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1. Introduction

Fractional Differential Equations, in which an unknown function is contained under the operation of
a derivative of fractional order, have been of great interest recently. Many papers and books on fractional
differential equations have appeared (see [1–6]). In [7], Lakshmikantham and Vatsala derived the basic
theory of fractional differential equations. In [8], Hernandez et al. proved the existence of solutions of
abstract fractional differential equations by using fixed point techniques.
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On the other hand, impulsive differential systems are proved to be adequate mathematical models
for numerous processes and phenomena studied in population dynamics, physics, chemistry and
engineering. In recent years, some impressive results have been obtained in this area (see [7,9]). For the
general theory of impulsive differential systems, the reader can refer to [10].

However, actual impulses do not always happen at fixed points but usually at random points. When
the impulses exist at random points, the solutions of the differential systems are stochastic processes.
Random impulsive systems are more realistic than deterministic impulsive systems. The study of random
impulsive differential equations is a new area of research. So far, few results have been discussed in
random impulsive systems. The existence and uniqueness of differential system with random impulses
is studied by Anguraj et al. in [11,12]. In [13], Wu and Duan discussed the oscillation, stability and
boundedness of second-order differential systems with random impulses, and in [14,15], the authors
proved the existence and stability results of random impulsive semilinear differential systems.

Recently, the study of impulsive differential equations has attracted a great deal of attention in
fractional dynamics and its theory has been treated in several works (see [16,17]). Also, several
authors [18–20] have studied the behaviour of neutral dfferential equations. The main reason for
this interest is that delay differential equations play an important role in applications. For instance,
in biological applications, delay equations give a better description of fluctuations in population than
the ordinary ones. Also, neutral delay differential equations appear as models of electrical networks
which contain lossless transmission lines. Such networks arise, for example, in high speed computers
where lossless transmission lines are used to interconnect switching circuits. In [21], Agarwal, Zhou and
He proved the existence results of fractional neutral functional differential equations and also in [22],
Anguraj et al. proved the existence results for fractional impulsive neutral differential equations. By
the motivation of the recent surge in developing the theory of fractional neutral differential equations,
we present a new idea of research to prove the existence of fractional neutral differential equations with
random impulses.

This paper is divided into four sections. In Secion 2, we recall some basic definitions and preliminary
facts. In Section 3, we shall establish the existence theorem for the Equation (1) by using the
Krasnoselskii’s fixed point theorem and in the final section, an illustrative example is presented.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space and Ω a non-empty set. Assume that τk is a random
variable defined from Ω to Dk

def.
= (0, dk) for all k = 1, 2, ... where 0 < dk < ∞. Furthermore, assume

that τi and τj are independent of each other as i 6= j for i, j = 1, 2, .... Let τ, T ∈ R be two constants
satisfying τ < T . We denote Rτ = [τ, T ], R+ = [t0,∞).

We consider the fractional neutral functional differential equations with random impulses of the form:
cDα(x(t)− g(t, xt)) = A(t, x)x(t) + f(t, xt), t ∈ [τ, T ], t 6= ζk

x(ζk) = bk(τk)x(ζ−k ), t = tk, k = 1, 2, ...

xt0 = φ

(1)
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where cDα is the standard Caputo’s fractional derivative of order 0 < α < 1. f, g : Rτ × C → Rn,

C = C([−r, 0], Rn) are given functions mapping [−r, 0] into Rn with some given r > 0. φ is a
function defined from [−r, 0] to Rn ; xt is a function when t is fixed, defined by xt(θ) = x(t + θ), for
θ ∈ [−r, 0]; ζ0 = t0 and ζk = ζk−1 + τk for k = 1, 2, .... Here t0 ∈ Rτ is an arbitrary given real number.
Obviously, t0 = ζ0 < ζ1 < ζ2 < ...... < ζk < ...; bk : Dk → Rn×n is a matrix valued function for
each k = 1, 2, ..., x(ζ−k ) = limt→ζk x(t) with the norm ||x||t = supt−r<s<t ||x(s)|| for each t satisfying
τ ≤ t ≤ T and T ∈ R+ is a given number, ||.|| is any given norm in Rn. Let B(Rn) denote the Banach
space of bounded linear operators from Rn to Rn with the norm ||A||B(Rn) = sup

{
||A(y)|| : ||y|| = 1

}
.

