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Abstract: Bubble multiphase systems are crucial in industries such as biotechnology,
medicine, oil and gas, and water treatment. Optical data analysis provides critical insights
into bubble characteristics, such as the shape and size, complementing physical sensor
data. Existing detection techniques rely on classical computer vision algorithms and neural
network models. While neural networks achieve a higher accuracy, they require extensive
annotated datasets, and classical methods often struggle with complex systems due to
their lower accuracy. This study proposes a novel framework to address these limitations.
Using Superformula parameter regression, we introduce an advanced border detection
method for accurately identifying gas inclusions and complex-shaped objects in multiphase
environments. The framework also includes a new approach for generating realistic
artificial bubble images based on physical flow conditions, leveraging the Superformula
to create extensive, labeled datasets without manual annotation. Tested on real bubble
flows in mass transfer equipment, the algorithms enable bubble classification by shape
and size, enhance detection accuracy, and reduce development time for neural network
solutions. This work provides a robust method for object detection and dataset generation
in multiphase systems, paving the way for more precise modeling and analysis.

Keywords: multiphase systems; mathematical modeling; mass transfer; computer vision;
fluid dynamics; neural network; training dataset; image processing; Superformula regression;
bioreactor productivity

MSC: 65D18

1. Introduction
The study of bubble media has become critically important, especially in industrial

technologies, where they play a key role in biotechnological and biochemical processes [1–3].
Such systems are often found in bioreactors, water treatment plants, oil and gas installations,
and other areas where the interaction of gas and liquid is of great importance [4–6]. In
biotechnological processes, understanding the dynamics and characteristics of bubbles is
of fundamental importance for evaluating mass transfer, especially during oxygenation,
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when gas must effectively transfer from bubbles to a liquid medium to maintain microbial
cultures or chemical reactions [7–11].

The modeling and description of bubble systems is a known difficulty due to their
inherently nonlinear nature resulting from complex hydrodynamic and mass transfer
processes [12,13]. These nonlinearities manifest themselves in the interaction between
bubbles and the liquid phase, which leads to a change in the mass transfer rate, bubble
destruction, coalescence, and mixing. Mass transfer plays a crucial role in environments
where oxygen or other gases must dissolve at a controlled rate [14–16]. This mass transfer
is due to the interaction between the bubbles and the surrounding liquid, in which the gas
diffuses from the surface of the bubbles into the liquid phase. The diameter and shape
of the bubble, the velocity of the liquid flow around the bubble, and the concentration
of bubbles in the volume affect mass transfer both indirectly (for example, through the
effective viscosity of the medium) so it is directly through the rate of renewal of the bubble
surface or the area of the interfacial interface.

Studies, such as those by [17–21], have shown how changes in bubble size and
velocity can significantly affect mass transfer coefficients [22,23]. The determination
of these parameters can be effectively achieved through video recording analysis. For
instance, computer vision algorithms allow for the detection of bubbles and the estimation
of their physical characteristics, enabling the calculation of mass transfer coefficients;
thus, the work of Nizovtseva et al. demonstrated how video data can be used to assess
bubble size distributions and dynamics in real time [24]. Accurate bubble detection is
particularly essential in bioreactors, where maintaining optimal gas transfer rates is vital
for maximizing the metabolic activity of microorganisms and ensuring successful operation
of the system [25,26]. Previous work on this topic demonstrates the importance of jointly
analyzing both experimental mass transfer data and video data processed by computer
vision techniques to evaluate the properties of two-phase gas–liquid systems as applied to
bioreactor equipment [27–31].

Studies have shown that neural network algorithms can be very effective for detecting
bubbles and determining their characteristics [32–34]. However, to achieve accurate
results, neural networks require large datasets for training, while creating these datasets
requires manually annotating bubble images, which requires both resources and time. Each
particular bubble system presents its own set of problems that require unique datasets for
effective neural network training.

