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Abstract:



A conflict control system with state constraints is under consideration. A method for finding viability kernels (the largest subsets of state constraints where the system can be confined) is proposed. The method is related to differential games theory essentially developed by N. N. Krasovskii and A. I. Subbotin. The viability kernel is constructed as the limit of sets generated by a Pontryagin-like backward procedure. This method is implemented in the framework of a level set technique based on the computation of limiting viscosity solutions of an appropriate Hamilton–Jacobi equation. To fulfill this, the authors adapt their numerical methods formerly developed for solving time-dependent Hamilton–Jacobi equations arising from problems with state constraints. Examples of computing viability sets are given.
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1. Introduction


In many technical control problems, it is necessary to keep a controlled system within prescribed state constraints in the presence of disturbances. Such a control process is usually considered on a large (infinite) time interval, and no performance index is used. One approach to such problems is given by robust control theory [1] based on the methods of stability theory. Viability theory [2] can be considered as an alternative approach. Namely, a viable subset of the state constraint determines a feedback strategy that can keep the state vector within this subset. One can design such a feedback strategy, using the extremal aiming procedure described in [3]. A method for constructing the viability kernel (the maximal viable subset of the state constraint) is proposed in [4]. This method is based on the necessary and sufficient viability conditions formulated in terms of contingent cones. The book [5] considers a wide range of questions related to the analysis and construction of viability sets. A procedure for constructing viability kernels for control systems (without any conflict controls) is proposed in [6].



The present paper extends the short communication [7] and the report [8]. A constructive method for finding viability kernels is described and theoretically analyzed. The approach used is related to the theory of differential games (see [3,9]). The viability kernel is constructed as the limit of sets generated by a Pontryagin-like backward procedure (see [9]). The idea of such a passage to the limit was proposed in [10] for linear systems with discrete time. In the paper presented, an approximation scheme for finding the solvability kernel for a general class of nonlinear autonomous controlled system is proposed. This algorithm is numerically implemented in terms of level sets. The idea consists in the computation of the limit in the time of viscosity solutions (see [11,12]) of an appropriate Hamilton–Jacobi equation. To implement this idea, the authors adapt their numerical methods formerly developed for solving time-dependent Hamilton–Jacobi equations arising from problems with state constraints. Examples of computing viability sets are given.




2. Differential Game and Viability Kernels


Consider a differential game with the autonomous dynamics:


x˙=f(x,u,v),x∈[image: there is no content],u∈P⊂Rp,v∈Q⊂Rq



(1)




Here, x is the state vector, u and v are control parameters of the first and second players, respectively, and P and Q are compacts of the corresponding dimensions. We suppose that f satisfies standard requirements: continuity in [image: there is no content] and v; the Lipschitz condition in x; and a growth condition that provides the continuability of the solutions to any time interval.



Based on the conflict control system (1), consider for any [image: there is no content] the differential inclusion:


[image: there is no content]



(2)







Definition 1 (u-stability property [3]). Let T be an arbitrary time instant. A set [image: there is no content]is said to be [image: there is no content]stable on the interval [image: there is no content]if for any initial position, [image: there is no content], for any time instant, t*(t*≤t*≤T), for any [image: there is no content], there exists a solution, [image: there is no content], to the differential inclusion (2) with the initial state [image: there is no content], such that [image: there is no content].



Definition 2 (viability property [2]). A set [image: there is no content]is said to be viable if for any [image: there is no content], for any [image: there is no content]there exists a solution [image: there is no content]to the differential inclusion (2) with the initial state [image: there is no content]such that x(t)∈K,t≥0.



Definition 3 (viability kernel [2]). For a given compact set [image: there is no content]denote by [image: there is no content]the largest subset of G with the viability property. This subset is called the viability kernel of G.



The following assertions follow from Definitions 1–3:

	(1)

	
The closure of a u-stable (viable) set is a u-stable (viable) set.




	(2)

	
The union of any family of u-stable (viable) sets is a u-stable (viable) set.




	(3)

	
If [image: there is no content] is a u-stable closed set, then for any initial position, [image: there is no content], for any [image: there is no content], there exists a solution, [image: there is no content], to the differential inclusion (2) with the initial state x(t*)=x* such that (t,x(t))∈W,t*≤t≤T.









