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Abstract:

 Bilinear integrals of operator-valued functions with respect to spectral measures and integrals of scalar functions with respect to the product of two spectral measures arise in many problems in scattering theory and spectral analysis. Unfortunately, the theory of bilinear integration with respect to a vector measure originating from the work of Bartle cannot be applied due to the singular variational properties of spectral measures. In this work, it is shown how “decoupled” bilinear integration may be used to find solutions X of operator equations [image: there is no content] with respect to the spectral measure of A and to apply such representations to the spectral decomposition of block operator matrices. A new proof is given of Peller’s characterisation of the space [image: there is no content] of double operator integrable functions for spectral measures P, Q acting in a Hilbert space [image: there is no content] and applied to the representation of the trace of ∫Λ×Λφd(PTP) for a trace class operator T. The method of double operator integrals due to Birman and Solomyak is used to obtain an elementary proof of the existence of Krein’s spectral shift function.
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1. Introduction

Since its inception, the mathematical treatment of quantum theory has generated many problems in measure and integration theory, some of which are still being worked out. At the forefront is the spectral theory of self-adjoint operators in Hilbert space, where the decomposition [image: there is no content] of a Hermitian matrix [image: there is no content] with respect to the orthogonal projections [image: there is no content] onto the eigenspace of the eigenvalues [image: there is no content] of A is replaced by the spectral decomposition T=∫[image: there is no content]λdP(λ) with respect to the self-adjoint spectral measure P associated with the self-adjoint linear operator T. The spectrum [image: there is no content] of T is the complement of the set of all numbers [image: there is no content] for which [image: there is no content] is a bounded linear operator on [image: there is no content], so any eigenvalue of T belongs to [image: there is no content].

For a quantum system in a state ψ∈[image: there is no content], the conventional interpretation of quantum measurement suggests that the number [image: there is no content] is the probability that an observation of the quantity represented by the self-adjoint operator T has its value in the Borel set [image: there is no content]. If ψ is also an eigenvector of T for the eigenvalue [image: there is no content], then:



∥P(E)ψ∥=1,λ∈E0,λ∉E








that is, in the state ψ, an observation of T yields the value λ with certainty, so explaining such facts as the quantisation of energy levels in an atom. Clearly, the operator-valued spectral measure uniquely associated with a quantum observable is a fundamental concept in quantum theory.
Another problem of integration theory arising from quantum physics is the Feynman-Kac formula:



e−it([image: there is no content]+Q(V))=∫Ωe−i∫0tV∘Xsdsd[image: there is no content],t>0



(1)




The left-hand side represents the dynamics of a quantum system described by a free Hamiltonian [image: there is no content] perturbed by a potential V where [image: there is no content] is the operator of multiplication by V. The finitely-additive operator valued set functions [image: there is no content], [image: there is no content], are manufactured from the free evolution e−it[image: there is no content], [image: there is no content], and the spectral measure Q associated with the configuration or position operators; see [1,2,3,4] and the extensive references in these monographs. Although we shall need to consider integration with respect to certain finitely additive set functions manufactured from a pair of spectral measures, the operator valued integrals considered in the present work are orders of magnitude more tractable than the singular path integral on the right hand side of equation (1). Even at the basic level of integration theory considered here, Grothendieck’s inequality [26] provides essential insights.

A number of problems in scattering theory, spectral theory and their applications in the context of a Hilbert space [image: there is no content] are treated by considering integrals of the form:



∫ΣΦ(σ)E(dσ),∫ΣE(dσ)Φ(σ)and∫Σ×Λφ(σ,λ)E(dσ)TF(dλ)



(2)




for spectral measures E and F, T∈L([image: there is no content]) and operator valued functions Φ:Σ→L([image: there is no content]) and scalar functions φ. Such integrals are bilinear in the functions Φ and operator valued measures E and F. Unfortunately, the well-developed theories of bilinear integration of Bartle [5] and Dobrakov [6,7,8,9] do not apply in this situation due to the variational properties of spectral measures acting on a Hilbert space.
The 2-variation [image: there is no content] for a spectral measure E and a vector ψ∈[image: there is no content] is always finite. The supremum is taken over all finite partitions [image: there is no content] into Borel sets. However, for the spectral measure of multiplication by characteristic functions say, the total variation sup[image: there is no content]∑B∈[image: there is no content]∥χBψ∥ of the [image: there is no content]-valued measure [image: there is no content], [image: there is no content], is infinite on each set of positive measure where [image: there is no content] is nonzero, which leads to difficulties interpreting integrals like (2) using the classical theory of bilinear integration utilising semivariation [5].