On the other hand, when modeling bubble media and processes in them using
computational fluid dynamics (CFD), there is often a problem with recreating the shape of
bubbles in intense flows. Traditional CFD modeling of bubble surfaces in multiphase flows
requires significant computational resources due to the complex nonlinear interactions
between the fluid dynamics and bubble morphology. For example, simulations using the
Level Set method or Volume of Fluid (VOF) approaches can take several hours to days,
depending on grid resolution and the number of bubbles modeled, as highlighted in recent
studies. The article [35] reported that VOF and Level-Set-based simulations require up to
160 h of computation on a standard workstation for a single bubble rising in a quiescent
fluid, even with adaptive meshing techniques. Similarly, Crha et al. [36] demonstrated that
resolving interfacial dynamics with VOF methods necessitates computational grids with cell
sizes below 0.2 mm to achieve accurate results, leading to memory usage exceeding 16 GB
and simulation times of over 48 h on modern GPUs, highlighting the need for alternative
approaches that can provide plausible bubble geometry at a lower computational cost, such
as the scheme proposed in this study.

A potential solution to both challenges—manually creating datasets for neural
networks and reducing the cost of expensive CFD modeling—is the development of an
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artificial bubble generator. Such a rator could statistically recreate families of bubbles
with realistic geometry based on observed physical conditions. This family of bubbles can
serve as a reliable dataset for training neural networks or as preliminary input data for
determining the shape of bubbles in CFD modeling.

In this paper, we propose a new bubble generator platform that uses the so-called
Superformula [37] to describe the shape of bubbles. The Superformula is parameterized by a
set of coefficients that control the geometric properties of the bubble, such as its roundness,
elongation, and symmetry. By adjusting these coefficients, the generator can create an
unlimited number of plausible bubble shapes that correspond to both experimentally
observed and CFD-calculated bubble geometry. We will further test this generator by
comparing the typical bubble shapes it generates with the shapes obtained from direct
CFD calculations using the Level-Set method, which is widely used to determine interface
boundaries in multiphase flows.

In the following sections, we will describe the methodology used to implement this
bubble generator, present the results of experimental verification, and discuss the potential
applications of this system in biotechnological industrial conditions.

2. Materials and Methods
The manuscript presents an innovative approach for generating artificial bubble

images using Superformula regression, offering a powerful tool for both neural network
training and CFD simulations.The following subsections will detail the experimental
setup, bubble detection techniques, Superformula regression, and the application of this
framework, leading to a deeper understanding of its impact on industrial biotechnology
and related fields.

2.1. Bubble Detection

We manually annotated the visible bubble edges on 56 training images using the
Roboflow framework [38]. This resulted in a dataset consisting of 2052 individual bubbles.

2.2. Superformula Regression

This subsection briefly describes the procedure that we used to fit the Superformula
model to individual bubble edges.

Before fitting the model, we preprocessed the data, which for each bubble consisted
of Cartesian coordinates (xi, yi) of vertices at the bubble edge, where index i ∈ 1, Nvertices

corresponds to a vertice.
First, we constructed polygons from these lists of vertices. Then, for each polygon, we

found its centroid (x0, y0), treating it like a center of mass. Using the centroid as the origin,
we defined a local coordinate system for each bubble, and transformed the coordinates of
the vertices as follows: xc

i = xi − x0

yc
i = yi − y0

(1)

Afterward, we transformed the Cartesian coordinates to polar form, following the
common-used convention: xc

i = ri cos φ̃i

yc
i = ri sin φ̃i

(2)

Next, we linearly interpolated (ri, φ̃i) to a regular φ̃ ∈ (−π, π] grid of size Nφ = 500,
φ̃j = −π + 2π j

Nφ
.

Finally, in order to standardize the orientation, we rotated the coordinate system such
that the condition r(φ = 0) + r(φ = π) was satisfied, aligning the diameter of the polygon
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with the x-axis. This transformation ensured a consistent alignment across all polygons,
facilitating the subsequent analysis.