The first assertion follows from the compactness and semi-continuity of solution sets of differential inclusions; see e.g., [13], and notice that the solution set of Equation (2) depends, even Lipschitz continuous, on the initial state. The second assertion follows from the definition of u-stability (viability). The third assertion can be proven by considering ever finer subdivisions of the interval [image: there is no content], step-by-step constructing solutions of Equation (2) that satisfy the assertion at nodes of the subdivisions and using the compactness of the solution sets of Equation (2).



Assertion (3) shows that Definition 2 is a special case of Definition 1 with [image: there is no content] and [image: there is no content]. Assertions (1) and (2) provide the existence of the viability kernel, [image: there is no content], for any compact set, G, if there exists at least one viable subset of G. Thus, the following problem can be considered.



Problem. Given a compact set [image: there is no content] it is required to construct the viability kernel, [image: there is no content].



To solve this problem, fix an arbitrary [image: there is no content] and introduce the set [image: there is no content]. Due to Assertions (1) and (2), there exists a closed maximal u-stable on the interval [image: there is no content] set [image: there is no content]. For any time instant, [image: there is no content], denote


[image: there is no content]











Remark 1. The family [image: there is no content]has the property of monotonicity: [image: there is no content]for [image: there is no content]. Really, if [image: there is no content]is a u-stable set, then the set [image: there is no content]^defined by the cross-sections [image: there is no content]^(t)=∪τ≤t[image: there is no content](τ)is also u-stable. Therefore, the maximal u-stable set, W, must have the required monotonicity property.



These facts immediately follow from the above definitions, and they are left to the reader to prove.



Proposition 1. Let [image: there is no content]be a sequence of nonempty compact sets such that [image: there is no content]if [image: there is no content], and let [image: there is no content], then [image: there is no content]and [image: there is no content][image: there is no content]to X in the [image: there is no content]



Proof. First, X is nonempty as the intersection of embedded compacts. Second, assume that the convergence is absent. Then, there exists an [image: there is no content], such that [image: there is no content] for all [image: there is no content]. Here, the upper index, [image: there is no content], denotes the [image: there is no content]-neighborhood of sets, and the symbol “cl” denotes the closure operation. The sets [image: there is no content], are compact and embedded. Therefore, there exists x∈⋂[image: there is no content]Ak=X⋂cl(X0ϵ∖Xϵ), which is a contradiction. ☐



Theorem 1. If [image: there is no content]for any [image: there is no content], then there exists the Hausdorff limit [image: there is no content]and:


lim[image: there is no content]W(t)=⋂[image: there is no content]W(t)=Viab(G)≠∅








Otherwise, there is not any viable subset of G.



Proof. Denote K:=⋂[image: there is no content]W(t) for brevity. If for any [image: there is no content], the set, [image: there is no content], is nonempty, then K is also nonempty as the intersection of nonempty embedded compacts. Show that K is viable in the sense of Definition 2. Choose arbitrary x*∈K,v∈Q and [image: there is no content]. By Proposition 1, for any [image: there is no content], there exists [image: there is no content], such that:


K⊂W(t)⊂Kε,for allt≤[image: there is no content]



(3)







The condition, [image: there is no content], implies the inclusion, x*∈W([image: there is no content]-δ). By virtue of u-stability of the set W, there exists a solution, [image: there is no content], of Equation (2) with the initial state x([image: there is no content]-δ)=x*, such that x([image: there is no content])∈W([image: there is no content]). With the autonomy of the differential inclusions (2), we conclude the existence of a solution, [image: there is no content], of Equation (2), such that [image: there is no content] and [image: there is no content]



Thus, for arbitrarily small [image: there is no content], there exists a solution, [image: there is no content], of Equation (2) that satisfies the relations, [image: there is no content] and [image: there is no content]. Since the solution set of Equation (2) is compact, this gives a solution, [image: there is no content], such that [image: there is no content] and [image: there is no content]. Thus, we have proven the viability property of K, and relation (3) proves the Hausdorff convergence of [image: there is no content] to K as [image: there is no content].



