K.
Output:
Clustering result U1, U2, . . . , Uk.
Optimal weights W∗ =

{
W∗

1 , W∗
2 , . . . , W∗

n
}

.
Procedure:
1: Initialize weights randomly within range [0, 1], ensure sum to 1
2: for (x, y), where 1 ≤ x, y ≤ n do
3: Simxy = ∑n

i=1 wi·Simi
(
Xx, Xy

)
4: end for
5: Apply heuristic optimization J(W; E) = f (W) + λ·g(E, W)
6: Recompute Simxy with optimized weights W∗ after convergence
7: Initialize K centroids {µ1, µ2, . . . , µk}
8: repeat
9: Assign Xi to cluster Ul if minl ||Xi − µl ||
10: Update µl =

1
Ul

∑ Xi ∈ Xi
11: if µ < threshold ε

12: break
13: until clusters are stable
14: for each Ul do:
15: Optimize µl using the updated similarity matrix S
16: end for
17: return final clusters U1, U2, . . . , Uk and optimal weights W∗
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4. Evaluation

In this section, we conduct cyber attacker attribution based on the enriched dataset,
verify the performance of the IPAttributor, and proceed with a detailed case study.

4.1. Environment

We implement the proposed approach in Python 3.7. All experiments are run on two
NVIDIA GeForce RTX 2080 GPU machines, and the video memory size is 16 GB. The CPU
is an Intel(R) Core(TM) i7-9700K CPU, and the total memory of the machine is 32 GB.

4.2. Dataset

To more effectively validate the efficacy of the methodology proposed in this paper,
we opted not to employ traditional open-source datasets. Instead, we utilized a real-world
network intrusion log, enriched by data from three paid commercial intelligence sources.
This approach allowed us to compile a more comprehensive dataset, which holds particular
importance for research in the field of cybersecurity. It addresses the prevalent issue of the
gap between theory and practice in cybersecurity datasets, offering a more relevant and
empirically grounded basis for analysis.

The data acquisition process involved collecting syslog outputs from security devices
over a period of one week. These logs were initially filtered to extract fields related to
attacker IP addresses, which were then used to query threat intelligence services. The
queries to these services were made via APIs, facilitating real-time data retrieval and
integration. All the gathered data were stored in a MongoDB database, ensuring robust
data management and easy retrieval for further analysis.

The initial dataset comprised 39,707 logs, which, after data preprocessing, were re-
duced to 24,879 logs. We further extracted 892 unique IPv4 addresses and used them
as search criteria for querying various threat intelligence sources. This process yielded
multidimensional threat intelligence data. We integrated all unique intelligence fields,
excluding redundant threat information, into the corresponding logs, culminating in a
dataset with 30 distinct features. Typical data fields are illustrated in Table 1.

4.3. Evaluation Metrics

To carry out a quantitative assessment of cyber attribution, the following metrics with
their mathematical definitions are provided below.

Accuracy (Acc) is used to assess whether attacker IPs can be accurately classified into
their respective organizations, which is achieved by identifying the proportion of similar
IPs correctly assigned.

Acc =
ncorrect

N
(5)

Here, ncorrect denotes the number of IPs correctly classified into organizations, meaning
that IPs identified as part of the same community in the experimental results are also
affiliated with the same organization according to label knowledge. N represents the total
number of IPs.

To assess the quality of the clustering solution, we will implement the silhouette
coefficient, which quantifies how well each data point lies within its cluster relative to
other clusters. This coefficient assists in determining the compactness and separation of the
clusters formed. The silhouette coefficient s(i) for each data point is expressed as follows:

s(i) =
b(i)− a(i)

max{a(i), b(i)} (6)

For a set of clusters, the overall mean silhouette coefficient is calculated as follows:

S =
1
N ∑ N

i=1s(i) (7)
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where a(i) is the mean distance of point i to the other points in the same cluster, b(i) is
the mean distance of point i to the points in the nearest cluster that i is not a part of, and
N is the total number of points. A higher average S value close to 1 signifies well-fitted
clusters, while a low or negative average S value would indicate overlapping or poorly
separated clusters.

4.4. Similarity Computation Results

Setup: In our experiment, we calculated the pairwise similarity between IPs and
determined a composite similarity score based on the weighted sum of these calculations.
Specifically, we randomly selected four IPs as reference points and computed their similarity
with all other IPs, identifying the nine IPs with the highest similarity scores for each
reference IP. We then compared these results with existing label information to assess the
accuracy of the similarity-based classification.

Evaluation: In Table 2, we calculated the pairwise similarities between IP addresses
and measured the accuracy of classifying them into their associated attack organizations.
The analysis was performed using four randomly chosen reference IPs, and the attribution
accuracy was found to be 77.78%, 66.67%, 88.89%, and 77.78%. The average accuracy across
these IPs was determined to be 77.78%.

