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Abstract

We characterize all additive biderivations on the incidence algebra I(P,R) of a locally finite
poset P over a commutative ring with unity R. By decomposing P into its connected chains,
we prove that any additive biderivation splits uniquely into a sum of inner biderivations
and extremal ones determined by chain components. In particular, when every maximal
chain of P is infinite, all additive biderivations are inner.
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1. Introduction
The concept of incidence algebras of partially ordered sets was first introduced by

Rota in the 1960s [1] as a tool for solving combinatorial problems. Incidence algebras are
fascinating objects that have been the subject of extensive research since their inception.
For instance, Pierre and John [2] describe the relationships between the algebraic properties of
incidence algebras and the combinatorial features of the partially ordered sets. In [3], Spiegel
and O’Donnell provide a detailed analysis of the maximal and prime ideals, derivations
and isomorphisms, radicals, and additional ring-theoretic properties of incidence algebras.
Further developments on the structure of incidence algebras can be found in [4–7].

The study of derivations in the context of algebras is a valuable and significant
endeavor. Yang provides a detailed account of the structure of nonlinear derivations on
incidence algebras in [8], specifically decomposing the nonlinear derivations into three
more specific forms. Regarding the decomposition of derivations, two significant findings
pertaining to their structure have been established. Notably, Baclawski demonstrated
that every derivation of the incidence algebra I(P,R), when R is a field and P is a finite
locally poset, can be expressed as the sum of an inner derivation and an additive induced
derivation [9]. This result was extended by Spiegel and O’Donnell [3] to cases where R is a
commutative ring. Additional insights into the structure of other special derivations on
incidence algebra can be found in [10–13].

Building upon the aforementioned studies of derivations on incidence algebras, it is
natural to investigate biderivations in this context. Kaygorodov and Khrypchenko delineate
the structure of antisymmetric biderivations of finitary incidence algebras FI(P,R), where
P is an arbitrary poset and R is a commutative ring with unity, in [14]. In [15], Benkovič
proves that every biderivation of a triangular algebra is the sum of an inner biderivation
and an external biderivation. Later, Ghosseiri demonstrates that every biderivation of
upper triangular matrix rings is the sum of an inner biderivation, an external biderivation,
and a distinct category of biderivations [16]. Ghosseiri also presents particular instances
where every biderivation is inner.

Mathematics 2025, 13, 3122 https://doi.org/10.3390/math13193122

https://doi.org/10.3390/math13193122
https://doi.org/10.3390/math13193122
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0000-5238-5350
https://doi.org/10.3390/math13193122
https://www.mdpi.com/article/10.3390/math13193122?type=check_update&version=2


Mathematics 2025, 13, 3122 2 of 18

In the literature, many biderivations on different algebras have been shown to decom-
pose into the sum of inner and extremal ones. Motivated by this, we ask whether general
biderivations on incidence algebras admit a similar decomposition. Compared with [14],
which characterizes antisymmetric biderivations on finitary incidence algebras FI(P,R), our
work extends the type of biderivations under consideration from antisymmetric to general
ones, while the algebraic framework is more restrictive. Moreover, although most existing
studies assume linearity, we find this condition unnecessarily strong. Therefore, in this
paper, we focus on additive biderivations of incidence algebras and determine their precise
structure. Specifically, let R be a commutative ring with unity, and P a locally finite poset
such that any maximal chain in P contains at least three elements. The additive biderivation
b is the exact sum of several inner biderivations and extremal biderivations. Furthermore,
we give that when the number of elements in any maximal chain in P is infinite, b is an
inner biderivation.

2. Preliminaries
2.1. Incidence Algebra

Throughout this paper, R denotes a commutative ring with unity. Recall that a relation
≤ is said to be a partial order on a set S if it satisfies the following conditions:

1. Reflexivity: a ≤ a for all a ∈ S;
2. Antisymmetry: if a ≤ b and b ≤ a, then a = b;
3. Transitivity: if a ≤ b and b ≤ c, then a ≤ c.

A partially ordered set (or poset) is a set equipped with a partial order. A poset (S,≤) is locally
finite if, for any x ≤ y in S, there are finitely many elements u ∈ S satisfying x ≤ u ≤ y. Let
(P,≤) be a locally finite poset. We use the notation x < y to mean that x ≤ y and x , y. Now,
let us recall the definition of incidence algebra.

Definition 1. The incidence algebra I(P,R) is defined as the set of functions

I(P,R) = { f : P× P→ R | f (x, y) = 0 if x ≰ y}, (1)

with multiplication given by

( f g)(x, y) =
∑

x≤z≤y
f (x, z)g(z, y), for all x, y ∈ P. (2)

For each pair x ≤ y in P, let exy denote the element in I(P,R) defined by

exy(u, v) =

1, if (x, y) = (u, v);

0, otherwise.
(3)

For brevity, we will use the notation αxy to denote α(x, y), where α ∈ I(P,R) and x, y ∈ P.
Consequently, any element α ∈ I(P,R) can be expressed as α =

∑
x≤y αxyexy. It is evident

that the multiplication in I(P,R) satisfies the following properties:

1. If y = u, then exyeuv = exv;
2. If y , u, then exyeuv = 0.

This relation allows us to derive the following formula, which will be used extensively in
this article. For any f ∈ I(P,R) and x ≤ y, u ≤ v in P, we have

exy f euv = fyvexv. (4)
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2.2. Additive Biderivations

A function d : I(P,R) → I(P,R) is a derivation of I(P,R) if, for any α, β ∈ I(P,R),
it satisfies

d(αβ) = αd(β) + d(α)β.