Assume now that [image: there is no content] is a viable set, such that [image: there is no content]. As was noticed in the comment to Definition 2, the viability property of [image: there is no content] means the u-stability property of the set [image: there is no content]×[image: there is no content]. Since [image: there is no content]×[image: there is no content]⊂N, and W is the maximal u-stable set belonging to N, then [image: there is no content]×[image: there is no content]⊂W. Thus, [image: there is no content]⊂W(t) for all [image: there is no content], and therefore, [image: there is no content]⊂⋂[image: there is no content]W(t)=K. This proves Theorem 1. ☐




3. Approximation


Immediate implementation of Theorem 1 for finding [image: there is no content] requires precise computing of the sets [image: there is no content] for [image: there is no content]. If, for example, the step-by-step backward procedure from [9] related to the dynamic programming method is used, then the computational error grows infinitely as [image: there is no content] The algorithm proposed in the current paper uses the idea of decreasing the step of the backward procedure simultaneously with the passage to the limit as time goes to infinity. The algorithm looks as follows:


K0=GKi+1=⋂[image: there is no content][⋃x∈[image: there is no content](x-δi+1[image: there is no content](x))+δi+12βS]⋂G



(4)







Here, S is the unit closed ball in [image: there is no content],β=LM, L is the Lipschitz constant of [image: there is no content], and M=sup{|f|:f∈[image: there is no content](x),x∈G,v∈Q}.



Theorem 2. Let the family [image: there is no content]be defined by Equation (4), where the sequence {[image: there is no content]is such that [image: there is no content]and [image: there is no content][image: there is no content]. If [image: there is no content]for any [image: there is no content], then there exists the Hausdorff limit, [image: there is no content], and


limi→∞[image: there is no content]=Viab(G)≠∅











Otherwise, there is no viable subset of G.



Before starting the proof of Theorem 2, we prove three auxiliary lemmas. The first lemma shows a discrete u-stability of the family [image: there is no content] generated by Equation (4). Assume just for the simplicity of subsequent calculations that [image: there is no content] for all [image: there is no content]. This requirement allows us to avoid the consideration of terms of the form [image: there is no content][image: there is no content] in the proof of Lemma 1, which reduces the amount of calculations.



Lemma 1. Let l and s be integers such that [image: there is no content]. Let [image: there is no content]be fixed. If [image: there is no content], then there exists a solution, [image: there is no content], of Equation (2) with [image: there is no content], such that [image: there is no content], where σ=[image: there is no content][image: there is no content], ω=4LMeLσ[image: there is no content][image: there is no content].



We first prove the following two auxiliary propositions.



Proposition 2. Let [image: there is no content]and [image: there is no content]. If [image: there is no content], then for any solution, [image: there is no content], of differential inclusion (2) with the initial state [image: there is no content], there exists a solution, [image: there is no content], with the initial state [image: there is no content], such that [image: there is no content]



Proof of Proposition 2. The proof immediately follows from the Filippov–Gronwall inequality obtained in [14], Theorem 1. ☐



Proposition 3. Let [image: there is no content], [image: there is no content]and [image: there is no content]be fixed. If [image: there is no content], then there is a solution, [image: there is no content], of Equation (2) with the initial condition [image: there is no content], such that [image: there is no content][image: there is no content], where [image: there is no content][image: there is no content]



Proof of Proposition 3. Choose v∈Q,j>0 and [image: there is no content]. Let [image: there is no content]. Then, there exists a point, [image: there is no content], satisfying [image: there is no content]. By the definition of [image: there is no content], there are a point [image: there is no content] and vectors g¯∈[image: there is no content](x¯) and [image: there is no content], |[image: there is no content]|≤1, such that:


x*=x¯-δjg¯+LMδj2[image: there is no content]orx¯=x*+δjg¯-LMδj2[image: there is no content]











Using the Lipschitz property of the right-hand side of Equation (2), choose a vector, [image: there is no content]∈[image: there is no content](x*), to provide the inequality [image: there is no content]. Denote [image: there is no content][image: there is no content] and calculate:


[image: there is no content]