Denote {Bt, t ≥ 0} the simple counting process generated by ζn, that is, {Bt ≥ n} = {ζn ≤ t}, and
denote Ft the σ-algebra generated by {Bt, t ≥ 0}. Then (Ω, P, {Ft}) is a probability space. For the
simplicity, denote the Banach space Γ =

{
all functions defined from [t0 − r,∞) to Rn with the norm

defined by ||χ||Γ = supt≥t0 E||χ||t
}

.

Definition 1. ([4]). The fractional integral of order q with the lower limit t0 for a function f is defined as

Iqf(t) =
1

Γ(q)

∫ t

t0

(t− s)(q−1)f(s)ds, t > t0, q > 0

provided the right-hand side is pointwise defined on [t0,∞), where Γ is the gamma function.

Definition 2. ([4]). Riemann-Liouville (R-L) derivative of order q with the lower limit t0 for a function
f : [t0,∞) −→ R can be written as

Dqf(t) =
1

Γ(n− q)
dn

dtn

∫ t

t0

(t− s)(n−q−1)f(s)ds, t > t0, n− 1 < q < n.

The most important property of R-L fractional derivative is that for t > t0 and q > 0, we have
Dq(Iqf(t)) = f(t), which means that R-L fractional differentiation operator is a left inverse to the R-L
fractional integration operator of the same order q.

Definition 3. ([4]). The Caputo fractional derivative of order q with the lower limit t0 for a function
f : [t0,∞) −→ R can be written as

cDqf(t) =
1

Γ(n− q)

∫ t

t0

(t− s)(n−q−1)f (n)(s)ds = I(n−q)f (n)(t), t > t0, n− 1 < q < n.

Obviously, Caputo’s derivative of a constant is equal to zero.
We shall state some properties of the operators Iα and cDα.

Proposition 4. ([4,15]) For α, β > o and f as a suitable function, we have

(i) IαIβf(t) = Iα+βf(t)

(ii) IαIβf(t) = IβIαf(t)

(iii) Iα(f(t) + g(t)) = Iαf(t) + Iαg(t)
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(iv) Iα cDαf(t) = f(t)− f(0), 0 < α < 1

(v) cDαIαf(t) = f(t)

(vi) cDαf(t) = I(1−α)Df(t) = I(1−α)f ′(t), 0 < α < 1, D = d
dt

(vii) cDα cDβf(t) 6= cD(α+β)f(t)

(ix) cDα cDβf(t) 6= cDβ cDαf(t)

In [7], Balachandran and Trujillo observed that both the R-L and the Caputo fractional differential
operators do not possess neither semigroup nor commutative properties, which are inherent to the
derivatives on integer order. For basic facts about fractional integrals and fractional derivatives one
can refer to the books [4,6,9].

Definition 5. For a given T ∈ (t0,∞), a stochastic process {x(t), t0 − r ≤ t ≤ T} is called a solution
to the Equation (1) in (Ω, P, {Ft}) , if
(i) x(t) is Ft-adapted.
(ii)x(t0 + s) = φ(s) when s ∈ [−r, 0], and

x(t) = g(t, xt) +
∞∑
k=0

[ k∑
i=1

g(ti, xti)(bi(τi)− 1)
k∏

j=i+1

bj(τj) +
k∏
i=1

bi(τi)
[
φ(0)− g(t0, φ)

]
+

k∑
i=1

k∏
j=i

bj(τj)

Γ(α)

{∫ ζi

ζi−1

(ζi − s)α−1A(s, x)x(s)ds
}

+
1

Γ(α)

∫ t

ζk

(t− s)α−1A(s, x)x(s)ds (2)