A function b : I(P,R) × I(P,R)→ I(P,R) is said to be a biderivation of I(P,R) if it is a
derivation when fixing any one of its arguments. This means that for every α, β,γ ∈ I(P,R),
b satisfies

b(αβ,γ) = αb(β,γ) + b(α,γ)β,

b(α, βγ) = βb(α,γ) + b(α, β)γ.

Moreover, b is an additive biderivation if b also satisfies

b(α+ β,γ) = b(α,γ) + b(β,γ),

b(α, β+ γ) = b(α, β) + b(α,γ).

The so-called inner biderivation is defined by

b(α, β) = λ[α, β], (5)

where λ ∈ R is a fixed element, and [α, β] denotes the Lie bracket of α and β. It is known that
in prime and semiprime rings, all biderivations are inner (Brešar [17]). However, in certain
algebras, such as triangular algebras and upper triangular matrix algebras, non-inner
biderivations do occur. To describe the structure of these non-inner parts, Benkovič [15]
introduced the notion of extremal biderivations and showed that every biderivation on
triangular algebras can be expressed as the sum of an inner biderivation and an extremal one.

More precisely, a biderivation b is called an extremal biderivation if there exists γ ∈ I(P,R)
such that

b(α, β) = [α, [β,γ]]. (6)

2.3. Decomposition of Posets

Our research reveals a close relationship between the structure of additive biderivations
in I(P,R) and that of the poset P. Accordingly, we proceed to decompose P in this
section, which will subsequently be employed in constructing the structure of the additive
biderivations. In detail, we will consider and decompose the cases where P is connected
or not.

First, let us introduce some notation. Consider a relation ∼ on P where x ∼ y indicates
that x and y are comparable, i.e., either x ≤ y or y ≤ x. The relation / indicates that x
and y are not comparable. A totally ordered set is a poset in which every pair of elements
is comparable.

Definition 2. A chain in a poset P is a subset that is totally ordered with respect to ≤.

Example 1. Consider the poset S = {a, b, c, d, e, f , g, h, i} represented by the following Hasse
diagram, where x→ y denotes x ≤ y for all x, y ∈ S. In this case, the pair of elements b and e is not
comparable, and the subset {g, h, i} of S constitutes a chain.
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a
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d e f

g

h

i

S

1. The first decomposition, when P is not connected.

First, let us introduce a relation between any two elements in R.

Definition 3. Two elements x, y ∈ P are defined as being connected if there exists a sequence
u0, u1, . . . , un ∈ P such that x ∼ u0, u0 ∼ u1, . . . , un−1 ∼ un, and un ∼ y. A poset P is connected if
any pair of elements in it are connected.

It is evident that the relation of being connected is an equivalence relation on P. Thus,
we can decompose P into the union of its connected components:

P =
⋃
i∈I

Pi, (7)

where I is an index set and each Pi is a connected poset.

Example 2. Consider the poset S defined in Example 1. It can be observed that S can be expressed
as the union of two disjoint sets: S1 = {a, b, c, d, e, f } and S2 = {g, h, i}.

a

b c

d e f

g

h

i

S1 S2

It is evident that Pi
∩ P j = ∅ for i , j. Therefore, for any α ∈ I(P,R), we have

α =
∑
i∈I

αi, αi =
∑

x≤y∈Pi

αxyexy ∈ I(Pi,R). (8)

2. The second decomposition, when P is connected.

Next, we present a second decomposition of P when P is connected. We begin by
defining a key term.

Definition 4. A chain in P is called maximal if adding any element from P to it would result in it
no longer being a chain.
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In this context, the notation {x, y, . . . }+ will be used to denote a maximal chain in P
that contains {x, y, . . . }.

We proceed to define a set of subsets of P:

L = {l ⊂ P | l is a maximal chain}. (9)

Definition 5. For any pair of elements l′, l′′ ∈ L, we define the relation l′ ≈ l′′ if there exist
elements x < y in P such that x, y ∈ l′ ∩ l′′. We say l′ and l′′ are connected if there exist chains
l0, l1, . . . , ln ∈ L such that l′ ≈ l0, l0 ≈ l1, . . . , ln−1 ≈ ln, ln ≈ l′′.

With respect to the connectedness relation on L, we can decompose L into the union of
its equivalence classes:

L =
⋃
j∈J

L j, (10)

where J is an index set corresponding to the decomposition of L.
For each j ∈ J , define a subset of P:

P j = {x ∈ P | there exists l ∈ L j such that x ∈ l}. (11)

It is evident that P =
⋃

j∈J P j. However, it is not necessarily the case that Pi ∩ P j = ∅ for
all i , j in J .

Example 3. To illustrate this decomposition, consider S1 = {a, b, c, d, e, f } from Example 2. The set
S1 can be expressed as the union of two sets: S1

1 = {a, b, d} and S1
2 = {a, c, e, f }.

a a

b c

d e f

S1
1 S1

2

An element x ∈ P is said to be maximal if there is no element y ∈ P such that x < y,
and minimal if there is no element y ∈ P such that y < x.

Lemma 1. Let i , j in J be defined in (10); then there does not exist a pair of elements x < y in
P such that x, y ∈ Pi ∩ P j. Additionally, any element in Pi ∩ P j is either a minimal or a maximal
element of P.