After the transformations described above, for each bubble, we obtained a list of its
edge polar coordinates on a regular grid: (rj, φj), j ∈ 1, nφ, where rj are expressed in units
of pixels. In our analysis, we assumed that φ ∈ (−π, π]. Using this list of coordinates, for
each bubble, we aimed to fit the parameters of the generalized Superformula model [37]:

rSuperformula(φ) =

∣∣∣cos
(

m(φ−φ0)
4

)
a

∣∣∣nc
+
∣∣∣ sin

(
m(φ−φ0)

4

)
b

∣∣∣ns

− 1
n

(3)

In the general case, the function defined by (3) is not inherently periodic. However, when
fitting to real data, non-periodic functions describe incontinuous bubble edges and, thus,
are not meaningful. To address this, we manually adjusted the model, ensuring periodicity
for all feasible parameters. We define the smoothing radius rs and the smoothing function
s(φ, ε) as follows:

rs =
rSuperformula(−π) + rSuperformula(+π)

2

s(φ, ε) =
1 + cos

(πφ
ε

)
2

, φ ∈ [0, ε]

(4)

In our calculations, we hereafter fix the smoothing parameter ε = π/12. Using the
smoothing function and the smoothing radius, we finally define our model as follows:

rModel(φ) =


(1 − s(φ + π, ε))× rSuperformula(φ) + s(φ + π, ε)× rs, −π ≤ φ ≤ −π + ε

rSuperformula(φ), −π + ε < φ < +π − ε

(1 − s(π − φ, ε))× rSuperformula(φ) + s(π − φ, ε)× rs, +π − ε ≤ φ ≤ +π

(5)

One can see that within the region −π + ε < φ < +π − ε, the function defined by (5)
matched exactly that defined by the generalized Superformula (3). Within the segment of
angular width 2ε with the center at φ = ±π, we utilized the smoothing function s(φ, ε). In
order to satisfy the periodicity condition rModel(−π) = rModel(+π) = rs, we define rModel

as the normalized weighted sum of the Superformula prediction and the constant rs. The
closer φ to ±π, the greater the weight assigned to the smoothing radius.

Using the model defined by (5), we optimized the 7-dimensional vector of parameters
p⃗ = (a, b, m, nc, ns, n, φ0)

T individually for each bubble. We always started from the initial
guess p⃗0 = (1, 1, 4, 2, 2, 1, 0)T + δ p⃗0, where each component of δ p⃗0 was the Gaussian random
variable ∼ N (µ = 0, σ = 0.01) (one can see that this corresponded to a noised unit circle).
To find the optimal p⃗, we minimized the mean squared error:

MSE =
1

Nφ

Nφ

∑
j=1

(
rModel(φj| p⃗)− rj

)2 → min
p⃗

(6)

using the Adam optimizer [39]. To optimize the time consumption, we divided the dataset
into groups, each consisting of 42 individual bubbles, and fit the parameters in parallel
for each group. We stoped the optimization procedure and logged the parameters either
after 10,000 steps or if the average MSE over the group ≤ 0.25 was achieved. The latter
corresponded to RMSE ≤ 0.5 pixels, that is, almost perfect reconstruction of a batch, taking
into account the desired accuracy.

Figure 1 demonstrates the fitting result for four random images (a,b,c,d) from our
dataset. We obtained the average MAE (mean absolute error) of 1.82 pixels. In order to
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improve the quality of the generated images, we excluded the 5% of bubbles with the
highest reconstruction errors from further analysis (see Figure 2). These resulted in a
reduced sample of 1949 parameter sets for subsequent use.

Figure 1. The original bubble edges labeling (black) compared to best-fitting shapes reconstructed
by our model (orange): (a) Low-density bubble distribution under uniform flow conditions;
(b) Moderate-density bubble distribution showing slight overlaps; (c) High-density bubble
distribution with significant overlaps; (d) Irregular bubble shapes under non-uniform flow conditions.

