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Abstract

This study addresses the Capacitated Vehicle Routing Problem (CVRP) known to be NP-
hard. In this problem, a set of customers with varying demands is considered. To solve
the problem, routes were generated for several vehicles with identical capacity, which
were responsible for delivering products to a set of geographically dispersed customers.
The purpose of the problem is to minimize the total cost of all routes. This problem was
solved by applying the metaheuristic Simulated Annealing (SA) and incorporating four
different neighborhoods to improve the initial solution generated randomly. In the SA, a
set of cooling factors is used. The best solution obtained by SA is refined by the use of Hill
Climbing using a double neighborhood. The algorithm was tested with instances from
the literature in order to measure its effectiveness in solution quality and execution time.
We tested the approach with 106 instances from the literature and obtained the optimum
in 93 instances. The average time in most instances was less than five minutes. Delivery
companies can benefit from this approach. They only need to identify the depot, the clients,
and the distance between locations, and this approach can be used with relative ease.

Keywords: combinatorial optimization; vehicle routing problem; simulated annealing;
metaheuristics; local search; homogeneous capacities

MSC: 90C27; 90C59; 90C90

1. Introduction
Every day, companies around the world face challenges related to optimizing their

resources. These include companies that offer product transportation services or are fully
dedicated to delivering goods. In recent years, the demand for home delivery has increased
considerably for many reasons. For example, during the COVID-19 pandemic, consumer
demand for home delivery services increased.

Shipping and logistics companies have become a highly sought-after service, and with
this, the need for efficient route planning for their deliveries has increased. Poor route
management can represent a significant and constant loss of resources and, in turn, gener-
ate problems that indirectly lead to significant revenue losses. One of the most common
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problems in logistics decision-making is finding ways to reduce transportation costs and
improve customer service by identifying the best routes for a vehicle to follow to mini-
mize travel time or distance. This problem is known as the Capacitated Vehicle Routing
Problem (CVRP).

The vehicle routing problem arose as a generalization of the traveling salesman prob-
lem (TSP). This problem consists of a salesman who must visit a finite number of places
(places where his clients are located). He must visit each location only once and return to
the starting point. The solution to this problem consists of building the route that minimizes
the distance that the agent has to travel. Stated another way, it consists of finding the short-
est route that visits each city from a given list only once and returns to the city of origin.
The CVRP arose from the problem known as multi-agent traveler (M-TSP). The M-TSP
shares a similar approach, but it differs in that it does not involve customer demand or
vehicle capacity. Instead, the M-TSP considers a set of M traveling agents where each
customer must be visited exactly once by a single agent. Each salesman starts at the same
place, called a depot, and must return to it when he finishes visiting his clients.

The Capacitated Vehicle Routing Problem (CVRP) arises in a company that must
deliver a certain product among its customers and wants to find the route (or set of routes)
with the lowest cost, which starts from a warehouse, visits each customer and returns
to the same starting point. Each route is covered with a vehicle with a fixed capacity,
and the demand of each customer is variable. The CVRP can be seen as an m-TSP, with the
additional characteristics that each customer is associated with a demand and each vehicle
has a capacity.

In the field of logistics, or even more specifically in the field of transportation, the prob-
lem of vehicle routing is one of the most important issues for many companies, due to
the great loss of resources that can be caused by the lack of an adequate methodology for
planning distribution routes. The vehicle routing problem answers the question “What
is the optimal set of routes for a fleet of vehicles to satisfy the demands of a given set of
customers?”; that is, the problem requires the delivery of a certain product, stored in a
single location, to geographically dispersed customers who have a certain demand. The
VRP involves the service of a delivery company, a depot and a given set of vehicles, which
move on a given road network, to deliver products to a set of customers. Thus the problem
determines a set of routes (one route for each given vehicle that starts and ends at the depot)
such that all customer demands are satisfied and the transportation cost is minimized.

The VRP variant addressed in this paper is known as the “Capacitated Vehicle Routing
Problem” (CVRP). In this variant, there is only one depot and each customer has a known
demand that cannot be divided. Each vehicle has a fixed capacity and all vehicle capacities
are identical. Likewise, each customer has coordinates that help us determine their location
and also the distance between each customer and depot.

A literature review on the problem and the various solution methods previously
employed is presented in Section 2. The mathematical model of the CVRP is described in
Section 3. In Section 4 the description of the solution method—the Simulated Annealing
metaheuristic—is presented along with the obtained results. In Sections 5 and 6, a brief
conclusion is given.

2. Literature Review
The origin of CVRP dates back to 1959, when George Dantzig and John Ramser [1]

introduced the first definition of the problem. They described a real application of gasoline
delivery to service stations and proposed the first mathematical model. In this article, they
define the problem as “the determination of the optimal route for a fleet of vehicles depart-



Mathematics 2025, 13, 3209 3 of 20

ing from one or more depots (warehouses) to meet the demand of several geographically
dispersed customers”.

Five years later, in 1964, Clarke & Wright [2] developed the first algorithm that was
effective in solving CVRP, known as the savings algorithm. A diagram was developed to
illustrate some of the work conducted on the vehicle routing problem (VRP) (see Figure 1).

Figure 1. Classification ofthe literature on CVRP. The references are as follows: [Balinski, 1964] is
in [3], [Fukasawa et. al., 2006] is in [4], [Laporte G., 1992] is in [5], [Akhtar et al., 2017] is in [6], [Clarke
and Wright, 1964] is in [2], [Gillett and Miller, 1974] is in Miller [7], [Shin and Han, 2011] is in [8],
[Ekayanti, 2024] is in [9], [Mohammed et al., 2012] is in [10], [Baker and Eyechew, 2003] is in [11],
[Lin, 2019] is in [12], [Teoh, 2015] is in [13], [Morales et al., 2018] is in [14], [Mazzeo and Louseau,
2004] is in [15], [Bell et al., 2004] is in [16], [Zhang, 2025] is in [17], [Yesodha and Amudha, 2019]
is in [18], [Altabeeb et al., 2019] is in [19], [Altabeeb, 2021] is in [20], [Szeto et al., 2011] is in [21],
[Alssager et al., 2020] is in [22], [Son, 2025] is in [23], [Tarantilis et al., 2002] is in [24], [Gendreau et al.,
1994] is in [25], [Obaid, 2018] is in [26], [Van Breedam, 1995] is in [27], [Ilhan, 2021] is in [28], [Mari et
al., 2018] is in [29], [Xiao et al., 2014] is in [30], [Lin et al., 2006] is in [31], [Hosseinabadi et al., 2017]
is in [32], [Fares et al., 2023] is in [33], [Fitzpatrick et al., 2024] is in [34], and finally [Pichpibul and
Kawtummachai, 2012] is in [35].
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2.1. Exact Methods

In the study by Balinski and Quandt [3], an integer formulation of the problem is
solved. They used the algorithm known as cutting plane.