Proof. We begin by asserting that any element in Pi ∩ P j is isolated, meaning that no other
element in Pi ∩ P j can be compared with it. Suppose, for contradiction, that there exists
a pair of elements x < y contained in Pi ∩ P j. Then, there exist chains l1 ∈ Li and l2 ∈ L j

such that x, y ∈ l1 and x, y ∈ l2. It follows that l1 ≈ l2, implying Pi = P j and i = j, which
contradicts the assumption that i , j. Therefore, any element in Pi ∩ P j is isolated.

Now, suppose there exists an element x ∈ Pi ∩ P j that is neither maximal nor minimal.
Then there exist elements u < x < v in P. According to the definition of Pi and P j and the
assumption that any maximal chain of P has at least three elements, there exist elements
yi ∈ Pi and y j ∈ P j that can be compared with x, and there exist maximal chains li ∈ Li and
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l j ∈ L j such that x, yi ∈ li and x, y j ∈ l j. Without loss of generality, suppose x < yi. It is
evident that {u, x, v}+ ≈ {u, x, yi}

+
≈ li, so u, x, v ∈ Pi. Similarly, u, x, v ∈ P j. This implies that

both u < x and x < v are elements of Pi ∩ P j, which contradicts the previous conclusion.
Thus, any element in Pi ∩ P j must be either minimal or maximal. □

By the lemma above, for any α ∈ I(P,R), where P is connected, we can decompose it as

α =
∑
j∈J

α′j + α
D, where α′j =

∑
x<y∈P j

αxyexy, and αD =
∑
z∈P

αzzezz. (12)

If i , j and the product α′iβ
′

j =
∑

x<y∈Pi

∑
u<v∈P j

αxyβuvexyeuv is non-zero, then there exist
x′ < y′ in Pi and u′ < v′ in P j such that exyeuv , 0. Therefore, we conclude that y = u,
implying that y ∈ Pi ∩ P j and x < y < v, which contradicts Lemma 1. This leads to the
following corollary.

Corollary 1. For any i , j in J , let α′i ∈ I(Pi,R) and β′j ∈ I(P j,R), then α′iβ
′

j = 0.

3. Additive Derivations of I(P,R)
In the study of additive biderivations, it is necessary to discuss some properties

of additive derivations of I(P,R), since an additive biderivation becomes an additive
derivation when one of its arguments is fixed. Let P be a locally finite poset, let R be a
commutative ring with unity, and let I(P,R) be the incidence algebra of P over R. Suppose
d is an additive derivation of I(P,R).

We will denote dxy(α) to represent d(α)(x, y) for any α ∈ I(P,R) and x, y ∈ P. We begin
by demonstrating a lemma that shows the structure of the value of d(rexy).

Lemma 2. Let x ≤ y ∈ P and r ∈ R, then

d(rexy) =
∑
p≤x

dpy(rexy)epy +
∑
y<q

dxq(rexy)exq. (13)

Proof. Consider a fixed pair x ≤ y ∈ P and an arbitrary element r ∈ R. Suppose u ≤ v ∈ P
with u , x and v , y. We examine the expression euud(rexy)evv by multiplying d(rexy) on
the left by euu and on the right by evv:

euud(rexy)evv = euud(rexxexy)evv

= euuexxd(rexy)evv + euud(exx)rexyevv

= 0.

(14)

Since euud(rexy)evv = duv(rexy)euv, it follows that duv(rexy) = 0 unless u = x or v = y.
This establishes the desired equality (13). □

The proof of the aforementioned lemma allows us to derive the following corollary.

Corollary 2. Let x ≤ y, u ≤ v ∈ P, then duv(rexy) = 0 unless the elements x, y, u, v satisfy one of
the following cases: (1) u = x, v ≤ y; (2) u ≤ x, v = y.

In describing the structure of biderivations, we will try to prove that some of them are
equivalent. To do this, we introduce a number of instrumental lemmas as described below.

Lemma 3. Let x ≤ y ∈ P and r ∈ R, then

(1) For any p < x, dpy(rexy) = rdpy(exy) = rdpx(exx);
(2) For any q > y, dxq(rexy) = rdxq(exy) = rdyq(eyy).
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Proof. We will demonstrate part (1), and the proof of part (2) follows analogously. Consider
fixed elements x ≤ y ∈ P and r ∈ R. For any p < x, using Equation (4), we obtain

dpy(rexy)epy = eppd(rexy)eyy

= epp
(
exxd(rexy) + d(exx)rexy

)
eyy

= rdpx(exx)epy.

(15)

Therefore, we deduce that dpy(rexy) = rdpx(exx). Setting r to be the unity element of R
yields dpy(exy) = dpx(exx), thereby establishing part (1). □

Lemma 4. Let x < y ∈ P, then dxy(exx) + dxy(eyy) = 0.

Proof. Let x < y ∈ P be fixed. Observe that

0 = exxd(exxeyy)eyy

= exxd(exx)eyy + exxd(eyy)eyy

=
(
dxy(exx) + dxy(eyy)

)
exy.

(16)

Since the above expression equals zero and exy is a non-zero element of the incidence
algebra, it follows that dxy(exx) + dxy(eyy) = 0. □

Lemma 5. Let x < y < z ∈ P, then dxz(exz) = dxy(exy) + dyz(eyz).

Proof. Let x < y < z ∈ P be fixed. Then,

dxz(exz)exz = exxd(exyeyz)ezz

= exx
(
d(exy)eyz + exyd(eyz)

)
ezz

=
(
dxy(exy) + dyz(eyz)

)
exz.