An integral of the first form in (2) arises in treating the connection between time-dependent scattering theory and stationary state scattering theory [10,11]. Bilinear integrals of this nature have recently been handled by a “decoupling” method in [12]. In this technique, an auxiliary tensor product L([image: there is no content])⊗^τ[image: there is no content] is defined, and the tensor product integral:



[image: there is no content]








is an element of L([image: there is no content])⊗^τ[image: there is no content] for each h∈[image: there is no content], in the fashion of [13]. The bilinear evaluation map [image: there is no content], T∈L([image: there is no content]), h∈[image: there is no content], uniquely defines a continuous linear map J:L([image: there is no content])⊗^τ[image: there is no content]→[image: there is no content] for which [image: there is no content] for every T∈L([image: there is no content]) and h∈[image: there is no content], so that:


[image: there is no content]








By this means, the variational properties of the spectral measure E play no role in the definition of the first integral in (2).

Similar difficulties arise in the theory of stochastic integration, which is now thoroughly understood. For a Brownian motion process ⟨bt⟩[image: there is no content] with respect to a probability measure P, there exists a unique [image: there is no content]-valued orthogonally scattered measure W given by [image: there is no content], [image: there is no content]. The multiplication map [image: there is no content] for random variables [image: there is no content] is actually continuous into [image: there is no content] on the closure of [image: there is no content] in [image: there is no content] as X runs over all adapted simple processes; see [14], Theorem 5.3. For an adapted process X, the stochastic integral [image: there is no content] may be viewed as an example of a bilinear integral [image: there is no content]. The two-variation of W on a Borel set [image: there is no content] is the Lebesgue measure [image: there is no content] of B, but [image: there is no content] has infinite variation on any set of positive Lebesgue measure: the variation of a Brownian motion process ⟨bt⟩[image: there is no content] on any interval is infinite P-a.e.

The last type of integral in (2) is a double operator integral studied in a series of papers by Birman and Solomyak [15,16,17,18,19,20]. With the choice of the function:



φf(σ,λ)=f(σ)−f(λ)σ−λ,σ≠λf′(λ),σ=λ








for a sufficiently smooth function [image: there is no content], the equality:


f(A)−f(B)=∫σ(A)×σ(B)φfd(E⊗F)C1([image: there is no content])(A−B)








holds if [image: there is no content] are densely-defined self-adjoint operators in the Hilbert space [image: there is no content] with spectral measures E and F, respectively, and [image: there is no content] belongs to the operator ideal C1([image: there is no content]) of all trace class operators on [image: there is no content]. The finitely-additive spectral measure (E⊗F)C1([image: there is no content]) acts on the operator ideal C1([image: there is no content]).
Integration with respect to finitely-additive spectral measures is studied in considerable detail in [21], Section 2, where for an algebra [image: there is no content] of subsets of a non-empty set Ω and a complex Banach space X, a finitely-additive set function M:[image: there is no content]→L(X) is called a finitely-additive spectral measure if [image: there is no content] for all C,D∈[image: there is no content] and [image: there is no content], the identity operator on X. In the case that [image: there is no content] is actually a σ-algebra of subsets of Ω and M is countably additive for the strong operator topology of [image: there is no content], the operator-valued measure M is simply called a spectral measure. The spectral theorem for a self-adjoint operator T acting in a Hilbert space asserts the existence of a unique spectral measure P whose values are self-adjoint projection operators, such that T=∫[image: there is no content]λdP(λ). The finitely-additive spectral measure (E⊗F)C1([image: there is no content]) is defined on the algebra [image: there is no content] generated by measurable rectangles [image: there is no content] by the formula:



(E⊗F)C1([image: there is no content])(U×V)(T)=E(U)TF(V),T∈C1([image: there is no content])








for [image: there is no content], [image: there is no content]. It is only in trivial cases that (E⊗F)C1([image: there is no content]) is countably additive for the strong operator topology of L(C1([image: there is no content])); see Proposition 19 below. The finitely-additive spectral measure [image: there is no content] is similarly defined in the case that 𝔖 is a symmetrically-normed operator ideal. The commutative Banach *-algebra [image: there is no content]([image: there is no content]) of all equivalence classes of [image: there is no content]-integrable functions is discussed in Proposition 15 below.
An application of the formula above leads to the expression:



tr(f(A)−f(B))=∫[image: there is no content]f′(λ)dΞ(λ)








for a finite Borel measure Ξ on [image: there is no content]. It turns out that Ξ is absolutely continuous with respect to the Lebesgue measure, and its density ξ with respect to the Lebesgue measure is Krein’s spectral shift function with respect to the pair [image: there is no content]. If [image: there is no content] is the scattering operator associated with the self-adjoint operators A and B, then the remarkable formula:


Det(S(λ))=e−2πiξ(λ),λ∈[image: there is no content]








holds ([22], Chapter 8).
Examples of the other integrals of the form (2) arise in the spectral theory of block operators, resonance and optimal control theory, numerical analysis and the theory of Krein’s spectral shift function in scattering theory and non-commutative geometry. The authoritative treatment of the applications of the decoupling approach to bilinear integration is given in the papers referred to in the sections to follow.

Section 2 deals with solutions of operator equations [image: there is no content] where A is a self-adjoint operator, B is a closed linear operator and Y is bounded. Representations for the solution X given in Section 3 in terms of an integral of the second form in (2) leads to estimates for the norm of X in terms of the spectral separation between the linear operators A and B. As in the case of the connection between time-dependent and stationary state scattering theory [10,11], such integrals have been previously referred to as strong operator-valued Stieltjes integrals in [23,24]. A brief account of the connection with the spectral analysis of block operator matrices considered in [23,24] is also given. In case B is also a self-adjoint operator, the solution X of the operator equation above can be expressed as a double operator integral described in Section 4 using decoupled integrals. For spectral measures E and F acting on a Hilbert space [image: there is no content], a double operator integral is an integral with respect to a finitely-additive spectral measure [image: there is no content] acting on a symmetrically normed operator ideal [image: there is no content]. The space [image: there is no content]([image: there is no content]) of [image: there is no content]-integrable functions has been characterised by Peller in [25] for the cases [image: there is no content]=L([image: there is no content]) and [image: there is no content]=C1([image: there is no content]). An elementary proof of Peller’s characterisation is given in Theorem 16 of Section 5 by appealing to Pisier’s recent account [26] of Grothendieck’s theorem. Peller’s representation facilitates an explicit formula given in [20] for the trace of the integral ∫Λ×Λφd(ETE) for φ∈[image: there is no content]((E⊗E)[image: there is no content]) in the case T∈[image: there is no content]=C1([image: there is no content]). The existence of Krein’s spectral shift function is established in Theorem 22 of Section 6 using double operator integrals and Fourier transforms.



2. Linear Operator Equations

The analysis of the equation [image: there is no content] for linear operators A, B, X and Y acting in a Hilbert space [image: there is no content] has many applications in operator theory, differential equations and quantum physics; see [27] for a relaxed discussion with numerous examples.

Starting with the case of scalars, the equation [image: there is no content] has a unique solution provided that [image: there is no content]. For the case of diagonal matrices [image: there is no content] and [image: there is no content], for any matrix [image: there is no content], there exists a unique solution X of the equation [image: there is no content] if and only if [image: there is no content] for [image: there is no content], and then, the solution [image: there is no content] is given by:



xij=yijλi−μj,i,j=1,⋯,n.








The operator version is called the Sylvester–Rosenblum theorem in [27], although earlier versions are due to Krein and Daletskii ([27], p. 1). For a continuous linear operator A on a Banach space [image: there is no content], the spectrum [image: there is no content] of A is the set of all [image: there is no content] for which [image: there is no content] is not invertible.

Theorem 1 (Sylvester–Rosenblum theorem). Let [image: there is no content]be a Banach space and let A and B be continuous linear operators on [image: there is no content]for which [image: there is no content]. Then, for each operator Y∈L([image: there is no content]), the equation [image: there is no content]has a unique solution X∈L([image: there is no content]).