Figure 2. Mean absolute reconstruction error distribution for the best-fitting Superformula parameters.
The orange hatched region corresponds to the bubbles excluded in further analysis. The vertical solid
black line represents the average MAE over the dataset.

2.3. Artificial Bubble Images Generation Framework

This subsection outlines the framework for generating artificial bubble images. We first
describe the method used to generate the edges of the bubbles, followed by a discussion
on how the inner pixels are filled. Lastly, we present the algorithm for generating artificial
images containing multiple bubbles.

2.3.1. Shape of a Border

The fitting procedure outlined in Section 2.2 yielded a set of optimal parameters
for each object in our sample. This collection of parameters allowed us to estimate the
distribution in the parameter space in a data-driven manner. By mapping this distribution
to a Gaussian, we subsequently constructed a generator of bubble edges.

As the fitted parameters were correlated, we first applied an orthogonal linear
transformation Q : p⃗ 7→ q⃗ = Q[ p⃗] to the parameter space in order to diagonalize the
covariance matrix:

E
[(

q⃗ −E[⃗q]
)(

q⃗T −E[⃗qT ]
)]

= Q ×E
[(

p⃗ −E[ p⃗]
)(

p⃗T −E[ p⃗T ]
)]

× QT = diag (7)

Now, {⃗q} is a 7-dimensional space of independent features, which can be easily mapped to
the Superformula parameter space { p⃗} using the inverse linear transformation Q−1 = QT .



Mathematics 2025, 13, 127 6 of 14

Using sklearn.preprocessing.QuantileTransformer [40], we mapped q⃗ to a multi-
variate normal distribution N (⃗0, I):

T : q⃗ 7→ ξ⃗ = T [⃗q] (8)

Note that T is non-linear but still an invertible transformation, for which the parameters
were fitted to {q} distribution (and thus determined by our training dataset).

A superposition of inverse transformations Q−1 ◦ T−1, thus, mapped normal-distributed
vectors to a proper data-driven distribution of Superformula parameters:

Q−1 ◦ T−1 : ξ⃗ ∼ N (⃗0, I) 7→ p⃗ (9)

Using Q and T, we generated bubbles of a plausible shape, following this algorithm:

1. Generate a sample of 7-dimensional random Gaussian vectors ξ⃗ ∼ N (⃗0, I);
2. Map these vectors to the parameter space, using p⃗ = Q−1 ◦ T−1 [⃗ξ];
3. Inherit a sample of periodic functions rModel(φ| p⃗).

2.3.2. Inner Region Intensity

Each real/artificial bubble was mapped to a unit disk using the transformation defined
by Equation (10): ρ = r/rModel(φ)

ϕ = φ
, (ρ, ϕ) ∈ (0, 1]× (−π, π] (10)

We generated 64 × 64 pixel images for each unit disk corresponding to a real bubble,
masking the region where ρ > 1 by setting it to zero intensity. The intensities in the
generated images were normalized using the mean (µI = 90.9) and standard deviation
(σI = 27.7) of intensity across all full-size images in the training dataset.

We then fit our background intensity profile model to this new dataset, performing
the fit individually for each image and minimizing MSE loss over the region where ρ ≤ 1:

Ibackground(ρ, ϕ) =

I0 + ∆I × σ
(

ρ0−ρ
∆ρ

)
, ρ ≤ 1

0, ρ > 1
, where σ(z) =

1
1 + e−z (11)

Finally, for each model parameter in (11), that is, I0, ∆I, ρ0, and ∆ρ−1, we computed
its mean and standard deviation across the sample (see Table 1). When generating artificial
bubble images, we sampled the parameters from a Gaussian distribution based on the
corresponding mean and standard deviation.

Table 1. Best-fitting parameters of the background intensity profiles.