(17)

Since exz is a non-zero element of the incidence algebra, we deduce that dxz(exz) =

dxy(exy) + dyz(eyz). □

4. Additive Biderivations of I(P,R)
In this section, we will employ the properties of additive derivations derived in

Section 3 to prove our main theorem (Theorem 4), which elucidates the structure of additive
biderivations on the incidence algebra I(P,R). Let P be a locally finite poset, and let R be a
commutative ring with unity. In this section, we will use the notation bxy(α, β) to denote
the value b(α, β)(x, y) for any α, β ∈ I(P,R) and x, y ∈ P.

We begin by considering a corollary that can be readily extended from Lemma 2.

Corollary 3. Let x ≤ y, u ≤ v ∈ P, and r1, r2 ∈ R, then

b(r1exy, r2euv) =



bxv(r1exy, r2euv)exv + buy(r1exy, r2euv)euy, if x , u, y , v;∑
y≤q,v≤q

bxq(r1exy, r2exv)exq, if x = u, y , v;∑
p≤x,p≤u

bpy(r1exy, r2euy)epy, if x , u, y = v;∑
p≤x

bpy(r1exy, r2exy)epy +
∑
y<q

bxq(r1exy, r2exy)exq, if x = u, y = v.

(18)
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The preliminary stage will entail a reduction in the complexity of the structure of b. This
will be achieved by establishing a sufficient condition that characterizes the circumstances
under which b is equal to zero.

Lemma 6. Let x ≤ y, u ≤ v ∈ P; if at least one pair among {x, y, u, v} is not comparable, then
b(r1exy, r2euv) = 0 for any r1, r2 ∈ R.

Proof. Consider x ≤ y, u ≤ v ∈ P. Suppose at least one pair among {x, y, u, v} is not
comparable. This situation can be divided into four cases: (1) x / u; (2) x / v; (3) y / u;
(4) y / v.

Case 1: Suppose x / u. We consider two subcases: y , v and y = v.
If y , v, by Corollary 3, we have

b(r1exy, r2euv) = bxv(r1exy, r2euv)exv + buy(r1exy, r2euv)euy. (19)

According to Corollary 2, both bxv(r1exy, r2euv) and buy(r1exy, r2euv) are zero because
x / u.
If y = v, we obtain that

b(r1exy, r2euy)

=
∑

p≤x,p≤u
bpy(r1exy, r2euy)epy

=
∑

p<x,p<u
bpy(r1exy, r2euy)epy + bxy(r1exy, r2euy)exy + buy(r1exy, r2euy)euy.

(20)

In (20), both bxy(r1exy, r2euy)exy and buy(r1exy, r2euy)euy are zero by Corollary 2.
For the remaining terms in (20), using Lemma 3 on the first argument of each term,
we have ∑

p<x,p<u
bpy(r1exy, r2euy)epy =

∑
p<x,p<u

bpx(r1exx, r2euy)epy = 0. (21)

Noting that p < u and x < y (if x = y, we obtain u < x = v, which contradicts x / u),
bpx(r1exx, r2euy)epy in (21) is zero by Corollary 2. Therefore, the lemma is proved
when x / u.

Case 2: If x / v, then x , u and y , v. From Corollary 3, we have

b(r1exy, r2euv) = buy(r1exy, r2euv)euy. (22)

We assert that either u < x or u / x, because if x ≤ u, then x ≤ u ≤ v, which
contradicts x / v. For buy(r1exy, r2euv), it is zero by Lemma 2 if u / x. If u < x,
by Lemma 2, we get

buy(r1exy, r2euv) = bux(r1exx, r2euv) = 0. (23)

Therefore, the lemma is proved when x / v.
Cases 3 and 4: If y / u or y / v, the proof is similar to Cases 1 and 2.

Thus, the lemma is proved. □

Remark 1. Intuitively, the lemma asserts that an additive biderivation must vanish on any pair of
basis elements that are incomparable. The multiplication rules of incidence basis elements (where
exyeuv = 0 for many incomparable configurations), together with the derivation property in each
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argument, force all such coefficients to be zero. Hence, nontrivial behavior can only occur along
comparable pairs (chains), which is the crucial reduction used in the sequel.

According to the decomposition (8), we can suppose that for any α, β ∈ I(P,R),

α =
∑
i∈I

αi, β =
∑
i∈I

βi,

where αi, βi
∈ I(Pi,R). By applying the decomposition of P, as defined in (7), and the

aforementioned lemma, it is straightforward to conclude that b(αi1 , βi2) = 0 if i1 , i2 ∈ I,
thereby yielding the following result:

b(α, β) =
∑
i∈I

b(αi, βi). (24)

Accordingly, this decomposition permits us to limit our analysis to the case where P is
connected, as will be discussed subsequently. We will subsequently present the theorem,
in the case where P is connected, which describes the conditions under which certain terms
in Equation (18) are equal to zero. Prior to this, we will present an instrumental lemma.

Lemma 7. Let α, β,γ, δ ∈ I(P,R), then

b(α, β)[γ, δ] = [α, β]b(γ, δ). (25)

Proof. Let α, β,γ, δ ∈ I(P,R) be arbitrary. Since b is a biderivation, it satisfies the derivation
property in each argument separately. We begin by applying the derivation property to the
first argument of b(αγ, βδ), followed by applying it to the second argument. This yields

b(αγ, βδ) = αb(γ, βδ) + b(α, βδ)γ

= αβb(γ, δ) + αb(γ, β)δ+ βb(α, δ)γ+ b(α, β)δγ.
(26)

Conversely, we first apply the derivation property to the second argument and then to
the first argument, obtaining

b(αγ, βδ) = βb(αγ, δ) + b(αγ, β)δ

= βαb(γ, δ) + βb(α, δ)γ+ αb(γ, β)δ+ b(α, β)γδ.
(27)