Table 2. IP similarity accuracy result.

IP 1
111.XXX.XXX.136

IP 2
122.XXX.XXX.163

IP 3
111.XXX.XXX.148

IP 4
101.XXX.XXX.111

Acc 77.78% 66.67% 88.89% 77.78%
Average Acc 77.78%

The findings from our experiment suggest that the methodology can be highly ef-
fective, as seen with the highest accuracy of 88.89%, and the overall average accuracy,
which is indicative of a generally robust model. Similar observations were noted in Refer-
ence [15], where the authors achieved comparable accuracy results around 90%. However,
our dataset is fundamentally different, and our research incorporates additional threat
intelligence sources and features. Consequently, our work represents an improvement over
previous efforts.

Upon analyzing the experimental outcomes, it is evident that leveraging an enriched
dataset augmented with threat intelligence contributes significantly to the effectiveness of
identifying similar IPs. The method’s success, demonstrated by the high accuracy rate in
certain instances, underscores the potential of applying a multifaceted data approach to
enhance cybersecurity measures. This technique shows particular promise in distinguishing
between benign and malicious network behavior by analyzing the nuanced similarities
among IP addresses.

4.5. Attacker Attribution Results
4.5.1. Clustering Comparison

Setup: We conducted a detailed comparative analysis of K-means and spectral cluster-
ing algorithms. To facilitate a comprehensive understanding of the underlying patterns and
distinctions between these clustering methodologies, we employed t-SNE (t-distributed
stochastic neighbor embedding) for high-dimensional data visualization. This approach
allowed us to project the multi-dimensional features into a two-dimensional space, en-
hancing the interpretability of the clustering results. The experiments were systematically
structured to explore the impact of varying the number of cluster centers on the cluster-
ing outcome. Through this experimental design, we aimed to elucidate the behavioral
dynamics and performance efficacy of K-means and spectral clustering across different
cluster configurations, providing an in-depth visual and quantitative analysis of their
clustering capabilities.
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Evaluation: Upon reviewing the t-SNE visualizations provided for both spectral clus-
tering and K-means, a comparative evaluation can be formulated. Figure 2 represents
spectral clustering, and displays a discernible delineation of data clusters, albeit with
overlapping regions where the cluster boundaries are less clearly defined. Conversely,
Figure 3 represents K-means, and exhibits a more pronounced separation of clusters with
distinct boundaries and centrally located centroids, indicative of higher intra-cluster homo-
geneity and inter-cluster separation. These observations suggest that in the context of our
dataset and the chosen dimensional reduction technique, K-means delivers a more effective
clustering solution with cleaner division among the data points. This visual assessment
advocates for the superiority of K-means in yielding cohesive and well-partitioned clusters,
as is evident from the t-SNE visualized data distribution. Thus, K-means is selected as the
base clustering algorithm for our dynamic weighted clustering algorithm.
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4.5.2. Optimal Attribution Results

Setup: The subsequent phase of the experiment meticulously evaluated the silhouette
systems generated through the dynamic weight selection algorithm. This involved an
intricate analysis based on a spectrum of weights and multiple clustering centroids. This
comprehensive examination can successfully corroborate the efficacy of the proposed
method, and the validation was achieved by quantitatively assessing the silhouette scores,
which provide insight into the cohesion and separation of the clusters formed.

Evaluation: According to Figure 4, the algorithm is capable of dynamically selecting
the weights among different data sources, leading to the identification of various clustering
centers and the calculation of multiple silhouette coefficients. This process results in an
enhanced clustering outcome. Notably, the optimal silhouette coefficient achieved was
0.44, where the corresponding weights for alarm log, CTI source 1, CTI source 2, and CTI
source 3 are 0.6, 0.1, 0.1, and 0.2. This coefficient indicates the degree of fit of the data points
within their respective clusters, suggesting that the algorithm effectively discriminates
between clusters, thus optimizing the homogeneity within clusters and the heterogeneity
between them. And a total of four communities were found with our cyber attacker
attribution model.
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The effectiveness of the methodology presented in this section is substantiated by the
empirical results, which illustrate that the dynamic weight selection algorithm possesses the
capability to adaptively adjust to the diverse characteristics of the data. This adaptability
is crucial for optimizing cluster formation, leading to a significant enhancement in the
overall clustering performance. The algorithm’s core feature, the dynamic weight selection
mechanism, is instrumental in this improvement. It finely tunes the influence of each data
source, aligning it with its relevance to the specific clustering task at hand. This tailored
approach ensures that the clustering algorithm can effectively discern and group similar
data points while distinguishing between dissimilar ones, thus maximizing the efficacy of
the clustering process. Through these mechanisms, the proposed method demonstrates a
robust and flexible approach to clustering, capable of handling varied data scenarios and
yielding optimized results.