In [4], Fukasawa et al. present a bifurcation and cut algorithm that combines two
approaches: one associated with traditional route relaxation and the other defined by limit,
grade and capacity restrictions. They present a branch-cut-price algorithm that combines
two approaches: intersection of two polytopes, one associated with a traditional Lagrange
relaxation and the other defined by bounds, degrees and capacity constraints.

In [5] six representative examples are provided: two direct tree search methods based
on different relaxations, a dynamic programming formulation and three integer linear
programming algorithms. In the work of [6] is presented a backtracking algorithm on a
CVRP problem to optimize waste collection routes to reduce economic costs and environ-
mental impacts.

2.2. Heuristic Methods

Gillett and Miller [7] developed an algorithm called the “Sweep algorithm” to solve
vehicle dispatch problems, and it consists of two parts: a forward step and a backward
step that forms the routes in reverse order. Ref. [8] presents a heuristic algorithm based
on centroids. The proposed algorithm consists of three phases: group construction, group
adjustment and route establishment.

In [9] a combination of the Sweep and Nearest Neighbor algorithms was applied to
address CVRP. The Sweep algorithm was used to group collection points according to their
polar angle with respect to the depot. Within each group, the Nearest Neighbor algorithm
was implemented to optimize the visit sequence, minimizing the total travel distance by
sequentially selecting the next closest point. The Haversian distance was used to calculate
the distances between points; the Euclidean method was not used.

2.3. Metaheuristic Methods

Concerning the methods used for the CVRP, a number of approaches can be enumer-
ated as examples.

With regard to genetic algorithms, the work of Mohammed et al. [10] performs a
chromosomal representation: the gene is encoded as numbers that are assigned to the
chromosome. The number represents the sequence of stops (locations) at which goods are
delivered. This coding is used to sort problems in which some crosses and mutations are
corrected to maintain chromosome consistency.

Baker and Ayechew [11] performed a study on the application of a genetic algorithm
to the basic problem of vehicle routing, for which the following is described: given n clients
and m vehicles, the chromosome for an individual solution is shaped as a string of length n.
The solution of a traveling salesman problem is required for each vehicle in order to make
the transition from an implicit solution to an explicit one, allowing a value to be associated
with each member of the population.

The metaheuristic proposed in [14] integrates a two-stage solution process: first, a set of
feasible CVRP routes is obtained using a tabu search algorithm (Tabu-Search—TS), and sec-
ond, a genetic algorithm (GA) is integrated to improve the feasibility of each route. The re-
sult of this is an evolutionary tabu search metaheuristic (Evolutive Tabu-Search—E-TS).

In [12], a hybrid order-aware genetic algorithm is proposed for the capacity vehi-
cle routing problem in the Internet of Things. The method features a problem-specific
initialization strategy and crossover operator. The former combines sweeping with ran-
domization to address the trade-off between diversity and convergence, while the latter
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integrates neighborhood search heuristics to simultaneously find the best-fit offspring and
check constraints.

Teoh et al. [13] developed an improved differential evolution with integrated local
search (DELS) algorithm. The DELS approach generates a final solution using classical
algorithmic operators of mutation, crossover, and selection.

There are many works using swarm intelligence algorithms to tackle this problem. For
example, regarding the Ant Colony Optimization (ACO) algorithm, an ACO algorithm was
developed in [15] for the CVRP, inspired by an analogy with the behavior of a real-life ant
colony when it searches for food, and the authors proposed a metaheuristic technique: ants
are procedures that construct solutions to an optimization problem. Another author [16]
also worked with Ant Colony Optimization, where they were inspired by the mechanism
by which ants communicate: through a chemical called pheromone.

In [17], ACO is hybridized with the k-means algorithm to help ACO to avoid local
optimization. They used a path saving factor to improve the quality of the solutions and
dynamically adjust the pheromone volatilization coefficient.

Another swarm algorithm is the firefly algorithm. The firefly technique used in [18]
attempts to improve the quality of an initial solution by using a Clarke–Wright saving
algorithm and a local search technique, and its performance is compared with the standard
firefly algorithm and enhanced firefly. In [19] a CVRP-FA algorithm is proposed, which
is the result of a hybridization of a firefly algorithm with two local search procedures.
The objective function is to minimize the total distance of all routes in the corresponding
firefly. Ref. [20] proposes a hybrid cooperative firefly algorithm (CVRP-CHFA) with multi-
ple firefly algorithm (FA) populations. Each FA is hybridized with two types of local search
(i.e., improved 2-opt as local search and 2-h-opt as mutation operator) and genetic operators.
The proposed FAs periodically communicate to exchange some solutions (fireflies).

In [21] the implementation of an artificial bee colony algorithm is proposed and an
improved version of this heuristic is also proposed. The algorithm belongs to a class of
swarm intelligence algorithms that are inspired by the intelligent behavior of honey bees to
find nectar sources around their hives. In the proposed algorithm, bees are divided into
three types: worker bees, bystanders, and scouts.

In [22] a cuckoo search algorithm was implemented, the Cuco search (CS or cuckoo
search) is a popular metaheuristic based on the reproductive strategy of the bird species:
Cuco. Breeding parasitism is an interesting feature of the cuckoo bird, in which a cuckoo
female lays her eggs in another bird’s nest observed and lets the host bird incubate and
breed the cuckoo chicks.

In [23] a hybrid gray wolf and whale optimization algorithm (hGWOAM) is pre-
sented for CVRP. In addition to integrating the enhanced whale optimization algorithm
(EWOA) and the gray wolf optimizer (GWO), the combination with tournament selection,
adversarial learning, and mutation techniques is added.

The tabu search proposed by Glover [36] has been used to solve the CVRP, too. For ex-
ample, ref. [24] describes a list-based threshold acceptance algorithm (LBTA); ref. [25]
presents a tabu search heuristic for the problem of generating vehicle routes with capacity
and route length restrictions.

In [26] the structure of their proposed model is planned with the objective that the
program does not require a substantial database to store the data; for this reason, a tabu
search is used, which speeds up the use of the program execution to acquire the solution.

Regarding the Simulated Annealing (SA) approach, in [27] the use of improvement
methods based on Simulated Annealing is reported; the improvement methods considered
aim at the relocation and/or exchange of stops or chains of stops between different routes,
starting from a feasible initial solution. In the study of [28] a simulated cross-operator
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annealing algorithm called ISA-CO was proposed. In [37] hybrid Genetic and Simulated
Annealing is proposed.