As a taster for applications of the Sylvester–Rosenblum Theorem, suppose that A and B are bounded normal operators on a Hilbert space [image: there is no content] with spectral measures [image: there is no content] and [image: there is no content], respectively. Then, there exists [image: there is no content], such that for any two Borel subsets [image: there is no content] and [image: there is no content] of [image: there is no content] separated by a distance:



δ=inf{|x−y|:x∈[image: there is no content],y∈[image: there is no content]}








the projections E=[image: there is no content]([image: there is no content]), F=[image: there is no content]([image: there is no content]), satisfy the norm estimate:


[image: there is no content]








The norm [image: there is no content] represents the angle between the subspaces [image: there is no content] and [image: there is no content]. Such estimates are useful in numerical computations. Even in finite dimensional Hilbert spaces, the Sylvester–Rosenblum theorem leads to eigenvalue estimates for matrix norms independent of dimension.

Theorem 2 ([28], Theorem 5.1a). Let A and B be two normal [image: there is no content]matrices with eigenvalues [image: there is no content]and [image: there is no content], respectively, counting multiplicity. With the same constant c mentioned above, if [image: there is no content], then there exists a permutation π of the index set [image: there is no content], such that:



[image: there is no content]








for [image: there is no content].
The Sylvester–Rosenblum theorem also comes with a representation of the solution X of the equation [image: there is no content] if [image: there is no content]. Suppose that the contour Γ is the union of closed contours in the plane, with total windings one around [image: there is no content] and zero around [image: there is no content]. Then:



[image: there is no content]



(3)




Other representations of the solution are possible by utilising the spectral properties of the operators A and B; see [27], Section 9.

In the present paper, we are concerned with solutions X of the operator equation [image: there is no content] when A is an unbounded self-adjoint or normal operator acting in a Hilbert space [image: there is no content] and B is a closed unbounded operator. If the spectra [image: there is no content] and [image: there is no content] are a positive distance apart, then we hope to construct the solution X of [image: there is no content] by the formula:



X=∫[image: there is no content]d[image: there is no content](ζ)Y(ζI−B)−1



(4)




in place of (3) with respect to the spectral measure [image: there is no content] of A. The operator-valued measure [image: there is no content] acts on the values of the operator-valued function [image: there is no content]. As in the case of scattering theory considered in [12], for h∈[image: there is no content], the vector Xh∈[image: there is no content] often has the representation:


Xh=J∫[image: there is no content][image: there is no content](dζ)⊗(Y(ζI−B)−1h)








where the [image: there is no content]-valued function [image: there is no content], [image: there is no content], is [image: there is no content]-integrable in the tensor product space L([image: there is no content])⊗^τ[image: there is no content] and J:L([image: there is no content])⊗^τ[image: there is no content]→[image: there is no content] is the continuous linear extension of the composition map [image: there is no content], T∈L([image: there is no content]), h∈[image: there is no content].
If the operator B is itself a bounded linear operator, then the simpler representation (3) may be employed with the contour Γ winding once around [image: there is no content] and zero times around [image: there is no content].

Because we shall be dealing with unbounded operators A and B, we have to be careful about domains when interpreting the equation [image: there is no content]. We follow the treatment in [23], Section 2. Applications of Equation (4) to perturbation theory and the spectral shift function may also be found in [23] and at the end of the next section.



3. Integral Solutions of Operator Equations

Definition 1. Let [image: there is no content] and [image: there is no content] be Hilbert spaces. Suppose that A:D(A)→[image: there is no content] and B:D(B)→[image: there is no content] are closed and densely-defined linear operators with domains D(A)⊂[image: there is no content] and D(B)⊂[image: there is no content]. Given Y∈L([image: there is no content],[image: there is no content]), a continuous linear operator X∈L([image: there is no content],[image: there is no content]) is said to be a weak solution of the equation:



[image: there is no content]



(5)




if for every [image: there is no content] and [image: there is no content], the equality:


[image: there is no content]



(6)




holds with respect to the inner product [image: there is no content] of [image: there is no content].
The domain [image: there is no content] of the adjoint [image: there is no content] of A is the set of all elements k of [image: there is no content], such that the linear map [image: there is no content], [image: there is no content], is the restriction to [image: there is no content] of [image: there is no content], h∈[image: there is no content], for an element y∈[image: there is no content] and then y=[image: there is no content]k.

