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Abstract: The purpose of this paper is to present a consistent mathematical framework that 

shows how the EPR (Einstein. Podolsky, Rosen) phenomenon fits into our view of space 

time. To resolve the differences between the Hilbert space structure of quantum theory and 

the manifold structure of classical physics, the manifold is taken as a partial representation of 

the Hilbert space. It is the partial nature of the representation that allows for action at a 

distance and the failure of the manifold picture. 
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1. Introduction 

In many books and articles on quantum theory two different statements appear. The first is that 

quantum theory is the most accurate theory in the history of physics and the second is that it is  

an incomplete theory. Both of these statements are true, but the incompleteness assertion usually does 

not refer to the fact that not all questions are answerable at any given time, which is true of all 

interesting theories, but that quantum theory is a very uncomfortable fit with our usual picture of what 

kind of space we live in, namely some sort of three or four dimensional manifold. We propose to show 

that it may be more reasonable to think of Hilbert space as our natural space and the problem arising in 

reconciling that with our instinct to consider otherwise is the source of some confusion. Further, the 

failure of our space model to fully reflect the complexity of Hilbert space is the source of the feeling of 

incompleteness and the puzzling aspect of EPR phenomena. We shall try to show how special 

relativity fits in but the main emphasis is showing its limitations and analyzing one specific example of 

action at a distance. 
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The problem of action at a distance is intimately connected to the measurement problem [1,2]which 

is, in turn, connected to the problem of the reversibility of time in the fundamental equations of the 

theory. This is then connected to the problem of whether information can be lost which has been a 

problem of great interest to the theoreticians of black holes in recent years [3]. For us it becomes a 

question of whether the time development is always governed by a unitary group including the 

measurement process. 

The measurement problem has been of great importance and great controversy since the earliest 

days of quantum theory. Roger Penrose [4] devotes a considerable part of his book to this problem 

including a conjecture that the solution might lie in a deeper understanding of quantum gravity. The 

reason this problem has appeared so troublesome is that two early errors have been perpetuated over 

many years that confused the problem. The first was the observation that a measurement seemed to be 

a projection in Hilbert space which clearly was not reversible. The problem here was that the argument 

was correct if the relevant Hilbert space was the space of the particle alone but not if the correct space 

was the space of the particle and the measuring device. The other error was the observation that the 

equations of quantum mechanics were deterministic and the results of the measurement were 

probabilistic. However a measurement always involves a macroscopic device with a large number of 

constituent particles which at the quantum level are likely to be in a different configuration at  

each measurement. 

With these observations it was possible to define what a measurement should be (Equation (3.2) for 

the finite spectrum case and Equation (3.6) for the infinite spectrum case) in terms of a condition on 

the Hamiltonian. Both these conditions are just the statement that a measurement should not introduce 

any new spectrum during the measurement process. The importance of this theory is that since it 

describes a measurement as just an interaction between the particle and the measuring device there is 

no reason to believe it is not just the result of a unitary group of transformations. Article [1] developed 

the theory for the finite spectrum case and article [2] extended the analysis to the infinite spectrum in 

the case of measuring the position of an electron. This is an “explanation” of the collapse of the wave 

function which bedeviled so many students over the years. In the early days of quantum theory the 

collapse of the wave function was treated as a serious problem but in more recent times it has often 

been treated as an axiom of the theory. This allows us in this article to apply the unitary properties of 

the measurement of position to the treatment of action at a distance. 

Article [1] breaks down into two distinct parts. The first is the analysis of the physics and the 

second is a mathematical theorem giving the needed probability results. Here we give a quick 

recapitulation of the first part. We present a clearer presentation of [2] for reasons stated below. 

In the next section we present an analysis of the relation between the Hilbert space approach and the 

space-time approach of classical physics. The result is a space-time that is only a mathematical model 

of the Hilbert space model which is faulty because it is based on the information available before the 

advent of modern technology. The conclusion is that, for example, the Minkowski space of special 

relativity is just not applicable in the case of action at a distance during the time interval between the 

splitting of the particle and its reconstitution by a measurement. 
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2. Hilbert Space and Space-Time 

We start with the quantum picture in which an isolated system can be described by a state vector 
q  in a Hilbert space H , and the development in time is obtained by the action of a one parameter 

unitary group ( )U   operating on q . Of course this program has only worked in simple cases and the 

most important developments have taken place using the Lagrangian rather than the Hamiltonian 

formalism but this is the generally accepted picture. The question is then: “How do we get from this 

picture to the space-time we all grew up with?” 