Other approaches based in SA include the population-based method [38], temperature
reheating [29], hybrid SA with Variable Neighbourhood Search [30] and SA with local
search [31]. Our approach is the only one that uses different alphas to the temperature
reheating method.

Several other metaheuristic approaches have been used to solve the CVRP. Some
examples include the following:

In [32] a local search algorithm of gravitational emulation was presented. This is based
on the law of gravity and a group interactions. The proposed algorithm uses two of the
four basic parameters of speed and gravitational force in physics, based on the concepts of
random search and search agents, focusing in the fact that they are a collection of masses
interacting with each other according to Newtonian gravity and the laws of motion.

An approach based on the balance optimizer (EO) algorithm was presented in [33].
The performance of the EO was then compared to that of an artificial bee colony algorithm,
a particle swarm optimization algorithm, and a whale optimization algorithm.

In [34] a heuristic is proposed to solve the vehicle routing problem (CVRP) that inte-
grates a machine learning heuristic with linear programming techniques. At the beginning,
the problem instance is dynamically divided into smaller subproblems and a machine
heuristic is applied to the smaller subproblems. This allows the machine learning heuristic
to always operate on smaller problems similar in size to those for which it has been trained.
Machine learning heuristics generate many solutions for each subproblem which are then
combined using a fixed partition approach.

In [35] an algorithm is proposed based on the Clarke and Wright (CW) saving algo-
rithm; the result was to hybridize the CW with tournament and roulette selections to obtain
a new algorithm, ICW, which is based on calculating the savings when combining two
clients in the same route. In the sequential version, a route is expanded until no more can
be merged, and in the parallel version several routes can be built in parallel.

CVRP is a problem in which much literature is still published to address route design
while the total distance is minimized and the capacity constraint is not broken.

3. Mathematical Model
The basic vehicle routing problem can be named as VRP or CVRP. The problem

consists mainly in obtaining a set of routes using the smallest number of vehicles and
minimizing the distance traveled. The routes must all start in a single depot and return to
it, after having satisfied the deterministic (previously known) and indivisible demands of a
set of customers (or clients). The clients are geographically dispersed and have different
demands. The vehicle capacity is the maximum allowed demand that each vehicle can
transport. This is the constraint that gives name to the problem.

A “route” is considered an ordered road or route previously generated for a journey;
in this case, for the purpose of delivery of products to customers, each of the routes is
assigned to a different vehicle and the number of customers for each route is determined
by the capacity of the vehicles.

The general components that are established for the study of a routing problem are
customers, vehicles, storage, restrictions and targets. There are three restrictions on CVRP:

• Visit each client (node) only once.
• Start the tour and return to the starting point (depot).
• Do not exceed vehicle capacity.

The CVRP model determines a number of routes with minimum total cost; this cost is
the result of the sum of the distances obtained between arcs belonging to all routes.
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The following indices, parameters and variables are used for the model of CVRP
of [39]:

Indices
The model indices are as follows:

i = starting node i(1, 2, ....., n);
j = arrival node j(1, 2, ...., n);
n = total nodes;
k = vehicle k(1, 2, ...., K).

Parameters
The parameters of the problem are as follows:

Cij = transport cost from node i to node j;
dj = demand at node j;
M = capacity of resource k;
n = number of customers.

Variables
The variables defined are as follows:

xk
ij = 1 if the vehicle k is assigned to traverse the arc from node i to node j or zero otherwise.

yij = 1 if the path is from i to j or zero otherwise.
K = number of vehicles to be used.

So, the model is [40]

Minimize

∑
(i,j)∈A

CijYij (1)

subject to

∑
i≤k≤K

xk
ij = Yij; ∀i, j (2)

∑
i≤j≤n

yij = 1; ∀i (3)

∑
i≤j≤n

yij = 1; ∀j (4)

∑
i≤j≤n

y0j = k; (5)

∑
i≤j≤n

yi0 = k; (6)

∑
i≤j≤n

∑
1≤j≤n

dixk
ij ≤ M; ∀k (7)

∑
i∈Q

∑
j∈Q

yij ≤ |Q| − 1 (8)

∀ subset Q o f (1, 2, . . . n) k ≤ K (9)

yij ∈ {0, 1}; ∀(i, j) ∈ A (10)

xk
ij ∈ {0, 1}; ∀(i, j) ∈ A, ∀k (11)

Set A is defined as A = {(i, j) yi,j = 1} (to each pair of arcs (i, j) such that y = 1).
Thus the equations of the model are described as follows:
Equation (1) is the objective function of the CVRP model; it minimizes the distance

traveled. Equation (2) is responsible for making explicit the relationship between variables
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x and y. If a vehicle uses the route from i to j (some xk
i,j = 1), then yi,j will be one. Vehicle

k is used on the arc (i, j). In Equations (3) and (4) the variable yi,j indicates the activation
of the arc (it indicates that the route has been completed). Both constraints ensure that
every customer is an intermediate node on some route (that no customers are forgotten).
Equations (5) and (6) indicate that k is the number of vehicles used in the solution and that
all those leaving the depot or warehouse must return to it; this means that all routes must
be traveled. It is ensured in Equation (7) that the capacity of any vehicle is not exceeded
for any value of k. In (8) it is ensured that the solution does not contain cycles by using
Q representing the set of nodes 1, 2, . . . n. In other words, it tells us that the number of
paths must be the existing paths. The inequation (9) limits the number of vehicles to be
used in the solution. Equations (10) and (11) indicate that both the variables xk

ij and yij

are binary (they can only take the value 0 or 1). An example of a solution can be seen in
Figure 2. The capacity of the vehicle in this example is 15. Route 1 includes nodes 1, 8,
9, and 0. The sum of the weight in this route is 13. Route 2 contains nodes 1, 2, 3, and 4.
The sum of the weight in this route is 15, which is the maximum allowed.

Figure 2. Example of CVRP. Node 1 is the depot. Route 1 includes nodes 1, 8, 9 and 0.

4. Methodology
To tackle the CVRP problem, a procedure was first designed to obtain a feasible

initial solution. The solution was then improved using the Simulated Annealing (SA)
algorithm. Finally, the solution was further improved using a Hill Climbing algorithm
with a double neighborhood. The framing research question of this research is as follows:
with an implementation of SA with re-heat, increasing parameter alpha and using a local
search with a double neighbourhood to improve the solution, is it possible to obtain results
of “good” quality? This question is addressed in this section and the next. The general
algorithm (Algorithm 1) is shown in Figure 3.

Algorithm 1 Pseudocode of the main function

A = 0.9, 0.99, 0.999, 0.9999
S = Feasible_Solution()
Tini = Z(S);
Tf in = 0.00001
for i = 0; i < NUM_TEMPERATURAS; i ++ do

alpha = A[i];
Sbest = SA(Tini, Tf in, alpha, S)
ReturnSbest;

end for
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Figure 3. Flowchart of the general algorithm.