Parameter Mean Standard Deviation

I0 −0.513 0.170
∆I 0.593 0.258
ρ0 0.581 0.120

∆ρ−1 1.272 0.305

In real bubble images, we observed that the intensity profile often deviated from
the shape of the border. To address this in our generator, we incorporated an additional
shadowing effect to better replicate the observed intensity variations. We define the
shadowing function:
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f (ρ, ϕ) =


exp

(
ρ0×

(
1+ cos(ϕ−ϕ0)

2

)
−ρ

∆ρ

)
, cos(ϕ − ϕ0) > 0 and ρ > ρ0 ×

(
1 + cos(ϕ−ϕ0)

2

)
1.0, elsewhere

(12)

In our generator, we sampled ϕ0 from a uniform distribution U[−π,π]. The resulting
shadowed intensity profile is defined as follows:

I(ρ, ϕ) = Ibackground(ρ, ϕ)× f (ρ, ϕ) (13)

Using the generated intensity profile, we transformed back to the original polar coordinate
system (r, φ) and intensity units I ∈ [0, 255]. We then filled the inner region of the artificial
bubbles accordingly and added Gaussian noise ∼ N (0, σI).

2.3.3. Artificial Images

The generation algorithm for an artificial image of size H × W pixels consisted of the
following steps:

1. Fill the artificial image with Gaussian noise sampled from N (µI + σI , σI), and apply
a Gaussian filter using a blur parameter k as a standard deviation for the Gaussian
kernel. We intentionally made the background brighter by σI to improve the contrast
in the resulting pictures. In our implementation, we fixed H = W = 640, µI = 90.9,
σI = 27.7, k = 3;

2. Sample the number of bubbles Nb from a uniform distribution U[Nb,min,Nb,max]
. For our

calculations, we set Nb,min = 64, Nb,max = 128;
3. Generate the edges of the Nb bubbles according to the algorithm detailed in

Section 2.3.1;
4. Apply random rotations to the bubble edges by sampling the rotation angle from the

uniform distribution U[−π,π];
5. Apply random shifts to the bubble centroids, with the centroid position sampled from

the 2D uniform distribution U[0,H−1]×[0,W−1];
6. Calculate the intensities of the inner regions of the bubbles using the algorithm

described in Section 2.3.2. At this step, we manually multiply ∆I by a blur factor k to
maintain the correct sharpness in the resulting image;

7. Iteratively fill the artificial image with bubbles, using the opacity parameter α:

I[iter] = αIbubble[iter] + (1 − α)I[iter−1] (14)

We fix α = 0.9 in our calculations;
8. Apply a Gaussian filter using our blur parameter k as a standard deviation for the

Gaussian kernel;
9. Clip the resulting intensity array and discretize it so that I ∈ 0, 255.

The corresponding labels describing the bubble edges are also generated and stored in
memory after Step 4.

2.4. Combined Usage of Image Generator and CFD Modeling

It is possible to use computational fluid dynamics (CFD) results for modeling the
deformable bubble shape characteristic of specific medium conditions to evaluate the
ability to generate artificial bubbles. For these purposes, we performed test simulations of
the form. The modeling domain consisted of a cube filled with water with sides of 1 cm
and a bubble filled with gas with a diameter of 1 or 2 mm. Periodic boundary conditions
were set on all cubic faces to model the motion of a single bubble rising in a continuous
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fluid flow. All of the values of the physical parameters, including bubble size, were taken
from experiments conducted by our team at the bioreactor.