Start with the Schrödinger picture. We then have a three dimensional Euclidean space 3E  and the 

complex valued functions whose square is integrable, commonly known as 2L . Suppose we have n  
independent objects with Hilbert spaces 1 2,, ..., nH H H . Then the space of the collection is  

Equation (2.1):  

1 2 ... .nH H H H     (2.1)

If 1n   and 1H  represents a macroscopic object such as a pebble we know the wave function in 
3E  will be localized and the Schrödinger equation turns into the Newton equations of motion. If 2n   

and we are dealing with another pebble (still independent of the first) then the same result holds but the 

joint wave function should be represented in 2 2L L  i.e., as a function on 3 3E E  which is 

inconvenient for our program. Therefore we will project the wave function on 3 3E E  onto the first of 

these spaces and call the result 3E  which is a three dimensional Euclidean space now with two 
separate and disjoint wave functions defined on it. More specifically if 1 1 1 1 2 2 2 2( , , ) ( , , )f x y z f x y z  is 

the tensor in 2 2L L  then we map it into 1 1 1 1 2 1 1 1( , , ) ( , , )f x y z f x y z  in 2L . At this point we are no 

longer in the domain of quantum theory but rather in the ordinary space with two disjoint macroscopic 

objects. All the other terms in Equation (2.1) are treated the same way. As one might conjecture 3E  

will be our model for ordinary space but one further step remains. Let us suppose that there is one 
more term in Equation (2.1), say 1nH   which represents the quantization of an electromagnetic field on 
3E . We are now ready to argue our thesis. To do this we introduce the observer in the form of a state in 

the Hilbert space 

1 2 1 2... n nH H H H H       (2.2)

Here 2nH   represents the observer who might be a geometer from the Age of Pericles or even some 

distant ancestor of our species. His interaction with the states in 1 2 1... nH H H     is of a quantum 

nature but the information that reaches his brain is limited by his senses. Nevertheless what reaches the 

central nervous system is a bunch of chemical and electric signals and it is the job of the brain to 

interpret those signals into some sort of useful model. We are presenting 3E  as that model. As noted 

above for macroscopic objects it gives a very usable model for most mechanical computations up to 

fairly modern times. The binding force at the molecular level would provide measuring sticks and the 

path of light would provide straight lines from which the geometer could invent Euclidean geometry. 
(We’ll get to relativity in a moment) Time would appear as the parameter of the unitary group ( )U  . 

All the non-interacting macroscopic objects would appear as localized non-overlapping “things” in 3E

. 
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The weakness of the model becomes apparent when work at the quantum level comes into play.  

An electron or even a neutron does not behave anything like a pebble. When the wave function of  

a particle is broken into two parts and the parts separated by some distance, the manifold structure 

comes into question. In a Riemannian manifold the distance between two points has meaning but when 

one of the points has no particular location a problem arises. At any rate, it is not surprising that a 

model based on very limited information should break down when further information is added. What 

is noteworthy is that in our model “action at a distance” is an example of the ordinary model breaking 

down at the macroscopic level. 

We know from Einstein that the finite speed of light leads to the fact that observers in different 

inertial systems will differ in their perception of time. Above we specified that an observer would take 
his time as being the same as the parameter of the unitary group ( )U  . If the two observers have a 

relative velocity v  then their times are related by ' 2 21  where 1dt dt v vdt v v      .  

Hence '  where t vt k k   is a constant. Therefore the unitary group in terms of the second observer’s 

time is related to that of the first observer by 

'( )U t  ( ) ( ) ( )U vt k U vt U k    (2.3)

It is easy to see that if ( )U t  is unitary so is ( )U vt . ( )U k  acts as a translation in time and can be 

ignored. It follows from this construction that the second observer will see the action of U  the same 

way but on a different time scale and that there are no preferred observers. There are some interesting 

questions that arise from this construction that are for further work. In particular we are not getting into 

the question of relativistic field theory here. 

3. Action at a Distance 

We are going to analyze in detail an example of action at a distance which will use the work above 

but also leans heavily on the theory of quantum measurement presented in [1] and [2] so we will 

outline the relevant results. 
Suppose we have an observable of the particle with a finite number of eigenvalues 1,..., np p  and 

corresponding eigenvectors  for 1,..., .ip i n  Let pH  be the n dimensional Hilbert space of the 

observable and ,p iH  the one dimensional Hilbert space spanned by ip  so that pH  is the direct sum of 

these subspaces. Define mH  as the Hilbert space of the measuring device. What every quantum 

measurement demands is that the measurement of any eigenstate yields that eigenstate. The 
measurement takes place in the space m pH H .. Let   be a subset of the integers 1,2…,n and let 

,pH   be the subspace of pH  whose basis is the set of ip  with i  . The condition on the 

Hamiltonian H  that it be the generator of the unitary group of a measurement of the observable is (by 

definition) that 


, ,( ) ( ) for all .m p m pH H H H H      (3.1)

It is easy to show that this is equivalent to  


,i ,i( ) ( ) for all i.m p m pH H H H H    (3.2)
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This is perhaps easier to verify and perhaps to visualize. 