A strong solution X∈L([image: there is no content],[image: there is no content]) of (5) has the property that:



[image: there is no content]



(7)




and:


AXh−XBh=Yh,h∈D(B)



(8)




The existence of strong solutions of the operator Equation (5) is discussed in [29] under the assumption that A and [image: there is no content] are the generators of [image: there is no content]-semigroups, a situation that arises in delay or partial differential equations and control theory. Strong solutions of (5) may not exist in this setting, even when the spectra [image: there is no content] and [image: there is no content] are separated by a vertical strip ([29], Example 9).

In the case that A and B are both self-adjoint operators, the following result is a consequence of [28], Theorem 4.1; (see [23], Theorem 2.7).

Theorem 3. Let [image: there is no content]and [image: there is no content]be Hilbert spaces. Suppose that A:D(A)→[image: there is no content]and B:D(B)→[image: there is no content]are self-adjoint operators whose spectra [image: there is no content]and [image: there is no content]are a distance [image: there is no content]apart. Then, Equation (5) has a unique weak solution:



X=∫[image: there is no content]e−itAYeitBfδ(t)dt








for any function fδ∈[image: there is no content]([image: there is no content]), continuous on [image: there is no content]\{0}, such that:


∫[image: there is no content]e−isxfδ(s)ds=1xfor|x|>1δ.








Moreover [image: there is no content].

The integral representing the solution X is a Pettis integral for the strong operator topology.

We now turn to the tensor product topology τ mentioned above. Let [image: there is no content],Y be Banach spaces. For [image: there is no content], we have:



∑j=1nTjxj,y*=∑j=1nxj,Tj*y*≤∑j=1n∥xj∥[image: there is no content].∥Tj*y*∥[image: there is no content]*








for all Tj∈L([image: there is no content],Y) and xj∈[image: there is no content], [image: there is no content] and all [image: there is no content] . Hence, if we let:


∥u∥τ=sup∥y*∥≤1inf∑j=1n∥xj∥[image: there is no content].∥Tj*y*∥[image: there is no content]*:u=∑j=1nTj⊗xj



(9)




over all representations [image: there is no content], [image: there is no content], of u∈L([image: there is no content],Y)⊗[image: there is no content], then the inequality [image: there is no content] holds for the product map [image: there is no content] by the Hahn–Banach theorem. The completion of the linear space L([image: there is no content],Y)⊗[image: there is no content] with respect to the norm [image: there is no content] is written as L([image: there is no content],Y)⊗^τ[image: there is no content].
For a self-adjoint operator A in a Hilbert space [image: there is no content] and a closed, densely-defined operator B in a Hilbert space [image: there is no content], the domains [image: there is no content] and [image: there is no content] are endowed with the respective graph norms associated with the closed operators B and A. Suppose also that τ is the topology on the tensor product L([image: there is no content])⊗[image: there is no content] defined by Formula (9) with [image: there is no content]=Y=[image: there is no content], and let E=L([image: there is no content])⊗^τ[image: there is no content] be the completion of the tensor product with the norm topology τ. As in [12], Proposition B.11, the collection [image: there is no content]⊗[image: there is no content]*⊗[image: there is no content]* of continuous linear functionals on the Banach space E separates points of E, and the composition map:



T⊗k⟼Tk,T∈L([image: there is no content]),k∈[image: there is no content]








has a continuous linear extension JE:E→[image: there is no content]. The following definition of a bilinear integral is suggested by [13].
Definition 2. Let [image: there is no content]be a Hilbert space. A function f:Ω→[image: there is no content]is said to be m-integrable in E=L([image: there is no content])⊗^τ[image: there is no content]for an operator valued measure m:S→L([image: there is no content]), if for each x,x′,y′∈[image: there is no content], the scalar function [image: there is no content]is integrable with respect to the scalar measure [image: there is no content]and for each [image: there is no content], there exists an element [image: there is no content]of E, such that:



((m⊗f)(S),x⊗y′⊗x′)=∫S[image: there is no content]d[image: there is no content]



(10)




for every x,x′,y′∈[image: there is no content].
If f is m-integrable in E, then mf(S)∈[image: there is no content]is defined for each [image: there is no content]by:



[image: there is no content]








We also denote [image: there is no content]by ∫Sdmfor ∫Sdm(ω)f(ω).

In the present context, the representation of solutions of Equation (5) via bilinear integration is analogous to the treatment in [12], Section 3, for scattering theory.