Subtracting Equation (26) from Equation (27) gives

0 = [α, β]b(γ, δ) − b(α, β)[γ, δ], (28)

which rearranges to the desired identity:

b(α, β)[γ, δ] = [α, β]b(γ, δ). (29)

The proof is completed. □

In accordance with the aforementioned lemma, it is possible to select specific values for
x, y, u, v in order to demonstrate that b(exy, euv) = 0. For x, y, u, v ∈ P that are comparable
with each other and have [exy, euv] = 0, the following two subcases can be identified:
(1) x = y = u = b; (2) x , v, y , u. The following two theorems will address these subcases
in greater detail.
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Theorem 1. Let x ∈ P, then

b(exx, exx) =



∑
x<y,

y is max
bxy(exx, exx)exx, x is a minimal element;∑

y<x,
y is min

bxy(exx, exx)exx, x is a maximal element;

0, otherwise.

(30)

Proof. We prove the lemma by considering three cases based on the position of x in P:
minimal, maximal, and neither.

Case 1: x is a minimal element in P. By Corollary 3, we have

b(exx, exx) =
∑
x≤q

bxq(exx, exx)exq. (31)

For any pair x ≤ y where y is not a maximal element, let z > y. By Lemma 7,
we know that

bxy(exx, exx)exz = b(exx, exx)[eyz, ezz] = [exx, exx]b(eyz, ezz) = 0. (32)

Thus, when x is a minimal element, b(exx, exx) reduces to the given form∑
x<y,y is max

bxy(exx, exx)exx.

Case 2: x is a maximal element in P. The procedure is similar to Case 1.
Case 3: x is neither a minimal nor maximal element. In this case, there exist y, z such that

y < x < z. For any p ≤ x, we have

eppb(exx, exx)exz = eppb(exx, exx)[exz, ezz] = epp[exx, exx]b(exz, ezz) = 0. (33)

This implies bpx(exx, exx) = 0. Similarly, for any x ≤ q, we can deduce
bxq(exx, exx) = 0. Hence, when x is neither a minimal nor maximal element, we
have b(exx, exx) = 0.

Combining the three cases, the lemma is proven. □

Remark 2. The theorem implies that the values of a biderivation on diagonal basis elements exx can
be non-zero only at boundary points of the poset, that is, at minimal or maximal elements. Intuitively,
this follows from inserting b(exx, exx) between other basis elements and applying the commutation
identities, which eliminate contributions from interior points: whenever a third comparable element
exists, the corresponding terms vanish. Thus, the diagonal component of a biderivation is necessarily
supported at the endpoints of the poset, providing the foundation for the extremal components
constructed later.

Theorem 2. Let P be a connected poset such that any maximal chain has at least three elements.
For any r1, r2 ∈ R and x, y, u, v ∈ P that are comparable with each other and have x , v, y , u. The
additive biderivation b satisfies b(r1exy, r2euv) = 0, except in the case where x = y , u = v and
one of x and u is the maximal element in P and the other is the minimal element.

Proof. Let r1, r2 ∈ R and x, y, u, v ∈ P satisfy the conditions of the theorem. We further
divide this case into four subcases:
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Case 1: If x , u and y , v, except in the case where x = y , u = v and one of x and u is the
maximal element in P and the other is the minimal element, then by Corollary 3,
we have

b(r1exy, r2euv) = bxv(r1exy, r2euv)exv + buy(r1exy, r2euv)euy. (34)

We have bxv(r1exy, r2euv) = byv(r1eyy, r2euv) by using Lemma 3 in its first argu-
ment when x ≤ y < v. If v < y, it is also correct because bxv(r1exy, r2euv) =

byv(r1eyy, r2euv) = 0 by Corollary 3. By the same reasoning in its second argument,
we obtain byv(r1eyy, r2euv) = byu(r1eyy, r2euu). Without loss of generality, we can
assume that y < u. It is evident that y is not minimal or u is not maximal; otherwise,
the case is excluded. Thus, by Lemma 4 and Theorem 1, we have

byu(r1eyy, r2euu) = −r1r2byu(eyy, eyy) = 0 (35)

Similarly, buy(r1exy, r2euv) is also equal to 0. Therefore, we have b(r1exy, r2euv) = 0
in this case.

Case 2: If x = u and y , v. We consider two subcases: v < y and y < v.

(a) If v < y, we have

b(r1exy, r2exv) =
∑

v<y≤q bxq(r1exy, r2exv)exq
Lemma 3

=
∑

v<y≤q bvq(r1exy, r2evv)exq. (36)

Since x = u < v and q ≥ y, bvq(r1exy, r2evv) = 0 by Lemma 2 and Corollary 2.
Therefore, b(r1exy, r2exv) = 0.

(b) If y < v, the proof is similar.

Case 3: If x , u and y = v.
The proof is similar to subcase 2.

Case 4: If x = u and y = v, implying x = u < y = v. By Corollary 3, we have

b(r1exy, r2exy) =
∑

p<x bpy(r1exy, r2exy)epy +
∑

y<q bxq(r1exy, r2exy)exq + bxy(r1exy, r2exy)exy. (37)

For any pair p < x, the term bpy(r1exy, r2exy)epy is equal to bpx(r1exx, r2exy)epy by
Lemma 3. Let us consider its second argument, whereby because p , x and
x , y, it is equal to 0 by Corollary 2. In the same way, for any y < q, we have
bxq(r1exy, r2exy)exq = 0. Thus,

b(r1exy, r2exy) = bxy(r1exy, r2exy)exy. (38)

By the assumption on P, there exists an element z , x, y such that z is comparable
with x and y. We consider three cases:

1. If z < x < y, applying Lemma 7, we obtain

b(ezx, exx)[r1exy, r2exy] = [ezx, exx]b(r1exy, r2exy). (39)

The left-hand side is zero, and the right-hand side equals bxy(r1exy, r2exy)ezy,
implying b(r1exy, r2exy) = 0.