It is worth noting that if 0H  is any linear operator on mH  and pI  is the identity on pH  then 

 
0 pH I  satisfies Equation (3.2) (as well as Equation (3.6) below). The unitarity question is more 

speculative. In the literature [3] the model for quantum theory assumes the unitarity of the time 

development with the exception of the measuring process. As described in Section 2 we can now drop 

this exception. If the theory is correct it means the assumption of unitary development can be extended 

to all quantum transformations which is essential to this paper. 

For simplicity of notation we can consider mH  to have a denumerable orthonormal basis jq . 

Statistics comes into the theory because the measuring device is a macroscopic object which implies 

that its interaction with the particle cannot be predicted and therefore while the unitary group will 
describe a curve on the surface of the unit sphere in m pH H  it will change for each measurement. 

We will not bother to introduce another index but it should be kept in mind. Suppose the initial state of 
the combined system is j i

j i
j i

b q a p  . Then during the measurement we obtain 

,

, ,

( ) ( )j i i j
j i j i

i j i j

U t b a q p a t q p     
(3.3)

where , (0) .i j j ia b a  Setting , ( ) ( )i j i
j

j

a t q g t  this becomes  

( ) (t)j i i
j i i

i

U t b a q p g p     (3.4)

Taking the norm of Equation (3.4) and remembering that it is on the unit sphere of m pH H  we have 

2| ( ) | 1i

i

g t   (3.5)

We consider the terms ( )jg t  as generalized coefficients of the eigenvectors ip . 

If we consider 1 2 2(| ( ) | ,... | ( ) | )ng t g t  as a point in nE  then we have a curve on the simplex 

1

1 with 0
n

i ix x  . If at some time t  one of these terms takes the value 0 Equation (3.1) guarantees 

that that term remains 0 at all subsequent times. In [1] it is shown that a wide variety of probability 

measures in the space of all possible paths leads to the path reaching the various vertices of the 

simplex with the Bohr probabilities. It can be seen from this model that a quantum measurement is a 

type of random filtering process in which different parts of the initial spectrum are eliminated.  

The generalization to the infinite spectrum case is briefly described in [1] and applied to the 

measurement of the position of an electron in [2]. Unfortunately due to the carelessness of the author 

as a proof reader some errors and unfortunate choices of notation appear. For example in Equation (1) 
of that paper a string of symbols indicating tensor multiplication ( )  appear and every other of these 

should be symbols for direct sums ( ) . However we now have a simpler approach and we will apply 

it directly in an example of action at a distance. The basic idea of how to go from the finite spectrum to 

the infinite is rather simple and uses the fact that the result of any measurement can only be one of a 

finite number of possibilities. The trick is to lump all spectral values together that lead to the same 
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measurement. One of the benefits of this approach is that the analog of Equation (3.1) or its equivalent 

Equation (3.2) shows the added difficulty of making finer measurements. 

One of the examples of action at a distance described in [3] is that of a photon that is passed through 

a partially silvered mirror which splits the photon into two parts which are then separated.  

The experimenter then discovers that finding the photon is at one position guarantees the opposite 

result at the other position. However the work above is highly dependent on the particle’s position 

being described as a sum of terms enumerated by the eigenvalues of the position operator i.e., as a 

wave function and the photon is a poor choice since it is equally likely to be anywhere. Getting around 

this is probably possible but it will be simpler to use a massive particle such as an electron instead.  

Suppose then that an electron is sent through two slits and each slit is backed up by electron traps which are 
then separated by some distance. Suppose two electron detectors are located in the ,x y  plane with the two 

traps located above them. Let iA  for 1,2i   be the disjoint areas in the ,x y  plane below the two traps. We 

divide 3E  into three parts  for 1,2,3.iS i   For 1,2i    let {( , ,z) | (x, y) A  and 0}i iS x y z    and let
3

3 1 2( )S E S S   . The two detectors are assumed to have the property that they will signal the 

presence of the electron if almost all of the wave function arrives in its domain. (The “almost all” is 

just a way of taking into account that the mathematics allows for the misbehavior of a set of  

measure zero.) 
To relate the sets iS  to the work above note that the eigenfunctions of the position operator are the 

delta functions of 3E  so that { | 1,2,3}iS i   is a division of all the eigenfunctions into 3 sets. Let 2
kL  for 

1,2,3k   be the set of all 2L  functions whose support lies in kS . Then 2 2 2 2
1 2 3L L L L   . Now choose 

an orthonormal basis for each of these three subspaces. Let { | 1,2,....}k
i i   be an orthonormal basis 

for 2
kL . Then the union of these three sets of bases is an orthonormal basis for 2L . If H  is to be the 

Hamiltonian for the unitary group of the measuring process the analog of the conditions Equations 

(3.1) or (3.2) is that  

 2 2( )  for 1,2,3.m k m kH H L H L k     (3.6)

Equation (3.6) guarantees that if at some time in the measuring process a point is in 2
m kH L , for 

example, it remains there at all subsequent times. 
Now let’s return to the measuring process. Suppose that the measurement process starts at 0 .  