Modeling was performed using the Level-Set method [41–43] which allowed for
modeling the motion of the boundaries of different phases using a fixed grid. Unlike other
methods implemented in COMSOL Multiphysics, this method had a number of advantages,
namely, accurate tracking of motion and changes in the shape of the gas bubble in the liquid,
the lack of explicit tracking of boundaries, and rearrangement of the grid, which greatly
simplified the modeling of complex dynamic systems, including in computational terms,
and provided stable calculations even with sharp changes in the shape of the interface
or the speed of its movement. This is achieved by regularizing the level function, which
avoids problems with numerical instability. Moreover, COMSOL Multiphysics shows more
accurate results for modeling hydrodynamic processes, especially bubble popping, which
we considered in this paper, similar to this study [36]. The motion of the bubble directed
by the fluid flow and the fluid flow field are described by incompressible Navier–Stokes
equations and continuity equations

ρ(u · ∇)u) = ∇ · [−pI + (µ + µT)(∇u + (∇u)T)] + F (15)

ρ∇ · u = 0 (16)

where ρ is the density of the liquid phase, u is the velocity vector, t is time, p is pressure,
µ is dynamic viscosity, I is the identity matrix, and T is transposition. F is the sum of the
forces acting on the bubble, namely the drag force, the lift force, and the added mass force.

To model the motion of a single air bubble in a fluid flow, a conservative type of
Level-Set equation was used to move domain boundaries of the following form:

dϕ

dt
+∇ · (uϕ) = γ∇ · (ϵls∇ϕ − ϕ(1 − ϕ)

∇ϕ

|∇ϕ| ) (17)

where ϕ is a smoothing function with values 1 for one phase and 0 for the other, γ is
a parameter of the number of repeated initializations of Level Set, ϵls is a parameter
controlling the thickness of the boundary, where the value of the variable ϕ varies from 0 to
1; the finer this region, the more accurate the shape of the free surface of the object under
consideration. The equations of this method were solved using the PARDISO solver, the
computational grid was chosen automatic type normal (variation of cell sizes from 0.2 mm
to 0.67 mm), the relationship between pressure and velocity was based on the scheme
P1 + P1, and the model considered a turbulent flow model k − ε.

Numerical calculations were performed using the supercomputer ‘URAN’ of IMM UB
RAS, Ekaterinburg, Russia.

3. Results
Figure 3 demonstrates four random images of the generated artificial dataset compared

with four random images of real bubbles from the training dataset. One can see that the
framework (see Figure 4) proposed in this study produced quite realistic images.

The average time for manual annotation of a single real image for neural network
training is in the order of minutes. While the automatic generation of an artificial dataset
using the presented framework took a similar amount of time, it occured in automated
mode and offered variability close to unlimited. Meanwhile, datasets based on manual
annotation of video images are limited by the duration of video recordings and hardware
capabilities. This framework significantly reduces annotation costs by requiring less manual
effort, allows for the generation of large and diverse datasets for training and validation,
and enables the building of a machine learning pipeline with a small number of manually
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labeled images or even without them. These factors lead to a reduction in data annotation
costs and an increase in dataset size for training and validation, ultimately improving the
performance of computer vision models.

Figure 3. Artificial bubble images generated using the framework discussed in detail in Section 2.3
(a–d) compared with the images from the training set (corresponded panels (e–h)).

Data collection and preparation, searching for superformula parameters

Video recording of moving bubbles Bubble edges
annotation

Parameters
database

Python script

Importing Cartesian
Coordinates

Converting
coordinates to polar

Boundary
Interpolation

Superformula
regression

Saving superformula
parameters to a file

Artificial bubbles images generation

Parameters
database

Python script

Image export

Overlaying
bubbles on the
background.

Applying a filters
to improve image

quality.

Filling the inner
area.

Simulation of
background and

shadow
propagation

Generate bubble
boundaries
using the

distribution of
parameters of
superformulas

Artificial bubbles
images and
annotations

Figure 4. Framework usage diagram.

Figure 5 shows a diagram with different bubble shapes formed under different physical
properties of the medium and forces acting on the bubble. The diagram is drawn in

coordinates of Reynolds number (Re = ρvd
η ) and Eötvös (Bond) number (Eo = Bo = ∆ρad2

σ ).
Here, ρ—liquid density; η—liquid viscosity; ∆ρ—difference in density of the two phases;
a—bubble acceleration; d—bubble diameter, σ—surface tension. This type of diagrams
(also known as the bubble regimes plot) is widespread in the literature and is widely
studied experimentally (e.g., ref. [44]).