4.6. Similarity Computation Case Analysis

Following the completion of the accuracy calculation for IP similarity, this section of
our experiment will employ a case study on a selected group of IP addresses. Through this
detailed examination, we aim to further substantiate the effectiveness of our methodology.

In Table 3, we present IP address 111.XXX. XXX.148 as the reference IP, followed by
a list of other IPs with high similarity scores. Key attack and intelligence features are
provided for these IPs, including records of attack behavior, the corresponding Internet
service providers, and malicious labels from a commercial intelligence source.

The importance of an enriched dataset is exemplified by analyzing the data presented
in Table 3, which details the characteristics and threat types associated with each IP address.
Initially, relying solely on an attack detection dataset may lead to incomplete attribution
because such datasets typically do not offer comprehensive insights into the behaviors and
associations of the attackers. For instance, although IPs such as 111. XXX. XXX.150 and 111.
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XXX. XXX.169 exhibit ‘Normal Access Behavior’, without additional context, their potential
threat cannot be accurately assessed.

Table 3. High-similarity IPs detail information.

Source IP Attack
Behavior

Carrier
Information

Threat
Types

111. XXX. XXX.148 ‘IP Pool Scan’ ‘China Mobile’ [‘SSH’, ‘Web App Attack’]
111. XXX. XXX.151 ‘Normal Access Behavior’ ‘China Mobile’ [‘Web Spam’, ‘SSH’, ‘Web App Attack’]
111. XXX. XXX.150 ‘Normal Access Behavior’ ‘China Mobile’ [‘Brute-Force’, ‘SSH’, ‘Web App Attack’]
111. XXX. XXX.139 ‘IP Pool Scan’ ‘China Mobile’ [‘DDos Attack’, ‘Port Scan’]
111. XXX. XXX.152 ‘IP Pool Scan’ ‘China Mobile’ [‘Hacking’, ‘Web App Attack’, ‘Port Scan’]
123. XXX. XXX.17 ‘IP Pool Scan’ ‘China Telecom’ [‘SSH’]
52. XXX. XXX.65 ‘Normal Access Behavior’ ‘Ningxia West Cloud Data’ [‘SSH’, ‘Port Scan’, ‘Web App Attack’]
162. XXX. XXX.6 ‘Normal Access Behavior’ ‘DigitalOcean, LLC’ [‘SSH’, ‘Port Scan’, ‘Exploited Host’]

111. XXX. XXX.160 ‘Normal Access Behavior’ ‘China Mobile’ [‘Web App Attack’, ‘SSH’]
111. XXX. XXX.169 ‘Normal Access Behavior’ ‘China Mobile’ [‘Web App Attack’, ‘Port Scan’]

Furthermore, threat intelligence with mere geographical location information, like
the carrier data showing multiple IPs associated with ‘China Mobile’ or ‘China Telecom’,
is insufficient for reliable homology typing. Geolocation can signal potential regions of
interest but fails to uncover the complex layers of a cyber attack, including the specific
threat actors and their operational tactics.

By merging multidimensional intelligence, such as attack behavior descriptors and spe-
cific threat types—ranging from ‘IP Pool Scan’ to ‘DDoS Attack’ and ‘Web App Attack’—our
method effectively pinpoints IPs related to the reference IP. For example, the reference IP
111. XXX. XXX.148, associated with an ‘IP Pool Scan’ attack and linked to ‘China Mobile’,
is contextualized with other IPs sharing similar threat patterns and carrier information,
enhancing the accuracy of cyber threat attribution. This unified approach not only rein-
forces the necessity of an enriched dataset but also highlights its efficacy in identifying and
understanding complex cyber threats in a nuanced and actionable manner.

Building on the foundation of the three existing intelligence sources, we incorporated
additional intelligence sources and performed further comparisons on the IPs exhibiting
high similarity. Specifically, we conducted comparisons based on the subnet information
provided by the additional intelligence sources, as well as the profiles of the attacking
organizations. This allowed us to deepen our understanding and attribution of the cyber
threats associated with these IPs.

Following the computation of IP similarity, we identified a set of IPs that were anal-
ogous to our reference IP. To validate the accuracy of our similarity calculations, we
cross-referenced these similar IPs with an additional intelligence source, shown in Table 4.
This subsequent step confirmed that our identified IPs were indeed listed within this new
source’s subnet information, thereby corroborating the effectiveness of our similarity as-
sessment methodology. This cross-validation with an external dataset provides a robust
endorsement of our approach, establishing the reliability of our findings in the context of
cybersecurity threat analysis.