Accounting for the technical assumption [image: there is no content], [image: there is no content], simplifies the last estimate as follows:


[image: there is no content]



(5)







Let g(x)∈[image: there is no content](x) be the nearest point to [image: there is no content] for every [image: there is no content]. Obviously, the function [image: there is no content] is continuous and satisfies the following inequality, due to the Lipschitz property of [image: there is no content](·):


|g(x)-[image: there is no content]|≤L|x-x*|



(6)







Suppose [image: there is no content] is a solution of the differential equation [image: there is no content] with the initial state [image: there is no content]. Then:


x(δj)-x^=∫0δj(g(x(ξ))-[image: there is no content])dξ











The last equation and the estimate (6) yield the inequality:


[image: there is no content]








and, with Equation (5), it holds that:


[image: there is no content]











By Proposition 2, there exists a solution, [image: there is no content], of Equation (2) with the initial state [image: there is no content], such that:


[image: there is no content]











Then:


[image: there is no content]








and therefore:


x0(δj)∈Kj-1α1,α1=αeLδj+4LMδj2








Proposition 3 is proven. ☐



Proof of Lemma 1. Let [image: there is no content] be chosen. Setting [image: there is no content] and applying Proposition 3, we construct a solution, [image: there is no content], of Equation (2) that satisfies the conditions:


x(0)=x*∈Ksx(δs)∈Ks-1α0,α0=Dδs2x(δs+δs-1)∈Ks-2α1,α1=α0eLδs-1+Dδs-12...x(δs+δs-1+...+δl+1)∈Kl[image: there is no content],[image: there is no content]=αp-1eLδl+1+Dδl+12











It is easy to estimate [image: there is no content] to obtain the inequality:


[image: there is no content]≤eLσD∑i=l+1s[image: there is no content]








where σ=[image: there is no content][image: there is no content]. This proves Lemma 1. ☐



Lemma 2. If [image: there is no content]≠∅for all [image: there is no content], then the set:


[image: there is no content]








is nonempty and possesses the viability property.



Proof. If [image: there is no content]≠∅ for all [image: there is no content], then K is nonempty as the intersection of nonempty embedded compacts. Let x*∈K,v∈Q and [image: there is no content] be arbitrary. For any [image: there is no content], one can choose a large integer, k, to satisfy the following conditions:



(a) [image: there is no content] (see Proposition 1);



(b) [image: there is no content]<ε for all [image: there is no content].



Choose [image: there is no content], such that ∑i=k+1m[image: there is no content]>δ. Since [image: there is no content], it holds that [image: there is no content]. Hence, for any [image: there is no content], there exist an integer [image: there is no content] and a point, [image: there is no content], such that [image: there is no content]. Using the Lipschitz continuity of the solution set of Equation (2) (see Proposition 2), one can choose the value of ξ to be so small that for any solution, [image: there is no content], with [image: there is no content], there exists a solution, [image: there is no content], with [image: there is no content], satisfying [image: there is no content]. By virtue of Condition (b) and the choice of [image: there is no content] and s, there exists [image: there is no content], such that


|∑i=l+1s[image: there is no content]-δ|<ε











Set σ=[image: there is no content][image: there is no content] and [image: there is no content]. By Lemma 1, there exists a solution, [image: there is no content], of Equation (2) with [image: there is no content] and [image: there is no content], where ω=D[image: there is no content][image: there is no content]. With Condition (b), it holds that


ω≤D∑i=l+1s[image: there is no content]ε=Dσε≤D(δ+ε)ε=D1ε











Taking into account the obvious inequality [image: there is no content], we have:


[image: there is no content]








where [image: there is no content]



Condition (a) implies the inclusion [image: there is no content], and therefore:


[image: there is no content]








where [image: there is no content]



Using the choice of ξ, we obtain the existence of a solution, [image: there is no content], of Equation (2) with [image: there is no content] and [image: there is no content], where [image: there is no content] Since ε is arbitrary and the solution set of Equation (2) is compact, there exists a solution, [image: there is no content], such that [image: there is no content] This proves Lemma 2. ☐



Lemma 3 If a set [image: there is no content]has the viability property, then [image: there is no content]⊂[image: there is no content]for all [image: there is no content].