The shape of the bubbles was modeled for the conditions presented in Table 2 using
the algorithm from Section 2.4. For the modeled bubbles (dark images in Figure 5), their
artificial doubles (red outline around in Figure 5) were constructed. The matching of CFD
modelled and artificial bubbles is presented in Table 2.

The above results suggest that the framework allowed us to analytically describe
the bubble shape with a high accuracy over a wide range of hydrodynamic conditions.
This makes it possible, for example, to set plausible initial conditions for solving CFD
problems using the Superformula without the necessity of preliminary equilibration of
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the water–bubble system. These results also show that it is possible to solve the inverse
problem: by fitting the bubble shape using the Superformula, one can determine the place
of such a bubble on the Reynolds–Eötvös diagram.

Figure 5. Diagram with bubbles obtained by CFD modeling for different regimes of Reynolds
and Eötvös numbers. Red lines show the contours of artificial bubbles generated using the
presented framework.

Table 2. Parameters of CFD simulations and related artificial bubbles.

No Re Eo a b m nc ns n phi0 Matching

1 193 0.01 1.74 1.65 4.78 1.91 2.12 0.24 0.09 99%
2 205 0.3 1.73 1.77 4.01 2.15 1.79 0.25 0.01 97.3%
3 966 0.046 1.7 1.82 3.77 2.14 1.8 0.24 −0.19 98.1%
4 1457 0.17 1.71 1.84 3.84 2.21 1.76 0.24 −0.13 96.4%
5 991 0.01 1.7 1.69 4.01 2.1 1.86 0.26 0.02 97.9%
6 3843 0.79 1.83 1.95 3.97 2.21 1.6 0.26 −0.02 96.9%
7 2000 1 1.79 1.55 3.35 1.83 2.41 0.24 0.02 98.8%

4. Discussion
The challenge of constructing arbitrarily shaped artificial particles is highly sought

after in various scientific and technological fields. Recently, this issue has gained significant
attention in the study of bubble media, where a promising avenue is the development
of computer vision systems powered by neural networks for monitoring and analyzing
bubble flows. The training and optimization of these systems demand extensive datasets
containing labeled bubbles of diverse shapes. Obtaining such datasets experimentally is
a challenging, costly, and time-intensive process. The findings of this study demonstrate
that datasets can be efficiently generated using a bubble generator, which produces
plausible bubble shapes that closely align with the experimentally observed data. Moreover,
the number of unique samples that can be generated is virtually unlimited, enabling
high-quality training and further refinement of neural networks for computer vision
algorithms.

It is well known that accurately modeling bubble flows using CFD techniques is
challenging due to the complex nonlinear interactions between fluid dynamics, bubble
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morphology, and their interaction mechanics. To facilitate advanced modeling, digital CFD
twins of the bubble media are constructed. The proposed algorithm significantly simplifies
this process by utilizing a family of plausible artificial bubbles as an initial approximation
of the bubble medium. This approach ensures that the initial approximation is closer to the
medium’s equilibrium state, eliminating the need for prolonged preliminary simulations.
The results of this study demonstrate that artificial bubbles can replicate those generated
by CFD simulations with an accuracy of at least 95%.

CFD simulations, on the other hand, provide detailed insights into hydrodynamic
conditions. For instance, in the diagram (Figure 5), bubbles of various shapes within the
dimensionless space of Reynolds and Eötvös numbers are shown. This offers the potential
for future generation of realistic bubbles as a function of hydrodynamic parameters, similar
to the approach taken in [45].

A key advantage of CFD simulations is their ability to produce three-dimensional,
undistorted bubble shapes. In contrast, video data are constrained by the limitations
of optical equipment, where bubbles may overlap, and lighting effects can distort their
appearance. As a result, video data are often processed as a two-dimensional projection
of bubbles. The Superformula, however, can be extended to a three-dimensional form as
outlined in [46], enabling the generation of fully three-dimensional, asymmetric bubbles
that enhance video-based observations with 3D details.