+
k∑
i=1

k∏
j=i

bj(τj)

Γ(α)

{∫ ζi

ζi−1

(ζi − s)α−1f(s, xs)ds
}

+
1

Γ(α)

∫ t

ζk

(t− s)α−1f(s, xs)ds
]
I[ζk,ζk+1)(t), t ∈ [t0, T ]

where
∏k

j=i bj(τj) = bk(τk)bk−1(τk−1)...bi(τi),
∏n

j=m(.) = 1 as m > n and IA(.) is the index
function, i.e.,

IA(t) =

1, if t ∈ A

0, if t /∈ A

Lemma 6. (Krasnoselskii’s Fixed point theorem). Let X be a Banach space, let E be a bounded closed
convex subset of X and let S, U be maps of E into X such that Sx+Uy ∈ E for every pair x, y ∈ E. If
S is a contraction and U is Completely continuous, then the equation Sx+Ux = x has a solution on E.
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3. Existence Results

In this section, we discuss the existence of the solutions of the system (1). Before stating and proving
the main results, we introduce the following hypothesis.

(H1) The function f satisfies the Lipschitz condition and there exists a positive constant L1 > 0 such
that for x, y ∈ C and t ∈ [τ, T ],

||f(t, xt)− f(t, yt)|| ≤ L1||x− y||.

(H2) The function g is continuous and there exists a constant L2 > 0 such that

||g(t, xt)|| ≤ L2.

(H3) A : J × Rn → B(Rn) is a continuous bounded linear operator and there exists a constant L3 > 0

such that
||A(t, x)− A(t, y)|| ≤ L3||x− y||,

for all x, y ∈ Rn.

(H4) The functions f and A are continuous and there exist a non-negative constant k such that

||f(t, 0)|| ≤ k, ||f(t, xt)|| ≤ L1||x||+ k

||A(t, 0)|| ≤ k, ||A(t, x)|| ≤ L3||x||+ k.

(H5) maxi,k

{∏k
j=i ||bj(τj)||

}
is uniformly bounded. (i.e.) there is a B > 0 such that

max
i,k

{ k∏
j=i

||bj(τj)||
}
≤ B, ∀τj ∈ Dj, j = 1, 2, ...

(H6) There exists a constant N > 0 such that

max
k

{
||g(ti, xti)(bi(τi)− 1)||

}
≤ N.

Theorem 7. Under the hypotheses (H1)− (H6), there exists a solution for the equation (1) if

(T − t0)α

Γ(α + 1)
max

{
1, B

}
[(L3r + k)r + (L1r + k)] + L2 +B

(
N + E||φ(0)− g(t0, φ)||

)
≤ r (3)

and

(T − t0)α

Γ(α + 1)
max

{
1, B

}
[2L3r + k + L1] < 1 (4)
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Proof: Let T be an arbitrary positive number t0 < T < ∞. Let us define an operator P : Γ → Γ

as follows:

Px(t) = φ(t− t0), t ∈ [t0 − r, t0)

and

Px(t) = g(t, xt) +
∞∑
k=0

[ k∑
i=1

g(ti, xti)(bi(τi)− 1)
k∏

j=i+1

bj(τj) +
k∏
i=1

bi(τi)
[
φ(0)− g(t0, φ)

]
+

k∑
i=1

k∏
j=i

bj(τj)

Γ(α)

{∫ ζi

ζi−1

(ζi − s)α−1A(s, x)x(s)ds
}

+
1

Γ(α)

∫ t

ζk

(t− s)α−1A(s, x)x(s)ds

+
k∑
i=1

k∏
j=i

bj(τj)

Γ(α)

{∫ ζi

ζi−1

(ζi − s)α−1f(s, xs)ds
}

+
1

Γ(α)

∫ t

ζk

(t− s)α−1f(s, xs)ds
]
I[ζk,ζk+1)(t), t ∈ [t0, T ]