Proof. Define the following sequence:


[image: there is no content]










K˜i+1=⋂[image: there is no content][⋃z∈K˜iXv(z,δi+1)]⋂G



(7)




where:


Xv(z,τ)={x(τ):x(0)=z,x˙(ζ)∈-[image: there is no content](x(ζ)),0≤ζ≤τ}.











One can easily check the following properties of [image: there is no content]:

	(a)

	
K0˜=G,[image: there is no content]˜⊂G,i≥1.




	(b)

	
For any point [image: there is no content] and any vector [image: there is no content], there is a solution, [image: there is no content], of Equation (2), such that [image: there is no content] and x([image: there is no content])∈K˜i-1.




	(c)

	
If [image: there is no content], but [image: there is no content], then there exists [image: there is no content] such that for any solution, [image: there is no content], of Equation (2) with [image: there is no content] it holds that x([image: there is no content])∉K˜i-1.









Arguing by induction, one can easily prove the maximality of [image: there is no content] in the following sense: for any family, [image: there is no content], with Properties (a) and (b), the inclusion [image: there is no content] holds for any [image: there is no content]. However, the viability property of [image: there is no content] implies that the family obtained by the replication of [image: there is no content] has Properties (a), except for [image: there is no content]=G, and (b). Hence, [image: there is no content]⊂K˜i for [image: there is no content] To complete the proof, it remains to check the inclusion [image: there is no content] for all [image: there is no content]. To do this, the following proposition will be proven.



Proposition 4. For arbitrary v∈Q,τ>0, and any solution, [image: there is no content], of the differential inclusion x˙∈-[image: there is no content](x)with the initial state [image: there is no content], there exists a vector, [image: there is no content]∈[image: there is no content](x*), such that:


|x*-τ[image: there is no content]-x(τ)|≤LMτ2











Proof of Proposition 4. Let g(ξ)∈-[image: there is no content](x*) be the nearest point to [image: there is no content] for any [image: there is no content]. It is evident that the function [image: there is no content] is measurable, and the following inequality holds:


[image: there is no content]











This implies the estimate:


|x*-τ[image: there is no content]-x(τ)|≤Lτmax{|x*-x(ξ)|:ξ∈[0,τ]}








where:


[image: there is no content]=-1/τ∫0τg(ξ)dξ∈[image: there is no content](x*)











Taking into account the obvious inequality:


[image: there is no content]








we obtain the desired estimation, which proves Proposition 4. ☐



Thus, Lemma 3 is also proven. ☐



Proof of Theorem 2. Define K by Formula Equation (4). If [image: there is no content]≠∅ for all [image: there is no content], then K is nonempty and viable by Lemma 1.



Show the maximality of [image: there is no content] To this end, consider an arbitrary viable set, [image: there is no content]. Lemma 3 says that [image: there is no content]⊂[image: there is no content],i>0, and therefore:


[image: there is no content]⊂⋂k≥1cl⋃i>k[image: there is no content]=K











This proves the maximality of K.



Prove now the Hausdorff convergence. Take an arbitrary [image: there is no content] and use Proposition 1 to choose an integer, k, such that [image: there is no content]. Taking [image: there is no content] and accounting for Lemma 3 yield the relations:


K⊂[image: there is no content]⊂⋃i>k[image: there is no content]⊂Kε








which prove the convergence of [image: there is no content] to K in the Hausdorff metric.



Notice, if there exists a viable set [image: there is no content], then, for every [image: there is no content], the condition [image: there is no content]˜≠∅ implies that K˜j+1≠∅ (these sets are defined by Equation (7)). Hence, K˜i≠∅ for all [image: there is no content]. As was noticed in the proof of Lemma 3, the inclusion K˜i⊂[image: there is no content] holds for any [image: there is no content]. Therefore, [image: there is no content]≠∅ for any [image: there is no content] Thus, the case Ks=∅, for some [image: there is no content], contradicts with the existence of viable subsets of G. Theorem 2 is proven. ☐



Remark 2. For a linear differential game with the dynamics:


[image: there is no content]








relations Equation (4) turn into the following ones:


[image: there is no content]










[image: there is no content]



(8)







Here, E is the identity matrix, and the sign “[image: there is no content]” denotes the geometric difference. If the sets, [image: there is no content]and Q, are convex polyhedra, and D is the unit cube in [image: there is no content](any bounded polyhedron containing the unit closed ball is appropriate), then all sets [image: there is no content]produced by Equation (8) are polyhedra, too. These formulas were used as the basis for a computer algorithm. A computer program developed by the authors permits the implementation of Equation (8) for the space dimension up to three.