2. If x < y < z, the proof is similar to (a).
3. If x < z < y, applying Lemma 5, we have

bxy(r1exy, r2exy) = bxz(r1exz, r2exy) + bzy(r1ezy, r2exy)
Lemma 2

= 0, (40)
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Consider the second argument of bxz(r1exz, r2exy) and bzy(r1ezy, r2exy), respec-
tively Because x < z < y, we have bxz(r1exz, r2exy) = bzy(r1ezy, r2exy) = 0 by
Corollary 2. This implies b(r1exy, r2exy) = 0.

Considering all the above cases, the theorem is proved. □

Remark 3. The theorem shows—after a case-by-case analysis—that most configurations of compa-
rable indices force the corresponding biderivation entries to vanish; only special “endpoint–endpoint”
configurations, where one index is minimal and the other maximal, may yield nontrivial terms.
The underlying mechanism is the repeated application of the commutation identity (Lemma 7)
together with the vanishing on incomparable pairs: whenever an auxiliary comparable element
exists, the relevant coefficients are forced to zero. Consequently, the theorem confines all possible
non-zero patterns to the finite boundary situations that generate the extremal biderivations.

The objective of the forthcoming project is to provide evidence that certain components
of Equation (18) are equal. In particular, it will be demonstrated that bxy(exy, exx) =

buv(euv, euu) when x, y, u, v ∈ P satisfy specified conditions. Prior to this, two lemmas will
be proven.

Lemma 8. Let x < y < z ∈ P, then

bxy(exy, eyy) = byz(eyy, eyz) and bxy(eyy, exy) = byz(eyz, eyy). (41)

Proof. For any x < y < z ∈ P, applying Lemma 3 to the left or right argument of bxz(exy, eyz)

separately, we have
byz(eyy, eyz) = bxz(exy, eyz) = bxy(exy, eyy). (42)

Thus, we have bxy(exy, eyy) = byz(eyy, eyz). Using a similar process for bxz(eyz, exy), we
obtain the other equality. □

Lemma 9. Let x < y < z ∈ P, then

(1) bxy(exy, exx) = byz(eyz, eyy) = bxz(exz, exx);
(2) bxy(exx, exy) = byz(eyy, eyz) = bxz(exx, exz).

Proof. Let x < y < z ∈ P. For bxz(exz, exx) and bxz(exz, ezz), using Lemma 5 for its first
argument, we obtainbxz(exz, exx) = bxy(exy, exx) + byz(eyz, exx) = bxy(exy, exx);

bxz(exz, ezz) = bxy(exy, ezz) + byz(eyz, ezz) = byz(eyz, ezz)
(43)

noting that byz(eyz, exx) = bxy(exy, ezz) = 0 by Corollary 3. Additionally, we have
bxz(exz, exx) = −bxz(exz, ezz) by Lemma 4. Plugging the results from (43) into this, we
find that

bxy(exy, exx) = −byz(eyz, ezz), (44)

which implies bxy(exy, exx) = byz(eyz, eyy). Then bxy(exy, exx) = byz(eyz, eyy) = bxz(exz, exx).
Similarly, we can obtain the other equality. □

Corollary 4. Let x < y ∈ P, then bxy(exy, exx) = −bxy(exx, exy).

Proof. Let x < y ∈ P. There exists z , x, y ∈ P that is comparable with x and y by the
assumption that any maximal chain in P has at least three elements. We consider three cases.
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If x < y < z, according to Lemma 8, we have

bxy(exy, eyy) = byz(eyy, eyz). (45)

From Lemma 9, we have
bxy(exx, exy) = byz(eyy, eyz). (46)

Considering (45) and (46), we have

bxy(exy, exx) = −bxy(exy, eyy) = −byz(eyy, eyz) = −bxy(exx, exy). (47)

For the remaining two cases x < z < y and z < x < y, a similar process yields the
same result. □

Theorem 3. Let x < y, u < v in P j, j ∈ J where J is the index set defined in (10), then

bxy(exy, exx) = buv(euv, euu). (48)

Proof. Let x < y, u < v ∈ P j, j ∈ J . If P j is a totally ordered set, it is evident from
Lemma 9 that bxy(exy, exx) = buv(euv, euu). If P j is not a totally ordered set, according to
the construction of P j, there exist chains l0, l1, . . . , ln ∈ L j defined in (10) such that x, y ∈ l0,
u, v ∈ ln, and li ≈ li+1 for any i ∈ {0, 1, . . . , n − 1}. Therefore, there exist xi < yi ∈ li ∩ li+1.
Because li is a totally ordered set, using Lemma 9, we thus have

bxy(exy, exx) = bx0 y0(ex0 y0 , ex0x0) = · · · = bxn yn(exn yn , exnxn) = buv(euv, euu). (49)

This proves (48). □

Remark 4. The theorem shows that a certain family of coefficients (for instance, bxy(exy, exx))
remains constant along any connected chain component. Intuitively, this follows from propagating
local equalities along adjacent links of a chain using Lemmas 8 and 9, so that the local relations,
through this chain-wise propagation, ultimately yield a global constancy on the entire component.
Consequently, one can associate a single scalar λ j with each chain component, and these scalars
serve as the weights for the inner biderivation contributions.