Let Br =
{
x ∈ Γ : ‖x‖ ≤ r

}
We define the operators S and U on Br as

Sx(t) =



φ(t− t0) t ∈ [t0 − r, t0]∑∞
k=0

[∑k
i=1

∏k
j=i

bj(τj)

Γ(α)

{∫ ζi
ζi−1

(ζi − s)α−1A(s, x)x(s)ds
}

+ 1
Γ(α)

∫ t
ζk

(t− s)α−1A(s, x)x(s)ds

+
∑k

i=1

∏k
j=i

bj(τj)

Γ(α)

{∫ ζi
ζi−1

(ζi − s)α−1f(s, xs)ds
}

+ 1
Γ(α)

∫ t
ζk

(t− s)α−1f(s, xs)ds
]
I[ζk,ζk+1)(t), t ∈ [t0, T ]

and

Ux(t) =


φ(t− t0) t ∈ [t0 − r, t0]

g(t, xt) +
∑∞

k=0

[∑k
i=1 g(ti, xti)(bi(τi)− 1)

∏k
j=i+1 bj(τj)

+
∏k

i=1 bi(τi) [φ(0)− g(t0, φ) ]
]
I[ζk,ζk+1)(t), t ∈ [t0, T ]

Next, we have to prove that S + U has a fixed point in Br.
The proof is divided into three steps.

Step I: To prove Sx+ Uy ∈ Br, for all x, y ∈ Br.
For x, y ∈ Br, consider,

‖Sx+ Uy‖ = ‖
∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

Γ(α)

∫ ζi

ζi−1

(ζi − s)α−1A(s, x)x(s)ds

+
1

Γ(α)

∫ t

ζk

(t− s)α−1A(s, x)x(s)ds+
k∑
i=1

k∏
j=i

bj(τj)

Γ(α)

∫ ζi

ζi−1

(ζi − s)α−1f(s, xs)ds

+
1

Γ(α)

∫ t

ζk

(t− s)α−1f(s, xs)ds
]
I[ζk,ζk+1)(t)
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+g(t, yt) +
∞∑
k=0

[ k∑
i=1

g(ti, yti)(bi(τi)− 1)
k∏

j=i+1

bj(τj)

+
k∏
i=1

bi(τi)[φ(0)− g(t0, φ)]
]
I[ζk,ζk+1)(t)‖

≤ ‖g(t, yt)‖+
∞∑
k=0

[ k∑
i=1

‖g(ti, yti)(bi(τi)− 1)‖
k∏

j=i+1

‖bj(τj)‖

+
k∏
i=1

‖bi(τi)‖‖φ(0)− g(t0, φ)‖
]
I[ζk,ζk+1)(t)

+
∞∑
k=0

[ k∑
i=1

k∏
j=i

‖bj(τj)‖
Γ(α)

∫ ζi

ζi−1

(ζi − s)α−1‖A(s, x)‖ ‖x(s)‖ds

+
1

Γ(α)

∫ t

ζk

(t− s)α−1‖A(s, x)‖ ‖x(s)‖ds
]
I[ζk,ζk+1)(t)

+
∞∑
k=0

[ k∑
i=1

k∏
j=i

‖bj(τj)‖
Γ(α)

∫ ζi

ζi−1

(ζi − s)α−1‖f(s, xs)‖ds

+
1

Γ(α)

∫ t

ζk

(t− s)α−1‖f(s, xs)‖ds
]
I[ζk,ζk+1)(t)