4.1. Initial Solution

The function that generates the initial solution works as follows: For an empty route
R1, customers randomly selected are assigned to the route. When a customer is selected,
the vehicle’s capacity is always checked to ensure it is not exceeded. When it is no longer
possible to assign other customer, another empty route is generated. This process is
repeated until no more customers remain to be assigned. It should be noted that the initial
solution does not consider the distance between customers, only their demand. As an
example of an initial solution, the “E-n16-k3” instance from Christofides and Eilon E [41]
was used. This solution would be visually appreciated as depicted in Figure 4.

Figure 4. Graphical representation of the initial solution.
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4.2. Simulated Annealing

The metaheuristic technique of Simulated Annealing (SA) is an analogy that simulates
the physical cooling process of solid annealing. SA is a neighborhood search algorithm
for combinatorial optimization problems based on the Boltzmann distribution; this means
that, to escape from local optima, the algorithm allows certain movements that worsen
the objective function [42]. The Simulated Annealing (SA) algorithm was selected due
to its capacity to escape local optima, provided that the temperature is sufficiently high.
Another interesting feature is the guarantee of finding a global optimum (at least when
certain theoretical conditions are met).

Implementation of neighbourhoods: A “neighbourhood” refers to the set of neighbouring
solutions generated by perturbations or modifications in each iteration based on an initial
solution. In each iteration of the algorithm, a client exchange is performed, and the cost
of the new solution is calculated. A comparison of these values allows for an assessment
of whether the modification improved or worsened the quality. The four neighbourhoods
(corresponding to four different types of movements) applied in the algorithm in this work
are the following:

• Same-route swapping (N1): The first perturbation mechanism employed is the swap-
ping of two customers on the same route. To achieve this, two customers are randomly
selected and swap places. With this change in order, the cost of the solution will also
change, as it will alter the total distance of that route and, consequently, the cost of the
entire solution. This swapping does not alter the total route capacity, as both customer
demands were previously considered.

• Interchanging Different Routes (N2): The second neighbourhood used is similar to
the previous one, except that the routes are different. That is, two clients or nodes are
interchanged, but they belong to different routes. Two clients are randomly selected
(this time belonging to different routes), and before performing the interchange,
the feasibility of the interchange is verified. This interchange requires verifying the
capacities of both vehicles to avoid exceeding the maximum capacity M of any vehicle.

• Relocate (N3): For the third neighborhood, only one node is randomly selected from
any route and inserted in the same route in another position. The client can be inserted
in any order on the route: it is inserted randomly in any position.

• Reinsertion (N4): For the fourth neighborhood, one client c1 is randomly selected
from any route R1, and inserted in another route R2. Upon insertion of c1 into R2,
it was verified that the sum of demand of R2 did not exceed the maximum capacity
M. The node is removed from the route to which it was previously assigned and
reinserted into another. Again, the client can be inserted randomly in any position of
the receiving route R2.

Some examples of neighborhoods are shown in Figure 5.
To obtain a new solution S′, an operation is performed in the following manner. Given

an existing solution S, the set F of feasible neighbors is calculated using the four neighbor-
hoods. A random solution S′ from the set F is then chosen and evaluated. The solution S′

is accepted if its cost is less than or equal to the cost of S. In cases where the cost is greater,
a random number r is generated in the range [0,1]. The difference δ = cost(S′)− cost(S)
is then computed, and if the condition r < e−δ/τ is satisfied, the solution S′ is accepted.
The condition of termination is when τ reaches the temperature Tf in; this means that the
system is “frozen” and it is not possible to escape from the local optimum to continue
the search (see Algorithm 2).
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Figure 5. Graphical representation of the 4 neighborhoods used.

Algorithm 2 Pseudocode of SA

Zmin ← z← cost(S); τ ← T0; Sbest ← S;
while τ ≤ Tf do

cont← 0;
while cont ≤ MAXITER do

S′ ← perturb(S);
δ← cost(S′)− cost(S);
if Uni(0, 1) < e−δ/τorδ < 0 then

S← S′;
end if
if cost(S) < cost(Sbest) then

zmin← cost(S); Sbest ← S;
end if
cont← cont + 1;

end while
τ ← aτ;

end while

Note: Tini is updated according to the acceptance percentage. If the acceptance
percentage of a temperature τ is less than 95%, T0 will take the value of τ : T0 = τ.

4.3. Double-Neighborhood Search

After running the Simulated Annealing, a double-neighborhood search is performed.
This is achieved by taking the best solution found so far by the Simulated Annealing,
and applying two neighbourhoods to it, using one neighbourhood after another to increase
the solution’s diversification. The process with a given solution S applies all the possible
neighbourhoods N1, N1. Thus, we can explore all possible solutions found by applying
neighbourhood N1 twice. Afterwards, if an improvement in S is not found, the algorithm
searches in the neighbourhood N1, N2; again, all the possible neighbours are explored.
The process continues until a better solution S′ is found or all possible combinations of
neighbourhoods are explored and no improvement is found.

The search for a better solution using double neighborhoods is illustrated in Figure 6.
The solutions are explored until the second level of the tree. When a better solution is found
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it will be the new root and the search is reset. The process continues until any improvement
is found.

Figure 6. Graphical representation of the exploration in the double neighborhood.

4.4. Parameters of SA

The values tested for MAXITER were 500, 1000, 1500 and 2000 iterations. Based on
the results obtained, the value chosen for the internal cycle was 1000 iterations. Tini was set
equal to the value of function objective of the initial solution. Tf in was set equal to 1× 10−5.
The SA performed multiple re-heating steps, and in each one, alpha takes a different value,
begins with 0.9 and ends with 0.9999.

5. Results
Our algorithm was executed on a computer with the following features: Windows 10,

Intel i64470 processor, 3.4 GHZ, 16 GB, and Visual Studio 2012 under C++ language.
The results obtained in this work are presented below in column 3 of each table,

respectively, with the processing time in column 4. In addition, they are compared
with some results from the corresponding literature: KMACO [17], CHFA [20], Dyn-
BCP [4], DELS [13], ICW [35], and OHGA [12] and, for the Taillard benchmark, GELS [32],
OCGA [43], AGES [44], and JCell2o1i [45]. These algorithms were chosen because they
extensively used the benchmark proposed in the literature, regardless of the approach
used, where other approaches only used a subset smaller than the instances available in
the literature. In all tables, the best-known solution appears in the column title as “BKS”.
When a solution is optimal, it is marked in bold and with an asterisk (*). Our approach,
Simulated Annealing with Hill Climbing and Double Neighbourhoods, is in the column
titled “SAHDN”.