Before that the measuring device and the particle are not interacting. Suppose the state of the particle 
at 0  is described by the wave function  

1 2 3j j j
j j j

j j j

            
(3.7)

We note for use below that 
1

2 2| | | |j

jE

dxdydz    with similar equations for 2 3 and E E . If the 

initial state of the measuring device is i
i

i

a q  then the initial state of the whole system is described 

by 1 2 3( )i j j j
i j j j

i j j j

Q a q             . If ( )U   is the unitary group generated by iH  then 

for 0   the state of the system is described by an expression of the form  
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, 1 , 2 , 3
1 2 3

, , ,

( ) ( ) ( ) ( )i j i j i j
i j i j i j

i j i j i j

U Q a q a q a q               
(3.8)

Setting , ( ) ( )i j j
k i k

i

a q g   which is in mH  we get 

1 2 3
1 2 3( ) ( ) ( ) ( )j j j

j j j
j j j

U Q g g g               
(3.9)

Suppose that for some 0  the first term is 0. Then from Equation (3.6) and the linearity of H  we 

see that it will be zero for 0  . The problem has now been reduced to the case of the discrete 

spectrum. We assume the norm of the starting point at 0   is 1 so taking the norm in Equation (3.8) 
and using the orthonormal properties of the basis elements i

k  we have  

2 2 2
1 2 31 || g || || || || ||j j j

j j j

g g      
(3.10)

Again we can consider three terms in Equation (3.9) as the coordinates of a point on the two 

dimensional simplex in 3 space 
3

1

1 with 0i ix x  . 

Before we proceed further it is useful to step back for a moment and consider the simpler case of an 
ordinary electron which is to be projected onto the 0z   plane to see whether it is above 1 2or A A . If 

we apply the probability theory of reference [1] the result will be that one of the terms in Equation 

(3.10) will have the value 1 at the end of the measurement and the other two will have the value 0. 

Suppose the first term becomes 1 and the others become 0. Then the ordinary interpretation is that the 

electron was located above the first detector. According to our measurement theory the measuring 

device (in this case the two detectors and the projection device) reduced the wave function to one 
whose support was in 1S  and that this occurred with probability 

1

2| |
E

dxdydz  where   was the 

original wave function. But the interesting thing here is that the third term becomes 0. This was caused 

by the random behavior of the interaction between the detectors and the wave function even though the 

wave function could be spread over a vast region of space and the detectors are small localized 

devices. This is an essential point which helps understanding the final result which is the analysis of 
the separated electron problem. It illustrates why the unitary properties of ( )U   is essential. It is also 

an explanation of the ‘collapse of the wave function’ in terms of the measurement theory of [1]  

and [2]. Now let us return to the electron with the split wave function and we imagine the two 

detectors are widely separated. 

Suppose that the experimenter applies a test to see whether the electron is above the first detector.  

If the first term in Equation (3.10) has the value 1 as a result then the other two terms are each zero and 

any attempt to find the electron there will fail. If the first term becomes 0 then the sum of the other two 

is one. If a subsequent test is made at the second detector the second term becomes 1 or 0 depending 

on whether the electron is there or the electron was lost. This is the formal explanation of action at a 

distance in this instance. In terms of the discussion of Section 2 we note that as soon as the wave 

function is split the model 3E  is no longer valid. From that point in time until the localization of the 

electron by a measurement the concept of a metric space is no longer valid and the problem should be 

thought of as one lying in Hilbert space. Fortunately the theory of measurement is completely in 



Mathematics 2015, 3 336 

 

 

Hilbert space terms consisting mainly of the condition Equation (3.6) and the requirement that the state 

of the measuring device at the end of the measurement should be different for each of the  

possible results. 
 

4. Conclusions 

The idea that our familiar metric space is a secondary construction with limited validity is rather 

radical, but the fact that the metric depends on the relative velocity of two observers, or the existence 

of EPR effects, are hints of this idea. An argument against it is that the construction of Hamiltonians in 

elementary cases uses a metric, but these cases all seem to involve electromagnetic effects where the 

metric is built in. To the extent that unified theory is correct, the same probably applies to the weak 

and strong forces as well. At any rate, if the theory is useful it opens a door to new investigations. 

It was pointed out above that the essential idea in the analysis of action at a distance is the 

possibility of extending the general assumption of unitary transformations to include the measuring 

process. Without unitarity the whole process fails. It is very likely that this cannot be accomplished 

without going into field theory. 
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