≤ L2 + max
k

{ k∑
i=1

‖g(ti, yti)[bi(τi)− 1]‖
}

max
i,k

{ k∏
j=i+1

‖bj(τj)‖
}

+ max
k

{ k∏
i=1

‖bi(τi)‖
}
‖φ(0)− g(t0, φ)‖

+
1

Γ(α)
max
i,k

{
1,

k∏
j=i

‖bj(τj)‖
}∫ t

t0

(t− s)α−1‖A(s, x)‖ ‖x(s)‖ds

+
1

Γ(α)
max
i,k

{
1,

k∏
j=i

‖bj(τj)‖
}∫ t

t0

(t− s)α−1‖f(s, xs)‖ds

≤ L2 +NB +B‖φ(0)− g(t0, φ)‖

+
1

Γ(α)
max
i,k

{
1, B

}∫ t

t0

(t− s)α−1
[
‖A(s, x)− A(s, 0)‖+ ‖A(s, 0)‖

]
‖x(s)‖ds

+
1

Γ(α)
max
i,k

{
1, B

}∫ t

t0

(t− s)α−1
[
‖f(s, xs)− f(s, 0)‖+ ‖f(s, 0)‖

]
ds

≤ L2 +B
(
N + ‖φ(0)− g(t0, φ)‖

)
+

1

Γ(α)
max
i,k

{
1, B

}∫ t

t0

(t− s)α−1
[
L3‖x‖+ k

]
‖x(s)‖ds

+
1

Γ(α)
max
i,k

{
1, B

}∫ t

t0

(t− s)α−1
[
L1‖x‖+ k

]
ds
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Now,

E‖(Sx+ Uy)(t)‖ ≤ L2 +B
(
N + E‖φ(0)− g(t0, φ)‖

)
+

1

Γ(α)
max
i,k

{
1, B

}∫ t

t0

(t− s)α−1
[
L3E‖x‖+ k

]
E‖x(s)‖ds

+
1

Γ(α)
max
i,k

{
1, B

}∫ t

t0

(t− s)α−1
[
L1E‖x‖+ k

]
ds

sup
t0≤t≤T

E‖(Sx+ Uy)(t)‖ ≤ L2 +B
(
N + sup

t0≤t≤T
E‖φ(0)− g(t0, φ)‖

)
+

1

Γ(α)
max
i,k

{
1, B

}∫ t

t0

(t− s)α−1
[
L3 sup

t0≤t≤T
E‖x‖+ k

]
sup

t0≤t≤T
E‖x(s)‖ds

+
1

Γ(α)
max
i,k

{
1, B

}∫ t

t0

(t− s)α−1
[
L1 sup

t0≤t≤T
E‖x‖+ k

]
ds

≤ L2 +B
(
N + ‖φ(0)− g(t0, φ)‖

)
+

(T − t0)α

Γ(α + 1)
max

{
1, B

}[
(L3r + k)r + (L1r + k)

]
Therefore, by Equation (3) ‖Sx+Uy‖ = supt≥t0 E‖Sx+Uy‖ ≤ r, which means that Sx+Uy ∈ Br.

Step II: To prove S is a contraction on Br.
Let x, y ∈ Br.
Consider,

Sx(t)− Sy(t) =
∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

Γ(α)

∫ ζi

ζi−1

(ζi − s)α−1
[
A(s, x)x(s)− A(s, y)y(s)

]
ds

+
1

Γ(α)

∫ t

ζk

(t− s)α−1
[
A(s, x)x(s)− A(s, y)y(s)

]
ds

+
k∑
i=1

k∏
j=i

bj(τj)

Γ(α)

∫ ζi

ζi−1

(ζi − s)α−1
[
f(s, xs)− f(s, ys)

]
ds

+
1

Γ(α)

∫ t

ζk

(t− s)α−1
[
f(s, xs)− f(s, ys)

]
ds
]
I[ζk,ζk+1)(t).

Then,
‖Sx(t)− Sy(t)‖

≤
∞∑
k=0

[ k∑
i=1

k∏
j=i

‖bj(τj)‖
Γ(α)

∫ ζi

ζi−1

(ζi − s)α−1
[
‖A(s, x)(x(s)− y(s))‖+ ‖(A(s, x)− A(s, y))y(s)‖

]
ds

+
1

Γ(α)

∫ t

ζk

(t− s)α−1
[
‖A(s, x)(x(s)− y(s))‖+ ‖(A(s, x)− A(s, y))y(s)‖

]
ds
]
I[ζk,ζk+1)(t)
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+
∞∑
k=0

[ k∑
i=1

k∏
j=i

‖bj(τj)‖
Γ(α)