The instances used to test our proposal have different origins. The 27 instances of type
“A”, 23 instances of type “B” and 24 instances of type “P” were proposed by Augerat et al.
in [46]. The 13 instances of type “E” and 5 instances of type “M” were proposed by
Christofides and Eilon E. in [41]. Fisher proposed three instances of type “F” in [47]. Finally,
Rochat and Taillard proposed 13 instances in [48].

In Table 1, using type “A” as an example, our algorithm was able to obtain the optimum
for the 27 instances. The average time is between one and two minutes by running type “A”
in all instances.

In Table 2, for these instances of type “B”, we were able to obtain the optimum in
22 of 23 instances. In instance B-n51-k7, OHGA obtains 1017 but increases the number
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of routes by one, thus using k = “8”. A solution of 1016 with k = “8” was obtained. This
result is not displayed in the table, as it is considered a different instance from the original
proposed. In B-n51-k7, the optimum reported in the literature was obtained by using the
original value of k. For instance B-n57-k7, a solution of 1140 was reported by OHFA, once
again with the number of routes increased by one. The same value was obtained by using
the same k from OHFA. This result is also not displayed in the table because it can be
considered another instance. The average time of our algorithm is between 55 and 120 s by
running type “B” in all instances.

Table 1. Group A results table. The results of our proposed method, SA with Hill Climbing and
Double Neighbourhoods (SAHDN), are in the third column. The optimum are marked in bold and
an asterisk.

Instance BKS KMACO CHFA Dyn-BCP DELS ICW OHGA SAHDN Time Avg

A-n32-k5 784 * 784 * 784 * - 784 * 784 * 784 * 784 * 56.11 784 *

A-n33-k5 661 * 661 * 661 * - 661 * 661 * 661 * 661 * 53.64 661 *

A-n33-k6 742 * 742 * 742 * - 742 * 742 * 742 * 742 * 57.14 742 *

A-n34-k5 778 * 778 * 778 * - 778 * 778 * 778 * 778 * 55.56 778 *

A-n36-k5 799 * 799 * 799 * - 799 * 799 * 799 * 799 * 56.33 799 *

A-n37-k5 669 * 669 * 669 * 669 * 669 * 669 * 669 * 669 * 60.21 669 *

A-n37-k6 949 * 949 * 949 * 949 * 949 * 949 * 949 * 949 * 58.83 949 *

A-n38-k5 730 * 730 * 730 * 730 * 730 * 730 * 730 * 730 * 58.83 730 *

A-n39-k5 822 * 822 * 822 * 822 * 822 * 822 * 822 * 822 * 57.77 822.01

A-n39-k6 831 * 831 * 831 * 831 * 831 * 831 * 833 831 * 64.41 832.42

A-n44-k6 937 * 937 * 937 * 937 * 937 * 937 * 937 * 937 * 63.69 937 *

A-n45-k6 944 * 944 * 944 * 944 * 944 * 944 * 953 944 * 61.27 954.42

A-n45-k7 1146 * 1146 * 1146 * 1146 * 1146 * 1146 * 1146 * 1146 * 70.88 1146.05

A-n46-k7 914 * 914 * 914 * 914 * 914 * 914 * 914 * 914 * 73.79 914 *

A-n48-k7 1073 * 1073 * 1073 * 1073 * 1073 * 1073 * 1073 * 1073 * 73.99 1073.22

A-n53-k7 1010 * 1010 * 1010 * 1010 * 1010 * 1010 * 1017 1010 * 79.55 1014.63

A-n54-k7 1167 * 1169 1167 * 1167 * 1167 * 1167 * 1167 * 1167 * 82.66 1167.71

A-n55-k9 1073 * 1074 1073 * 1073 * 1073 * 1073 * 1074 1073 * 86.31 1073.17

A-n60-k9 1354 * 1374 1354 * 1354 * 1354 * 1354 * 1355 1354 * 95.68 1357.8

A-n61-k9 1034 * 1035 1035 1034 * 1035 1034 * 1035 1034 * 83.52 1035.49

A-n62-k8 1288 * 1297 1294 1288 * 1288 * 1298 1308 1288 * 94.8 1297.9

A-n63-k9 1616 * 1631 1616 * 1616 * 1624 1616 * 1630 1616 * 89.24 1626.98

A-n63-k10 1314 * 1327 1315 1314 * 1316 1314 * 1329 1314 * 97.54 1318.87

A-n64-k9 1401 * 1427 1411 1401 * 1416 1415 1416 1401 * 105.22 1414.16

A-n65-k9 1174 * 1177 1177 1174 * 1181 1174 * 1184 1174 * 88.66 1179.6

A-n69-k9 1159 * 1159 * 1159 * 1159 * 1165 1159 * 1170 1159 * 111.64 1166.78

A-n80-k10 1763 * 1768 1763 * 1763 * 1779 1772 1790 1763 * 118.17 1778.59
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Table 2. Results with instances of type B. In the results marked with (a), OHGA gives better results
but with a different value of k. A value that was either the same or better was able to be obtained
using the same value of k that was used in OHGA. The optimum are marked in bold and an asterisk.