For any j ∈ J , let x j < y j ∈ P j, and define

λ j = −bx j y j(ex j y j , ex jx j) = bx j y j(ex jx j , ex j y j). (50)

A crucial conclusion is that for any pair u < v in P j, where j ∈ J , the value
buv(euv, euu) = −λ j, as demonstrated by the aforementioned theorem.

Now that the requisite preparations have been completed, we may proceed with the
proof of the final theorem.

Theorem 4. Let R be a commutative ring with unity, and let P be a locally finite poset such that
any maximal chain in P contains at least three elements. The additive biderivation b of the incidence
algebra I(P,R) is the sum of several inner biderivations and extremal biderivations.

Proof. We proceed by first considering the case where P is connected. The general case
will follow by extending this result to each connected component of P.

Case 1: P is connected.
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By the decomposition (12), we can write P as a union of subsets P j:

P =
⋃
j∈J

P j.

For any α, β ∈ I(P,R), we can decompose them as follows:

α =
∑
j∈J

α′j + α
D, where α′j =

∑
x<y∈P j

αxyexy, αD =
∑
z∈P

αzzezz, (51)

β =
∑
j′∈J

β′j′ + β
D, where β′j′ =

∑
u<v∈P j′

βuveuv, βD =
∑
w∈P

βwweww. (52)

Using these decompositions, we expand the biderivation b(α, β):

b(α, β) = b(αD, βD) +
∑

j, j′∈J

b(α′j, β
′

j′) +
∑
j∈J

b(α′j, β
D) +

∑
j′∈J

b(αD, β′j′). (53)

I. Evaluating b(αD, βD):

Consider
b(αD, βD) =

∑
z,w∈P

b(αzzezz, βwweww).

From Lemma 6 and Theorem 2, we have

b(αD, βD)

=
∑

z≤w∈P

b(αzzezz, βwweww)

=
∑
z<w

z min, w max

(b(αzzezz, βwweww) + b(αwweww, βzzezz)) +
∑

z is min
or max

b(αzzezz, βzzezz)

(54)

By Corollary 3 and Lemma 4, the part of each term in (54) can be expressed as∑
z<w

z min, w max

(b(αzzezz, βwweww) + b(αwweww, βzzezz))

=
∑
z<w

z min, w max

(αzzβwwbzw(ezz, eww) + αwwβzzbzw(eww, ezz))ezw

=
∑
z<w

z min, w max

(αzzβww + αwwβzz)bzw(ezz, eww)ezw

(55)

By Theorems 1 and 4, the other part of each term in (54) can be expressed as∑
z is min
or max

b(αzzezz, βzzezz)

=
∑
z<w

z min w max

(αzzβzzbzw(ezz, ezz) + αwwβwwbzw(eww, www))

= −
∑
z<w

z min w max

(αzzβzz + αwwβww)bzw(ezz, eww)ezw

(56)
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Substituting (55) and (56) back into Equation (54), we obtain

b(αD, βD)

=
∑

z<w∈P
z min, w max

(αzzβww + αwwβzz − αzzβzz − αwwβww)bzw(ezz, eww)ezw

=
∑

z<w∈P
z min, w max

[αzzezz + αwweww, [βzzezz + βwweww,−bzw(ezz, eww)ezw]]

=
∑

z<w∈P
z min, w max

[α̂, [β̂, T]],

(57)

where α̂ =
∑

z is min
or max

αzzezz, β̂ =
∑

z is min
or max

βzzezz and T = −
∑

z<w
z min, w max

bzw(ezz, eww)ezw

II. Evaluating
∑

j, j′∈J b(α′j, β
′

j′),

we have ∑
j, j′∈J

b(α′j, β
′

j′) =
∑

j, j′∈J

∑
x<y∈P j

∑
u<v∈P j′

b(αxyexy, βuveuv).

Consider elements x < y ∈ P j and u < v ∈ P j′ , where each pair in x, y, u, v is comparable.
A maximal chain, denoted by l = {x, y, u, v}+, exists in P that contains x, y, u, v. There
exist l′ ∈ Li and l′′ ∈ L j, where Li, L j are defined in (10), such that x, y ∈ l′ and u, v ∈ l′′.
It is obvious that l′ ≈ l ≈ l′′, then l would belong to both L j and L j′ . Thus, we get
x, y, u, v ∈ l ∈ L j

⋂
L j′ , which contradicts Lemma 1.

Hence, the existing pair of elements among x, y, u, v is not comparable, and by Lemma 6,
it follows that

b(αxyexy, βuveuv) = 0.

Therefore, ∑
j, j′∈J

b(α′j, β
′

j′) = 0. (58)

III. Evaluating
∑

j∈J b(α′j, β
′

j),

we have ∑
j∈J

b(α′j, β
′

j) =
∑
j∈J

∑
x<y,u<v∈P j

b(αxyexy, βuveuv).

From Lemmas 2 and 6, the b(αxyexy, βuveuv) part in above equation is non-zero only
when any pair in x, y, u, v is compared and [exy, euv] , 0, which implies either x < y = u < v
or u < v = x < y. Thus, the sum simplifies to∑

j∈J

b(α′j, β
′

j) =
∑
j∈J

∑
x<y<z∈P j

(
b(αxyexy, βyzeyz) + b(αyzeyz, βxyexy)

)
=
∑
j∈J

∑
x<y<z∈P j

(
bxz(αxyexy, βyzeyz) + bxz(αyzeyz, βxyexy)

)
exz.