Consider the case where the right-hand side of Equation (2) does not depend on [image: there is no content] In this case, Definition 2 coincides with the usual definition of viability (see [2]), and the sets [image: there is no content] appearing in Theorem 1 can be found as follows: [image: there is no content], where:


X-FG(τ)={x(τ):x˙(ξ)∈-F(x(ξ)),x(ξ)∈G,ξ∈[0,τ]}











Thus, the following theorem holds.



Theorem 3. If X-FG(τ)≠∅for any [image: there is no content], then there exists the Hausdorff limit, [image: there is no content], and:


limτ→∞X-FG(τ)=Viab(G)≠∅











Otherwise, there are no viable subsets of G.



The approximation theorem is now formulated as follows.



Theorem 4. Let


[image: there is no content]










Ki+1=⋃x∈[image: there is no content](x-δi+1F(x))+δi+12βS⋂G








where S is the unit ball, β=LM,Lis the Lipschitz constant of the right-hand side of differential inclusion Equation (2) and:


M=sup{|f|:f∈F(x),x∈G}











Suppose the sequence {[image: there is no content]}satisfies the conditions [image: there is no content]and [image: there is no content][image: there is no content]=∞. If [image: there is no content]≠∅for all [image: there is no content], then there exists the Hausdorff limit, [image: there is no content], and:


limi→∞[image: there is no content]=Viab(G)≠∅











Otherwise, there are no viable subsets of G.




4. Numerical Scheme


The idea of the numerical method consists in the representation of the viability kernel as a level set of an appropriate function. Assume that the constraint set, G, is described by the relation:


G={x∈[image: there is no content],g(x)≤0}








where g is a Lipschitz continuous function. It is required to construct a function, V, such that:


Viab(G)={x∈[image: there is no content],V(x)≤0}











Define the Hamiltonian of the inclusion Equation (2) as follows:


H(x,p)=max[image: there is no content]minf∈[image: there is no content](x)⟨f,p⟩











Let [image: there is no content] be a Lipschitz function satisfying the conditions:

	(i)

	
[image: there is no content](x)≥g(x) for all x∈[image: there is no content];




	(ii)

	
for any point [image: there is no content]∈[image: there is no content] and any function [image: there is no content], such that [image: there is no content]-φ attains a local minimum at [image: there is no content], the following inequality holds: H[image: there is no content],∇φ([image: there is no content])≤0.









Proposition 5. The function:


V(x)=inf{[image: there is no content](x):[image: there is no content]satisfiestheconditions(i)and(ii)}








has the property:


Viab({x∈[image: there is no content],g(x)≤c})={x∈[image: there is no content],V(x)≤c}











Notice that Condition (i) provides the embedding of the level sets of V into the corresponding level sets of g. Condition (ii) provides the u-stability of functions [image: there is no content] (see [15,16]), and therefore, the u-stability of the function V. The operation “inf” provides the minimality of the resulting function, i.e., the maximality of its level sets. Thus, Proposition 5 is valid.



Unfortunately, the direct application of this proposition to the computation of V is impossible, because the validation of Condition (ii) is very difficult algorithmically. On the other hand, Theorem 1 shows that the function V can be computed as lim[image: there is no content]V(t,·), where [image: there is no content] is the value function of the differential game with the Hamiltonian [image: there is no content] and the objective functional [image: there is no content]; see [16]. This remark allows us to use the numerical methods developed for constructing time-dependent value functions in differential games with state constraints (see [15,16]).



Let us outline the numerical methods of [15,16] and show how they should be adopted to our aims.