∫ ζi

ζi−1

(ζi − s)α−1
[
‖f(s, xs)− f(s, ys)‖

]
ds

+
1

Γ(α)

∫ t

ζk

(t− s)α−1
[
‖f(s, xs)− f(s, ys)‖

]
ds
]
I[ζk,ζk+1)(t)

≤ 1

Γ(α)
max
i,k

{
1,

k∏
j=i

‖bj(τj)‖
}∫ t

t0

(t− s)α−1
[
‖A(s, x)(x(s)− y(s))‖+ ‖(A(s, x)− A(s, y))y(s)‖

]
ds

+
1

Γ(α)
max
i,k

{
1,

k∏
j=i

‖bj(τj)‖
}∫ t

t0

(t− s)α−1‖f(s, xs)− f(s, ys)‖ds

≤ 1

Γ(α)
max
i,k

{
1, B

}∫ t

t0

(t− s)α−1
[
(L3‖x‖+ k)‖x(s)− y(s)‖+ L3‖x− y‖‖y(s)‖

]
ds

+
1

Γ(α)
max
i,k

{
1, B

}∫ t

t0

(t− s)α−1
[
L1‖x− y‖

]
ds.

Therefore,

sup
t0≤t≤T

E‖(Sx(t)− Sy(t)‖ ≤ 1

Γ(α)
max
i,k

{
1, B

}∫ t

t0

{
(t− s)α−1

[
(L3 sup

t0≤t≤T
E‖x‖s + k)×

sup
t0≤t≤T

E‖x(s)− y(s)‖s + L3 sup
t0≤t≤T

E‖x− y‖s sup
t0≤t≤T

E‖y(s)‖s
]}
ds

+
L1

Γ(α)
max
i,k

{
1, B

}∫ t

t0

(t− s)α−1 sup
t0≤t≤T

E‖x− y‖sds

≤ (T − t0)α

Γ(α + 1)
max

{
1, B

}[
2L3r + k + L1

]
sup

t0≤t≤T
E‖x− y‖t.

Thus,

‖Sx(t)− Sy(t)‖ ≤
{(T − t0)α

Γ(α + 1)
max

{
1, B

}[
2L3r + k + L1

]}
‖x− y‖

Therefore, by Equation (4), S is a contraction.

Step III: To prove that U is a completely continuous operator.
For that, first we prove that U is uniformly bounded.
For any t ∈ [t0, T ], consider

‖Ux(t)‖ ≤ ‖g(t, xt)‖+
∞∑
k=0

[ k∑
i=1

‖g(ti, xti)(bi(τi)− 1)‖
k∏

j=i+1

‖bj(τj)‖

+
k∏
i=1

‖bi(τi)‖‖φ(0)− g(t0, φ)‖
]
I[ζk,ζk+1)(t)
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Therefore,

sup
t0≤t≤T

E‖Ux(t)‖ ≤ L2 + max
k

{ k∑
i=1

‖g(ti, xti)[bi(τi)− 1]‖
}

max
i,k

{ k∏
j=i+1

‖bj(τj)‖
}

+ max
k

{ k∏
i=1

‖bi(τi)‖
}

sup
t0≤t≤T

E‖φ(0)− g(t0, φ)‖

≤ L2 +B
(
N + sup

t0≤t≤T
E‖φ(0)− g(t0, φ)‖

)
That implies that, ‖Ux(t)‖ ≤ L2 +B

(
N + ‖φ(0)− g(t0, φ)‖

)
.

This yields that U is uniformly bounded.
Next, we have to show that

{
Ux : x ∈ Br

}
is equicontinuous.