Instance BKS KMACO CHFA Dyn-BCP DELS ICW OHGA SAHDN Time Avg

B-n31-k5 672 * 672 * 672 * - 672 * 672 * 672 * 672 * 55.23 672 *

B-n34-k5 788 * 788 * 788 * - 788 * 788 * 788 * 788 * 64.25 788 *

B-n35-k5 955 * 955 * 955 * - 955 * 955 * 955 * 955 * 67.5 955 *

B-n38-k6 805 * 805 * 805 * 805 * 805 * 805 * 805 * 805 * 69.46 805.05

B-n39-k5 549 * 549 * 549 * 549 * 549 * 549 * 549 * 549 * 73.73 549 *

B-n41-k6 829 * 829 * 829 * 829 * 829 * 829 * 829 * 829 * 70.33 829.26

B-n43-k6 742 * 742 * 742 * 742 * 742 * 742 * 742 * 742 * 74.85 742.02

B-n44-k7 909 * 909 * 909 * 909 * 909 * 909 * 909 * 909 * 80.14 909.02

B-n45-k5 751 * 751 * 751 * 751 * 751 * 751 * 751 * 751 * 75.87 751.06

B-n45-k6 678 * 678 * 678 * 678 * 678 * 678 * 680 678 * 67.52 681.91

B-n50-k7 741 * 741 * 741 * 741 * 741 * 741 * 741 * 741 * 84.94 741 *

B-n50-k8 1312 * 1317 1312 * 1312 * 1313 1312 * 1315 1312 * 82.8 1312.84

B-n51-k7 1032 * 1034 1032 * 1032 * 1033 - (a) 1032 * 82.8 1312.84

B-n52-k7 747 * 747 * 747 * 747 * 747 * 751 747 * 747 * 90.04 747.06

B-n56-k7 707 * 710 707 * 707 * 707 * 707 * 711 707 * 104.99 707.68

B-n57-k7 1153 * 1165 - 1153 * 1166 - (a) 1153 * 94.02 1202.56

B-n57-k9 1598 * 1608 1603 1598 * 1599 1598 * 1603 1598 * 101.61 1602.12

B-n63-k10 1496 * 1530 1496 * 1496 * 1504 - 1531 1496 * 109.48 1516.11

B-n64-k9 861 * 866 861 * 861 * 861 * 861 * 867 861 * 94.68 862.98

B-n66-k9 1316 * 1323 1316 * 1316 * 1322 1320 1324 1316 * 104.7 1321.54

B-n67-k10 1032 * 1036 1033 1032 * 1032 * 1032 * 1042 1032 * 105.49 1038.35

B-n68-k9 1272 * 1277 1273 1272 * 1281 1281 1290 1273 113.07 1286.63

B-n78-k10 1221 * 1228 1221 * 1221 * 1230 1238 1245 1221 * 119.66 1236.93

In Table 3, for instances of type “E” our algorithm managed to obtain the optimal
value for 12 of the 13 instances. The average execution time ranges from 22 s to 4 min.
On instance E-n30-k3, OHGA obtained 503, but increased the number of routes by one,
using k = “3”. The same result was also obtained with one fewer route; however, it is
considered a different instance from the original proposal. The optimal value reported in
the literature was also obtained using the original value of k.

In Table 4, for instances of type “F,” our algorithm was able to obtain the optimal
value for all three instances. The average execution time ranges from a minute and a half to
16 min for this group of instances.

In Table 5, for instances of type “M,” our algorithm was able to obtain the optimal
value for two of the five instances. The average execution time ranges from 6 to 34.5 min
for this group of instances.
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Table 3. The Simulated Annealing with Hill Climbing and Double Neighbourhoods (SAHDN) tested
in Group E of instances. The optimum are marked in bold and an asterisk.

Instance BK CHFA Dyn-BCP DELS ICW OHGA SAHDN Time

E-n13-k4 247 * - 247 * 247 * - - 247 * 22.11

E-n22-k4 375 * 375 * 375 * 375 * 375 * 375 * 375 * 35.41

E-n23-k3 569 * 569 * 569 * 569 * 569 * 569 * 569 * 44

E-n30-k3 534 * 534 * 534 * 534 * 534 * 503 534 * 56.91

E-n31-k7 379 * - 379 * 390 - - 379 * 43.01

E-n33-k4 835 * 835 * 835 * 835 * 835 * 835 * 835 * 59.92

E-n51-k5 521 * 521 * 521 * 521 * 521 * 521 * 521 * 70.12

E-n76-k7 682 * 682 * 682 * 689 686 692 682 * 118.54

E-n76-k8 735 * 736 735 * 738 742 740 735 * 99.29

E-n76-k10 830 * - 830 * 843 839 843 830 * 92.1

E-n76-k14 1021 * - 1021 * 1042 1027 1038 1021 * 91.83

E-n101-k8 815 * - 815 * 822 821 822 815 * 217.66

E-n101-k14 1067 * 1071 1067 * 1086 1084 1095 1069 166.09

Table 4. Results of SAHDN in Group F compared against other methods. The optimum are marked
in bold and an asterisk.

Instance BK CHFA Dyn-BCP ICW OHGA SAHDN Time

F-n45-k4 724 * - 724 * 724 * 724 * 724 * 77.38

F-n72-k4 237 * 237 * 237 * 237 * 237 * 237 * 114.02

F-n135-k7 1162 * 1163 1162 * 1162 * - 1162 * 938.58

Table 5. Results of our approach for the instances of type M. The optimum are marked in bold and
an asterisk.

Instance BK CHFA Dyn-BCP SAHDN Time

M-n101-k10 820 * 829 820 * 820 * 262.62

M-n121-k7 1034 * 1034 * 1034 * 1034 * 262.77

M-n151-k12 1015 * 1021 - 1030 702.39

M-n200-k16 1274 * - - 1355 346.85

M-n200-k17 1275 * 1289 - 1311 2076.29

In Table 6, for instances of type “P”, our algorithm obtained the optimal value for
22 of the 23 instances. The average execution time ranges from 1.5 to 5.5 min for this group
of instances. On instance P-n55-k15, our algorithm obtains 959, but increases the number
of routes by one, using k = “14”. This result is considered a different instance from the
original proposal.

For the “Taillard” instances in Table 7, the optimal solution was obtained in 5 of
the 12 instances where the algorithm was tested. Although some optima were able to be
obtained, the algorithm’s performance was not particularly strong. The average run time
for our algorithm is between 2 and a half and 18 min across all “Taillard” instances.
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Table 6. SAHDN when compared against another approach. The optimum are marked in bold and
an asterisk.