Consider the following finite difference scheme. Let [image: there is no content] be the backward time step and [image: there is no content] space discretization steps. Set [image: there is no content]. For any continuous function [image: there is no content]:[image: there is no content]→R, define:


F([image: there is no content];δ)(x):=max[image: there is no content]minf∈[image: there is no content](x)[image: there is no content]x+δf-δ2β2



(9)







Denote by:


[image: there is no content]h(xi1,...,xin)=[image: there is no content](i1h1,...,inhn),[image: there is no content](xi1,...,xin)=g(i1h1,...,inhn)








the restrictions of [image: there is no content] and g to the grid.



Let [image: there is no content] be an interpolation operator that maps grid functions to continuous functions and satisfies the estimate:


∥[image: there is no content][[image: there is no content]]-ϕ∥≤C|h|2∥D2ϕ∥



(10)




for any smooth function, ϕ. Here, [image: there is no content] is the restriction of ϕ to the grid, [image: there is no content] the point-wise maximum norm, [image: there is no content] the Hessian matrix of ϕ and C an independent constant.



Notice that Estimate (10) is typical for interpolation operators (see, e.g., [17]). Roughly speaking, interpolation operators reconstruct values and gradients of interpolated functions, and therefore, the expected error is given by Equation (10).



As an example, consider a multilinear interpolation operator constructed in the following way (see [15]).



Let [image: there is no content] be an integer and [image: there is no content] the binary representation of m, so that [image: there is no content] is either zero or one. Thus, each multi-index [image: there is no content] represents a vertex of the unit cube in [image: there is no content], and m counts the vertices. Introduce the following functions:


ωm[image: there is no content]=∏i=1n(1-[image: there is no content])1-[image: there is no content]xi[image: there is no content],m=1,...,2n



(11)







Notice that the i-th member in the product Equation (11) is either [image: there is no content] or [image: there is no content] depending on the value of [image: there is no content]. Consider a point x=[image: there is no content]∈[image: there is no content]. Denote by [image: there is no content] the lower and by x¯i=[image: there is no content]+hi the upper grid points of the i-th axis, such that [image: there is no content]≤[image: there is no content]≤x¯i. Let [image: there is no content], [image: there is no content], be the values of a grid function, [image: there is no content], in the vertices of the n-brick ∏i=1n[[image: there is no content],x¯i] (the vertices are ordered in the same way as the vertices of the unit n-cube above). The multilinear interpolation of [image: there is no content] at [image: there is no content] is:


[image: there is no content][[image: there is no content]](x)=∑m=12n[image: there is no content]·ωmx1-x̲1h1,...,xn-x̲nhn











Let [image: there is no content] be a sequence of positive reals, such that [image: there is no content] and [image: there is no content]. Consider the following grid scheme:


[image: there is no content]ℓ+1h=maxF[image: there is no content][[image: there is no content]ℓh];[image: there is no content]h,[image: there is no content],[image: there is no content]0h=[image: there is no content],ℓ=0,1,...



(12)







Notice that F[image: there is no content][[image: there is no content]ℓh];[image: there is no content] is a continuous function, which is then restricted to the grid and then compared with the grid function [image: there is no content].



Relations Equation (9) and Equation (12) can be interpreted as follows. The shift, [image: there is no content], of the argument of the function [image: there is no content] in Equation (9) means the opposite shift of level sets of [image: there is no content]; compare with Equation (4). The minimum over f means the union of level sets of [image: there is no content], and the maximum over v results in the intersection of the level sets. The subtraction of the value, [image: there is no content], means adding of the ball [image: there is no content] to the level sets. Moreover, the maximum in Equation (12) means the intersection of the level sets with the constraint set, G. Therefore, the numerical scheme Equation (12) implements the relation Equation (4) in the language of level sets.



Consider another numerical grid scheme (see [16]) that approximately implements the limit lim[image: there is no content]V(t,·). Introduce the following upwind operator:


F([image: there is no content];δ)(x)=[image: there is no content](x)+δmax[image: there is no content]minf∈[image: there is no content](x)∑i=1n(piRfi++piLfi-)








where [image: there is no content] are the components of f, and:


a+=max{a,0},a-=min{a,0}piR=[[image: there is no content](x1,...,[image: there is no content]+hi,...,xn)-[image: there is no content](x1,...,[image: there is no content],...,xn)]/hipiL=[[image: there is no content](x1,...,[image: there is no content],...,xn)-[image: there is no content](x1,...,[image: there is no content]-hi,...,xn)]/hi











Notice that the new operator, F, can be immediately applied to a grid function and returns a grid function.