Let x ∈ Br and let t0 ≤ t1 < t2 ≤ T , then we have
Ux(t2)− Ux(t1)

=
[
g(t2, xt2) +

∞∑
k=0

[ k∑
i=1

g(t2i, xt2i)(bi(τi)− 1)
k∏

j=i+1

bj(τj) +
k∏
i=1

bi(τi)[φ(0)− g(t0, φ)]
]
I[ζk,ζk+1)(t2)

]
−
[
g(t1, xt1) +

∞∑
k=0

[ k∑
i=1

g(t1i, xt1i)(bi(τi)− 1)
k∏

j=i+1

bj(τj) +
k∏
i=1

bi(τi)[φ(0)− g(t0, φ)]
]
I[ζk,ζk+1)(t1)

]
= g(t2, xt2)− g(t1, xt1) +

∞∑
k=0

[ k∑
i=1

g(t2i, xt2i)(bi(τi)− 1)
k∏

j=i+1

bj(τj)

+
k∏
i=1

bi(τi)[φ(0)− g(t0, φ)]
]

[I[ζk,ζk+1)(t2)− I[ζk,ζk+1)(t1) ]

+
∞∑
k=0

[ k∑
i=1

[
g(t2i, xt2i)− g(t1i, xt1i)

]
(bi(τi)− 1)

k∏
j=i+1

bj(τj)
]
I[ζk,ζk+1)(t1)

Then

‖Ux(t2)− Ux(t1)‖ ≤ ‖g(t2, xt2)− g(t1, xt1)‖+ ‖I1‖+ ‖I2‖ (5)

where,

E‖I1‖ ≤ E
(

max
k

{ k∑
i=1

‖g(t2i, xt2i)(bi(τi)− 1)‖
}

max
i,k

{ k∏
j=i+1

‖bj(τj)‖
}

+ max
k

{ k∏
i=1

‖bi(τi)‖
}
‖φ(0)− g(t0, φ)‖ [I[ζk,ζk+1)(t2)− I[ζk,ζk+1)(t1) ]

)
≤ B

(
N + E(‖φ(0)− g(t0, φ)‖)

)
E(I[ζk,ζk+1)(t2)− I[ζk,ζk+1)(t1))

→ 0 as t2 → t1 (6)
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E‖I2‖ ≤ E
(

max
k

{ k∑
i=1

‖ [g(t2i, xt2i)− g(t1i, xt1i) ](bi(τi)− 1)‖
}

max
i,k

{ k∏
j=i+1

‖bj(τj)‖
}
I[ζk,ζk+1)(t1)

)
≤ Bmax

k

{ k∑
i=1

E
(
‖ [g(t2i, xt2i)− g(t1i, xt1i) ](bi(τi)− 1)‖

)}
→ 0 as t2 → t1 (7)

From the Equations (6) and (7), the right hand side of the Equation (5)→ 0 as t2 → t1.

‖Ux(t2)− Ux(t1)‖ = sup
t0≤t≤T

E‖Ux(t2)− Ux(t1)‖ → 0

as
t2 → t1.

Thus, U is equicontinuous.

4. Example

Let τk be a random variable defined in Dk ≡ (0, dk) for all k = 1, 2, ... where 0 < dk < ∞.
Furthermore, assume that τi and τj be independent with each other as i 6= j for i, j = 1, 2, ...

Consider, the following fractional differential equation with random impulses of the form:
cDα

(
x(t)− cost

(t+3)2
x

1+x

)
= 1

9
sinx(t)x(t) + 1

t+1
x
x+9

, t ∈ [t0, T ], t 6= ζk

x(ζk) = p(k)(τk)x(ζ−k ), k = 1, 2, ...

xt0 = φ

(8)

It is easily seen that the functions f, g and A satisfies the assumptions and clearly, we have
L1 = L2 = L3 = k = 1

9
.

Moreover the assumptions (H5) and (H6) are satisfied.
Further, if r = 1, from the above facts, in view of Theorem (3), we conclude that the Equation (8) has

a solution on [t0, T ], provided that the inequalities:

4(T − t0)α

9Γ(α + 1)
max

{
1, B

}
+

1

9
+B(N + ||φ(0)− g(t0, φ)||) ≤ 1 (9)

and

4(T − t0)α

9Γ(α + 1)
max

{
1, B

}
< 1 (10)

are satisfied.
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