Instance BK KMACO CHFA Dyn-BCP DELS ICW OHGA SAHDN Time

P-n16-k8 450 * 450 * 450 * 450 * 450 * 450 * 450 * 450 * 24.14

P-n19-k2 212 * 212 * 212 * 212 * 212 * 212 * 212 * 212 * 28.56

P-n20-k2 216 * 216 * 216 * 216 * 216 * 216 * 216 * 216 * 29.46

P-n21-k2 211 * 211 * 211 * 211 * 211 * 211 * 211 * 211 * 32.96

P-n22-k2 216 * 216 * 216 * 216 * 216 * 216 * 216 * 216 * 34.06

P-n22-k8 603 * 603 * 603 * 603 * 603 * 603 * 603 * 603 * 41.41

P-n23-k8 529 * 529 * 529 * 529 * 533 529 * 529 * 529 * 27.61

P-n40-k5 458 * 458 * 458 * 458 * 458 * 458 * 458 * 458 * 57.6

P-n45-k5 510 * 510 * 510 * 510 * 510 * 510 * 510 * 510 * 62.91

P-n50-k7 554 * 556 554 * 554 * 554 * 554 * 556 554 * 65.67

P-n50-k8 631 * 643 631 * 631 * 641 631 * 630 632 55.88

P-n50-k10 696 * 701 696 * 696 * 696 * 696 * 700 696 * 64.69

P-n51-k10 741 * 744 741 * 741 * 742 741 * 741 * 741 * 62.87

P-n55-k7 568 * 574 568 * 568 * 568 * 568 * 568 * 568 * 74.81

P-n55-k10 694 * 702 694 * 694 * 694 * 697 698 694 * 73.21

P-n55-k15 989 * - - 989 * 989 * - 989 * 989 * 67.37

P-n60-k10 744 * 757 744 * 744 * 744 * 744 * 749 744 * 76.83

P-n60-k15 968 * 984 968 * 968 * 968 * 968 * 985 968 * 83.05

P-n65-k10 792 * 792 * 792 * 792 * 792 * 792 * 797 792 * 91

P-n70-k10 827 * 842 827 * 827 * 827 * 827 * 841 827 * 89.86

P-n76-k4 593 * 598 593 * 593 * 593 * 597 600 593 * 108.37

P-n76-k5 627 * 632 627 * 627 * 629 627 * 630 627 * 110.82

P-n101-k4 681 * 692 681 * 681 * 685 681 * 696 681 * 309.8

Overall, the algorithm was tested on a total of 106 instances, yielding 93 optimal
results, or 87.73%. Regarding processing time, the results ranged from 22 to about 2100 s,
depending on the size of the instance. The algorithm works well in small and medium
instances, for two reasons: Firstly, an alpha near to 1 is used, so the exploration of SA is
quite good in these instances. The second reason is that the double neighbourhood helps
in escaping local optima, increasing the movements explored. This approach is scalable
to other variants of CVRP. However, the drawback of this algorithm will be the same in
all the variants: the size. We test the algorithm in instance tai385 with 385 nodes, and the
average time is above 20,000 s with solutions of low quality.

Simulated Annealing has a theoretical guarantee of finding the global optimum when
the temperature descends very slowly. The alpha used in this work, being near to one, helps
to obtain good solutions in the instances of CVRP problems. The double neighborhood
helps in escaping the local optima and enhances the search of the algorithm. Both of these
characteristics strengthen the search. If SAHDN is compared against the SA published
in [28,29,37,38], SAHDN outperforms in quality of results. Only in the set of instances
of type “A” does SAHDN find the optimum in all sets, while the other approaches only
achieve this in a subset of them.
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Table 7. Table of results for the Taillard group. The results for our proposal, SA with Hill Climbing
and Double Neighborhoods (SAHDN), are shown in the third column. The optimum are marked in
bold and an asterisk.

Instance BK GELS OCGA AGES JCell2o1i SAHDN Time

tai75a 1618.36 * 1618.36 * 1618.36 * 1618.36 * 1618.36 * 1618.36 * 160.67

tai75b 1344.62 * 1344.62 * 1344.63 1344.64 1344.62 * 1344.62 * 157.99

tai75c 1291.01 * 1291.01 * 1291.01 * 1291.01 * 1291.01 * 1291.01 * 163.29

tai75d 1365.42 * 1365.42 * 1365.42 * 1365.42 * 1365.42 * 1365.42 * 179.73

tai100a 2041.34 * 2041.34 * 2050.64 2041.34 * 2047.90 2050.12 258.46

tai100b 1939.9 * 1947.07 1939.9 * 1939.9 * 1940.36 1940.5 264.19

tai100c 1406.2 * 1406.2 * 1408.40 1406.2 * 1411.66 1413.95 266.61

tai100d 1580.46 * 1581.25 1581.22 1581.25 1584.20 1580.46 * 271.08

tai150a 3055.23 * 3069.14 3055.23 * 3055.23 * 3056.41 3072.14 805.39

tai150b 2727.03 * - 2755.09 2727.67 2732.75 2743.38 811.57

tai150c 2358.66 * - - - 2364.08 2370.26 1112.79

tai150d 2645.39 * 2659.02 2660.33 2645.40 2654.69 2674.85 1072.59

Logistics and distribution firms can implement this approach with the following
steps. The first step is to feed the algorithm with the necessary data. This includes all
customer order information, such as delivery addresses, the distance between localities
and cargo weight or volume. It also requires detailed data on the vehicle fleet, including
capacity. Another step is to customize the approach to the specific business context. This
involves defining the objective function—what the firm wants to minimize or maximize.
For example, a company might prioritize minimizing fuel consumption, reducing total
travel time, or maximizing the number of completed deliveries. The algorithm’s constraints,
like vehicle capacity, must also be coded in to ensure the generated routes are feasible
and practical. Finally, once the data and constraints are set, the algorithm runs to find an
optimal set of routes. The output is a series of optimized routes for each vehicle, which are
then dispatched to drivers.

6. Conclusions and Future Work
A proposal based on Simulated Annealing was presented to solve the CVRP, which

consists of finding an initial feasible random solution, which is then improved by the imple-
mentation of the heuristic method. Four different neighborhood types were implemented
to extend the algorithm search during initial solution perturbations. The best solution
obtained was improved by a double neighborhood search. For the evaluation, the algorithm
solved a total of 106 instances with different numbers of clients (different sizes), obtaining
the optimal result in 93 of them, which corresponds to 87.73% of the total. The proposed
approach showed robustness and competitiveness with other approaches when it was
tested in many instances in the literature. It is possible to use this algorithm to solve
real problems in delivery companies with fewer than two hundred deliveries. A possible
approach involves using K-means to group the clients in sets of adequate size and then
solve them. As future work, it is proposed to use this approach in a different variant of
the problem, such as Vehicle Routing Problem with Time Windows, or electrical vehicle
routing with recharging stations. A hybridization of Simulated Annealing with a genetic
algorithm can be considered to develop a memetic algorithm. Another methaheuristic
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based on neighbourhoods instead of SA can be employed, like tabu search or Iterated Local
Search. Finally, paralleling can be used to speed up and improve the search.

Author Contributions: Conceptualization, F.A.-P.; methodology, F.A.-P. and D.V.A.-O.; validation,
F.A.-P.; formal analysis, F.A.-P. and M.A.C.-C.; resources, F.A.-P. and J.d.C.P.-A.; writing, F.A.-P. and
D.V.A.-O.; supervision, M.A.C.-C. and J.d.C.P.-A.; project administration, M.A.C.-C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available in CVRPLIB at
http://vrp.galgos.inf.puc-rio.br/index.php/en/ (accessed on 21 September 2025).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Dantzing, G.B.; Ramser, J.H. The truck dispatching problem. Manag. Sci. 1959, 6, 80–91. [CrossRef]
2. Clarke, G.; Wright, J.R. Scheduling of Vehicle Routing Problem from a Central Depot to a Number of Delivery Points. Oper. Res.

1964, 12, 568–581. [CrossRef]
3. Balinski, M.L.; Quandt, R.E. On an Integer Program for a Delivery Problem. Oper. Res. 1964, 12, 300–304. [CrossRef]
4. Fukasawa, R.; Longo, H.; Lysgaard, J.; de Aragão, M.P.; Reis, M.; Uchoa, E.; Werneck, R.F. Robust Branch-and-Cut-and-Price for

the Capacitated Vehicle Routing Problem. Math. Program. 2006, 106, 491–511. [CrossRef]
5. Laporte, G. The vehicle routing problem: An overview of exact and approximate algorithms. Eur. J. Oper. Res. 1992, 59, 345–358.