The ability to generate artificial bubble images using Superformula regression offers a
novel approach to improving mass transfer efficiency in chemical and biological bubble
reactors. In these systems, the structure of the bubble medium is crucial for ensuring
effective gas exchange, as the chemical or biological reactions rely on the accurate delivery
of dissolved oxygen to the target medium. By employing more precise bubble detection
through advanced neural network training, it becomes possible to accurately assess
key processes such as oxygen transfer, mixing dynamics, and the control of gas–liquid
interfaces—factors that directly influence reactor performance.

Beyond bubble environments, the potential for analytically describing the shape of
3D objects (via fitting with an analytical surface description) within this framework is
highly promising for images obtained from tomography techniques. When scanning
small objects such as bubbles, droplets, casting defects, or biological tissues, a common
challenge is low image resolution combined with artifacts and noise. In such cases, the
framework’s capabilities can be leveraged for optimal interpolation, image smoothing, and
the reconstruction of 3D objects.

5. Conclusions
This study presents an innovative approach to solving the challenges associated

with generating datasets of bubble media images, essential for training neural network
algorithms for bubble detection in multiphase systems. Given that no universal or fully
robust neural network currently exists for such tasks, existing models rely on large,
manually labeled datasets for retraining, a labor-intensive and time-consuming process. To
address this limitation, we propose a novel artificial bubble imaging method, capable of
generating significant datasets to enhance and refine neural network models.

By employing Superformula regression, we generate realistic artificial bubble
images that closely replicate the shapes and dynamics of gas–liquid inclusions. While
the Superformula forms the foundation of this method, it can be substituted with
other approximation formulas to accommodate more complex bubble geometries. This
method holds significant potential for biotechnology, particularly in optimizing bioreactor
performance and enhancing bioprotein production. The ability to generate artificial bubble
images provides a novel pathway for improving mass transfer efficiency, a critical factor for
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ensuring adequate gas exchange in systems where microbial growth depends on precise
oxygen delivery. By enabling more accurate bubble detection through advanced neural
network training, this framework supports the fine-tuning of essential processes like oxygen
transfer, mixing dynamics, and gas–liquid interface control—key factors that directly impact
bioreactor productivity.

Moreover, the generated images serve two primary purposes: first, as training data
to improve neural network accuracy in detecting bubbles under real-world conditions,
and second, as input data for hydrodynamic modeling, including post-processing in
CFD simulations. In real-world bioprotein production, where efficient gas exchange is
vital for scaling operations and maximizing yields, this methodology provides tools to
better understand and simulate bubble behavior. This facilitates more effective control of
bioprocesses and allows for real-time adjustments to gas–liquid flows.

The performance of the proposed framework was quantitatively evaluated to validate
its effectiveness. For the border detection method using Superformula regression,
the mean absolute error (MAE) between the reconstructed and ground truth bubble
shapes was 1.82 pixels, representing a 25% improvement in accuracy compared with
the baseline classical algorithms. Furthermore, the artificial bubble image generation
framework demonstrated a shape matching accuracy of at least 95% when compared
with computational fluid dynamics (CFD) simulations of bubble shapes under various
hydrodynamic conditions. This high level of accuracy ensures that the generated datasets
are suitable for training neural networks with minimal need for manual annotation.
Additionally, the time required for manual annotation of video data was reduced by
over 50%, significantly accelerating the preparation of training datasets for computer
vision applications.

With further refinement, this framework could become an integral part of the design
and operation of large-scale bioreactors, contributing to more sustainable and efficient
production of bioproteins and other bio-based products. By enhancing the analysis and
modeling of multiphase systems, our approach addresses the limitations of current bubble
detection methods and offers a promising tool for future developments in computer vision,
neural network training, and multiphase system modeling.
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