(59)

Applying Lemmas 3 and 8, we obtain

bxz(αxyexy, βyzeyz)exz + bxz(αyzeyz, βxyexy)exz

=(αxyβyzbxy(exy, eyy) + αyzβxybyz(eyz, eyy))exz

=λ j(αxyβyz − αyzβxy)exz,

(60)
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where λ j is defined by (50). Consequently, Equation (59) becomes∑
j∈J

b(α′j, β
′

j) =
∑
j∈J

λ j

∑
x<y<z∈P j

(αxyβyz − αyzβxy)exz. (61)

IV. Evaluating
∑

j∈J b(α′j, β
D) +

∑
j∈J b(αD, β′j):

First, consider b(α′j, β
D):

b(α′j, β
D) =

∑
x<z∈P j

b(αxzexz, βD).

From Lemma 2, b(αxzexz, βwweww) = 0 unless w = x or w = z. Therefore,

b(α′j, β
D) =

∑
x<z∈P j

(αxzβxxbxz(exz, exx) + αxzβzzbxz(exz, ezz))exz

=
∑

x<z∈P j

(αxzβxx − αxzβzz)bxz(exz, exx)exz

= λ j

∑
x<z∈P j

(αxzβzz − αxzβxx)exz.

(62)

Similarly, for b(αD, β′j), we obtain

b(αD, β′j) = λ j

∑
x<z∈P j

(αxxβxz − αzzβxz)exz.

Combining these results, we have∑
j∈J

b(α′j, β
D) +

∑
j∈J

b(αD, β′j) =
∑
j∈J

λ j

∑
x<z∈P j

(αxzβzz − αxzβxx + αxxβxz − αzzβxz)exz. (63)

Combining All Components:

Substituting Equations (57), (58), (61), and (63) into Equation (53), we obtain

b(α, β) − b(αD, βD)

=
∑
j∈J

λ j

 ∑
x<y<z∈P j

(αxyβyz − αyzβxy) +
∑

x<z∈P j

(αxzβzz − αxzβxx + αxxβxz − αzzβxz)

exz

=
∑
j∈J

λ j

∑
x≤y≤z∈P j

(αxyβyz − αyzβxy)exz

=
∑
j∈J

λ j[α j, β j],

where α j =
∑

x≤y∈P j
αxyexy, β j =

∑
x≤y∈P j

βxyexy.
Consider the aforementioned points; we thus deduce the following result:

b(α, β) =
∑
j∈J

λ j[α j, β j] + [α̂, [β̂, T]]. (64)

Case 2: P is not connected.
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When P is disconnected, we utilize the decomposition (7):

P =
⋃
i∈I

Pi,

where each Pi is a connected component of P. Further, each connected component Pi can be
decomposed as

Pi =
⋃
j∈Ji

Pi
j

using decomposition (11).
For any α, β ∈ I(P,R), write

α =
∑
i∈I

αi and β =
∑
i∈I

βi,

where αi, βi
∈ I(Pi,R), as per decomposition (8).

By Equation (24), the biderivation b satisfies

b(α, β) =
∑
i∈I

b(αi, βi).

Since each Pi is connected, applying the result from Case 1, we obtain

b(αi, βi) =
∑
j∈Ji

λi
j[α

i
j, β

i
j] + [α̂i, [β̂i, Ti]].

Therefore, combining all components, we conclude that

b(α, β) =
∑
i∈I

∑
j∈Ji

λi
j[α

i
j, β

i
j] + [α̂i, [β̂i, Ti]]

, (65)

as desired. It is evident that b is the sum of several inner biderivations and extremal
biderivations. □

Remark 5. The decomposition in the main theorem can be understood in three intuitive steps.
First, Lemma 6 reduces the problem to comparable pairs, so the analysis localizes to connected
chain components of the poset. Second, on each chain component, the constancy result (Theorem 3)
produces scalar weights that result in the inner biderivation terms. Third, Theorems 1 and 2
show that only finite maximal chains produce additional terms that cannot be absorbed into inner
parts; these survive as [α̂i, [β̂i, Ti]], i.e., the extremal biderivations. Thus, the "inner + extremal"
decomposition reflects a structural constraint imposed by the chain decomposition of the poset.

It is evident that if there are no x < y ∈ P where x is the minimal element and y is the
maximal element, α̂i = β̂i = Ti = 0. Consequently, the next corollary holds.

Corollary 5. Let P be a poset that has at least three elements, and let R be a commutative ring with
unity. In the incidence algebra of P over R, if the number of elements in any maximal chain in P is
infinite, every additive biderivation is the sum of several inner biderivations.
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Example 4. We conclude by describing the structure of an arbitrary additive biderivation b on
I(S1,R), where S1 is the poset introduced in Example 3. Recall that

S1 =
⋃
j∈J1

S1
j , J

1 = {1, 2}, S1
1 = {a, b, d}, S1

2 = {a, c, e, f }.

For any α, β ∈ I(S1,R), the biderivation takes the form

b(α, β) = λ1
1 [α

1
1, β1

1] + λ
2
2 [α

1
2, β1

2] + [α̂1, [β̂1, T1]],

α1
j =

∑
x<y∈S1

j

αxy exy, β1
j =

∑
x<y∈S1

j

βxy exy,

α̂1 =
∑

z∈S1 min
or max

αzz ezz, β̂1 =
∑

z∈S1 min
or max

βzz ezz,

T1 = −
∑

z<w∈S1,
z min, w max

bzw(ezz, eww) ezw.
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