The numerical scheme is now of the form:


[image: there is no content]ℓ+1h=maxF[image: there is no content]ℓh;[image: there is no content],[image: there is no content],[image: there is no content]0h=[image: there is no content],ℓ=0,1,...



(13)







Notice that the application of the algorithm Equation (13) requires the relation [image: there is no content] for all ℓ (remember that M is the bound of [image: there is no content]); see [15] and [16]. On the other hand, numerical experiments show a very nice property of this method: the noise usually coming from the boundary of the grid area is absent, so that the grid region may not be too much larger than the region where the solution is searched. The algorithm Equation (12) does not possess such a property, so that larger grid regions are necessary in this case. On the other hand, this algorithm admits larger steps, [image: there is no content], which can compensate for the necessary extent of the region.




5. Examples


Example 1. The first example illustrates Theorem 3 (the case of one player). Let the differential inclusion be of the form:


[image: there is no content]








where [image: there is no content] is the state vector, S the unit ball of [image: there is no content] and [image: there is no content] a positive real number. Let [image: there is no content], where [image: there is no content]. According to Theorem 3, consider the differential inclusion in reverse time (utilize the symmetry of S):


[image: there is no content]



(14)







Using the function [image: there is no content] as the Lyapunov function, one can easily see that any solution of Equation (14) does not leave G. Therefore,


X-FG(τ)={x(τ):x(0)∈G,x˙(ξ)∈-x(ξ)+αS,ξ∈[0,τ]}








i.e., [image: there is no content] is the attainable set of System Equation (14) at the time instant, τ. A calculation shows that the support function of [image: there is no content] is given by the formula:


[image: there is no content]











Thus, Theorem 3 yields that [image: there is no content]



Example 2. The second example illustrates Theorem 2 and the application of the grid algorithm Equation (13). Consider a pendulum with a moving suspension point. The dynamics of the object is described by the system:


θ˙=ww˙=3ml2u-3([image: there is no content]+[image: there is no content])2lsinθ-3[image: there is no content]2lcosθ



(15)







Here, θ is the deflection angle, l the length, m the mass, [image: there is no content] the gravity acceleration, u the torque applied to the pendulum at the suspension point (control) and [image: there is no content] and [image: there is no content] the vertical and horizontal accelerations of the suspension point, respectively, (disturbances). The following values of parameters and bounds on the control and disturbances are chosen:


l=1m,m=1kg,[image: there is no content]=9.81m/s2










|u|≤0.9Nm,|[image: there is no content]|≤3m/s2,|[image: there is no content]|≤1.5m/s2











The constraint set, G, is the unit circle given by the relation [image: there is no content], and the sequence [image: there is no content] is chosen as [image: there is no content]=0.001/ln(3+ℓ). The grid is formed by dividing the region [image: there is no content] into [image: there is no content] square cells.



The run tests of the algorithm Equation (13) show that:


maxovergrid|[image: there is no content]ℓ+1h-[image: there is no content]ℓh|<5·10-7ifℓ≥50,000








which is the stopping criterion. The runtime on a laptop with six threads is approximately 1 min. Figure 1 shows the viability kernel obtained as Viab(G)={(θ,w):[image: there is no content]ℓh(θ,w)≤1}.


Figure 1. The viability kernel for the problem Equation (15) with the above described data.



[image: Mathematics 02 00068 g001]









6. Conclusions


Our experience shows that the grid methods outlined in this paper are appropriate for solving nonlinear problems of the dimension up to four. The next steps will be aimed towards dimensions five and six, which requires the use of sparse representations of grid functions and the supercomputing systems that are available nowadays. Such results will allow us to consider, e.g., aircraft applications related to essentially nonlinear takeoff and landing problems with complex state constraints.
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