[CrossRef]
6. Akhtar, M.; Hannan, M.A.; Begum, R.A.; Basri, H.; Scavino, E. Backtracking search algorithm in CVRP models for efficient solid

waste collection and route optimization. Waste Manag. 2017, 61, 117–128. [CrossRef] [PubMed]
7. Gillett, B.E.; Miller, L.R. A Heuristic Algorithm for the Vehicle-Dispatch Problem. Oper. Res. 1974, 22, 340–349. [CrossRef]
8. Shin, K.; Han, S. A Centroid-based Heuristic Algorithm for the Capacitated Vehicle Routing Problem. Comput. Inform. 2011, 30,

721–732.
9. Ekayanti, E.; Sugianto y Efendi, I.B. Capacitated Vehicle Routing Problem (CVRP) with Sweep and Nearest Neighbor Algorithm.

Sinergi Int. J. Logist. 2024, 2, 17–29. [CrossRef]
10. Mohammed, M.A.; Ahmad, M.S.; Mostafa, S.A. Using genetic algorithm in implementing capacitated vehicle routing problem.

In Proceedings of the 2012 International Conference on Computer & Information Science (ICCIS), Kuala Lumpur, Malaysia,
12–14 June 2012; Volume 1, pp. 257–262.

11. Baker, B.M.; Ayechew, M. A genetic algorithm for the vehicle routing problem. Comput. Oper. Res. 2003, 30, 787–800. [CrossRef]
12. Lin, N.; Shi, Y.; Zhang, T.; Wang, X. An effective order-aware hybrid genetic algorithm for capacitated vehicle routing problems in

internet of things. IEEE Access 2019, 7, 86102–86114. [CrossRef]
13. Teoh, B.E.; Ponnambalam, S.G.; Kanagaraj, G. Differential evolution algorithm with local search for capacitated vehicle routing

problem. Int. J. Bio-Inspired Comput. 2015, 7, 321–342. [CrossRef]
14. Caballero-Morales, S.O.; Martínez-Flores, J.L.; Sánchez-Partida, D. An evolutive tabu-search metaheuristic approach for the

capacitated vehicle routing problem. In New Perspectives on Applied Industrial Tools and Techniques; Springer International
Publishing: Cham, Switzerland, 2017; pp. 477–495. [CrossRef]

15. Mazzeo, S.; Loiseau, I. An ant colony algorithm for the capacitated vehicle routing. Electron. Notes Discret. Math. 2004, 18, 181–186.
[CrossRef]

16. Bell, J.E.; McMullen, P.R. Ant colony optimization techniques for the vehicle routing problem. Adv. Eng. Inform. 2004, 18, 41–48.
[CrossRef]

17. Zhang, Z.; Tan, S.; Qin, J.; Zou, K.; Zhou, S. Multi-strategy ant colony optimization with k-means clustering algorithm for
capacitated vehicle routing problem. Clust. Comput. 2025, 28, 202. [CrossRef]

18. Yesodha, R.; Amudha, T. An improved firefly algorithm for capacitated vehicle routing optimization. In Proceedings of the 2019
Amity International Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 4–6 February 2019; pp. 163–169.
[CrossRef]

19. Altabeeb, A.M.; Mohsen, A.M.; Ghallab, A. An improved hybrid firefly algorithm for capacitated vehicle routing problem. Appl.
Soft Comput. 2019, 84, 105728. [CrossRef]

http://vrp.galgos.inf.puc-rio.br/index.php/en/
http://doi.org/10.1287/mnsc.6.1.80
http://dx.doi.org/10.1287/opre.12.4.568
http://dx.doi.org/10.1287/opre.12.2.300
http://dx.doi.org/10.1007/s10107-005-0644-x
http://dx.doi.org/10.1016/0377-2217(92)90192-C
http://dx.doi.org/10.1016/j.wasman.2017.01.022
http://www.ncbi.nlm.nih.gov/pubmed/28153405
http://dx.doi.org/10.1287/opre.22.2.340
http://dx.doi.org/10.61194/sijl.v2i1.187
http://dx.doi.org/10.1016/S0305-0548(02)00051-5
http://dx.doi.org/10.1109/ACCESS.2019.2925831
http://dx.doi.org/10.1504/IJBIC.2015.072260
http://dx.doi.org/10.1007/978-3-319-56871-3_23
http://dx.doi.org/10.1016/j.endm.2004.06.029
http://dx.doi.org/10.1016/j.aei.2004.07.001
http://dx.doi.org/10.1007/s10586-024-04860-2
http://dx.doi.org/10.1109/AICAI.2019.8701269
http://dx.doi.org/10.1016/j.asoc.2019.105728


Mathematics 2025, 13, 3209 19 of 20

20. Altabeeb, A.M.; Mohsen, A.M.; Abualigah, L.; Ghallab, A. Solving capacitated vehicle routing problem using cooperative firefly
algorithm. Appl. Soft Comput. 2021, 108, 107403. [CrossRef]

21. Szeto, W.Y.; Wu, Y.; Ho, S.C. An artificial bee colony algorithm for the capacitated vehicle routing problem. Eur. J. Oper. Res. 2011,
215, 126–135. [CrossRef]

22. Alssager, M.; Othman, Z.A.; Ayob, M.; Mohemad, R.; Yuliansyah, H. Hybrid cuckoo search for the capacitated vehicle routing
problem. Symmetry 2020, 12, 2088. [CrossRef]

23. Pham, V.H.S.; Nguyen, V.N.; Nguyen Dang, N.T. Applying a Hybrid Gray Wolf-Enhanced Whale Optimization Algorithm to the
Capacitated Vehicle Routing Problem. J. Adv. Transp. 2025, 2025, 5584617. [CrossRef]

24. Tarantilis, C.D.; Kiranoudis, C.T.; Vassiliadis, V.S. A list based threshold accepting algorithm for the capacitated vehicle routing
problem. Int. J. Comput. Math. 2002, 79, 537–553. [CrossRef]

25. Gendreau, M.; Hertz, A.; Laporte, G. A tabu search heuristic for the vehicle routing problem. Manag. Sci. 1994, 40, 1276–1290.
[CrossRef]

26. Obaid, O.I. Solving capacitated vehicle routing problem (cvrp) using tabu search algorithm (tsa). Ibn AL-Haitham J. Pure Appl. Sci.
2018, 31, 199–209. [CrossRef]

27. Van Breedam, A. Improvement heuristics for the Vehicle Routing Problem based on simulated annealing. Eur. J. Oper. Res. 1995,
86, 480–490. [CrossRef]
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