In Figure 5, we present a granular comparative analysis showcasing the detailed
attributes of two IP addresses, both associated with the Mozi Botnet family. These IPs are
visually linked in the figure, with the timeline indicating that their malicious activity was
first detected on 26 December 2020, and persisted until 26 March 2024. This persistence
underlines the enduring threat posed by these entities. The graphic representation details
the techniques utilized by the attackers, specifically noting the number of ‘Scan’ actions
performed. It is observed that the upper IP conducted ‘Scan 159’ actions, affected ‘Ports
2’, and reached ‘Targets 1k+’, while the lower IP was more aggressive, with ‘Scan 542’,
targeting the same number of ports, ‘Ports 2’, but hitting a higher number of targets, ‘Targets
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3k+’. These comparable yet distinct patterns underscore our methodology’s effectiveness
in discerning and correlating cyber threats.

Table 4. Subnet information for 111.XXX. XXX.148.

Source IP Location Last
Seen

Carrier
Information

Threat
Types

111. XXX. XXX.150 ‘Henan, China’ 2024-03-25 ‘China Mobile’ [‘Zombie’, ‘Exploit’]
111. XXX. XXX.151 ‘Henan, China’ 2024-03-25 ‘China Mobile’ [‘Brute Force’, ‘Web Spam’ , ‘Exploit’]
111. XXX. XXX.152 ‘Henan, China’ 2024-03-25 ‘China Mobile’ [‘Scan’, ‘Exploit’, ‘Dynamic IP’]
111. XXX. XXX.154 ‘Henan, China’ 2024-03-25 ‘China Mobile’ [‘Scan’, ‘Exploit’, ‘Dynamic IP’]
111. XXX. XXX.153 ‘Henan, China’ 2024-03-25 ‘China Mobile’ [‘Scan’, ‘Exploit’, ‘Dynamic IP’]
111. XXX. XXX.155 ‘Henan, China’ 2024-03-25 ‘China Mobile’ [‘Scan’, ‘Dynamic IP’]
111. XXX. XXX.156 ‘Henan, China’ 2024-03-25 ‘China Mobile’ [‘Scan’, ‘Exploit’, ‘Dynamic IP’]
111. XXX. XXX.157 ‘Henan, China’ 2024-03-25 ‘China Mobile’ [‘Scan’, ‘Exploit’, ‘Dynamic IP’]
111. XXX. XXX.158 ‘Henan, China’ 2024-03-25 ‘China Mobile’ [‘Scan’, ‘Dynamic IP’]
111. XXX. XXX.159 ‘Henan, China’ 2024-03-25 ‘China Mobile’ [‘Scan’, ‘Exploit’, ‘Dynamic IP’]
111. XXX. XXX.160 ‘Henan, China’ 2024-03-25 ‘China Mobile’ [‘Scan’, ‘Exploit’, ‘Dynamic IP’]
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Figure 5. APT group attribution.

Zooming out from these specifics, this comparative analysis validates the heightened
accuracy of our threat attribution process. The systematic integration of multidimensional
data gleaned from multiple intelligence sources is critical, as it significantly sharpens our
capacity to pinpoint and link these IPs to their originating cybercriminal factions. This
robust, multi-sourced intelligence paradigm enriches the precision of our cyber threat
attribution efforts, emphasizing the critical role that a thorough data analysis framework
plays in the realm of effective cybersecurity investigations.

5. Conclusions

The paper’s significant contribution is the introduction of IPAttributor, a sophisticated
IPv4-based cyber attacker attribution model. This model not only enhances the analytical
landscape by merging comprehensive threat intelligence with detailed network intrusion
data but also utilizes a refined clustering approach to accurately identify and characterize
communities of attackers. Moreover, its robustness and precision are demonstrated through
rigorous validation with a large-scale, real-world dataset, achieving the highest accuracy of
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88.89% and silhouette coefficient of 0.44, showcasing its potential as a valuable model in
cybersecurity attribution analysis.

The primary limitation of this study is the challenge of conducting a comparative
analysis due to the lack of publicly available, comparable datasets or closely related work
in the field. This situation stems from the specialized nature of cyber attacker attribution,
where datasets are often proprietary or classified, and methodologies are not universally
shared or standardized. The absence of accessible, equivalent datasets and established
benchmarks in this niche area hinders the ability to perform a detailed comparative study,
thus constraining a comprehensive evaluation of the IPAttributor’s performance against
other existing models. This limitation underscores the need for future research to focus
on creating or accessing open datasets and establishing benchmark standards for cyber
attacker attribution, enabling more robust and comparative validations of models.
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