Example 3. Suppose that A is a bounded self-adjoint operator defined on a Hilbert space [image: there is no content], such that [image: there is no content] for some [image: there is no content]. Let [image: there is no content] be the generator of a uniformly-bounded [image: there is no content]-semigroup [image: there is no content], [image: there is no content], on the Hilbert space [image: there is no content].

We can employ (3) in this situation to represent the weak solution of Equation (5), but it is instructive to see how the integral (4) converges with the assumptions above.

Let E=L([image: there is no content])⊗^π[image: there is no content] be the projective tensor product of the Hilbert space [image: there is no content] with the space L([image: there is no content]) of bounded linear operators on [image: there is no content] with the uniform norm (see [30], Section III.6). Then, etA⊗(Y[image: there is no content]h) belongs to the tensor product L([image: there is no content])⊗[image: there is no content] for each [image: there is no content] and h∈[image: there is no content], and the function t⟼etA⊗(Y[image: there is no content]h), [image: there is no content], is continuous in L([image: there is no content])⊗^π[image: there is no content], because A is assumed to be bounded, so:



etA⊗(Y[image: there is no content]h)=I⊗(Y[image: there is no content]h)+∑n=1∞tnn!(An⊗(Y[image: there is no content]h))








converges in L([image: there is no content])⊗^π[image: there is no content] uniformly for t in any bounded interval. The inequalities:


∫0∞etA⊗(Y[image: there is no content]h)L([image: there is no content])⊗^π[image: there is no content]≤∫0∞∥etA∥.∥(Y[image: there is no content]h)∥dt≤∫0∞e−δt∥[image: there is no content]∥dt.∥Y∥L([image: there is no content],[image: there is no content]).∥h∥








ensure that ∫0∞etA⊗(Y[image: there is no content]h)dt converges as a Bochner integral in the projective tensor product L([image: there is no content])⊗^π[image: there is no content] and:


∫[image: there is no content][image: there is no content](dζ)⊗Y(ζI−B)−1h=∫[image: there is no content][image: there is no content](dζ)⊗Y∫0∞eζt[image: there is no content]hdt=∫0∞∫[image: there is no content]eζt[image: there is no content](dζ)⊗Y[image: there is no content]hdt=∫0∞etA⊗(Y[image: there is no content]h)dt








belongs to L([image: there is no content])⊗^π[image: there is no content], too. Then:


∫[image: there is no content][image: there is no content](dζ)Y(ζI−B)−1h=JE∫[image: there is no content][image: there is no content](dζ)⊗Y(ζI−B)−1h








defines a continuous linear operator:


∫[image: there is no content][image: there is no content](dζ)Y(ζI−B)−1:h⟼∫[image: there is no content][image: there is no content](dζ)Y(ζI−B)−1h,h∈[image: there is no content]








belonging to L([image: there is no content],[image: there is no content]) with norm bounded by:


sup[image: there is no content]∥[image: there is no content]∥δ∥Y∥L([image: there is no content],[image: there is no content])








In order to deal with unbounded operators, we replace the projective tensor product topology π by the topology τ defined by Formula (9).

Lemma 4. Let [image: there is no content]and [image: there is no content]be Hilbert spaces. Suppose that A:D(A)→[image: there is no content]is a self-adjoint operator with spectral measure [image: there is no content]and B:D(B)→[image: there is no content]is a densely-defined, closed linear operator, such that [image: there is no content].

Let Y∈L([image: there is no content],[image: there is no content]). For each h∈[image: there is no content], the [image: there is no content]-valued function:



[image: there is no content]:ζ⟼Y(ζI−B)−1h,ζ∈σ(A)



(11)




is [image: there is no content]-integrable in L([image: there is no content])⊗^π[image: there is no content]on every compact subset of [image: there is no content].
Furthermore, there exist L([image: there is no content],[image: there is no content])-valued [image: there is no content]-simple functions:



[image: there is no content]:σ(A)→L([image: there is no content],[image: there is no content]),n=1,2,⋯








such that for each h∈[image: there is no content], [image: there is no content]in [image: there is no content]as [image: there is no content]for [image: there is no content]-almost all [image: there is no content]and for each compact subset of K of [image: there is no content],


supS∈B(K)∥([image: there is no content]⊗[image: there is no content])(S)−([image: there is no content]⊗([image: there is no content]h))(S)∥L([image: there is no content])⊗^π[image: there is no content]→0








as [image: there is no content].
Proof. For a closed and densely-defined operator T, the resolvent [image: there is no content] is defined for all complex numbers λ belonging to the resolvent set ρ(T)=[image: there is no content]\σ(T). Suppose that [image: there is no content] is non-empty. Then, the resolvent equation:



[image: there is no content]−(μI−T)−1=(μ−λ)[image: there is no content](μI−T)−1








for [image: there is no content] ensures that λ⟼[image: there is no content], [image: there is no content], is a holomorphic operator-valued function for the uniform operator topology. It follows that for each h∈[image: there is no content], the function:


[image: there is no content]








is continuous in the projective tensor product L([image: there is no content])⊗^π[image: there is no content] for the uniform norm on L([image: there is no content]). For a compact subset K of [image: there is no content], let AK=[image: there is no content](K)A be the part of A on K. Then, for a contour [image: there is no content] with a winding of one around K and zero around the closed set [image: there is no content], the integral:


∫[image: there is no content]∥(λI−AK)−1∥.∥Y(λI−B)−1h∥[image: there is no content]|dλ|








is bounded by (|[image: there is no content]|.supλ∈[image: there is no content]∥(λI−AK)−1∥.∥(λI−B)−1∥).∥Y∥L([image: there is no content],[image: there is no content]).∥h∥[image: there is no content], so the function:


∫[image: there is no content](λI−AK)−1⊗(Y(λI−B)−1h)dλ








converges as a Bochner integral in L([image: there is no content])⊗^π[image: there is no content]. For every Borel subset S of the set K and x,x′,y′∈[image: there is no content], an application of Cauchy’s integral formula yields:


∫S([image: there is no content]x,x′)(dζ)(Y(ζI−B)−1h,y′)=12πi∫S([image: there is no content]x,x′)(dζ)∫[image: there is no content](Y(λI−B)−1h,y′)λ−ζdλ=12πi∫[image: there is no content]((λI−[image: there is no content](S)AK)−1x,x′)(Y(λI−B)−1h,y′)dλ








so according to Definition 2 (replacing the topology τ by the stronger projective topology π), the function [image: there is no content] is [image: there is no content]-integrable in L([image: there is no content])⊗^π[image: there is no content] on the set K and:


∫Sd[image: there is no content](ζ)⊗(Y(ζI−B)−1h)










=12πi∫[image: there is no content](λI−P(S)AK)−1⊗(Y(λI−B)−1h)dλ



(12)




as an element of the projective tensor product L([image: there is no content])⊗^π[image: there is no content] for each Borel subset S of K.
Because the operator-valued function [image: there is no content], [image: there is no content], is uniformly continuous on the compact set K, for each [image: there is no content], there exists an L([image: there is no content])-valued [image: there is no content]-simple function [image: there is no content], such that:



supλ∈K∥(λI−B)−1−[image: there is no content](λ)∥L([image: there is no content])<ϵ








so that:


supS∈B(K)∫[image: there is no content]∥(λI−P(S)AK)−1∥.∥Y(λI−B)−1h−Y[image: there is no content](λ)h∥[image: there is no content]|dλ|→0








as [image: there is no content] for each h∈[image: there is no content]. According to the identity (12), it follows that:


supS∈B(K)∥([image: there is no content]⊗[image: there is no content])(S)−([image: there is no content]⊗(Y[image: there is no content]h))(S)∥L([image: there is no content])⊗^π[image: there is no content]→0








as [image: there is no content]. Because the spectral measure [image: there is no content] is inner regular on compact sets, the simple functions [image: there is no content], [image: there is no content], can be pieced together from the simple functions [image: there is no content], [image: there is no content], on each compact set K.  ☐
If both operators A and B are self-adjoint, then Theorem 3 ensures that a weak solution X of Equation (5) exists and gives a norm estimate for X. If just one operator is self-adjoint, the following result is applicable.

Theorem 5. Let [image: there is no content] and [image: there is no content]be Hilbert spaces. Suppose that A:D(A)→[image: there is no content]is a self-adjoint operator with spectral measure [image: there is no content], and B:D(B)→[image: there is no content]is a densely-defined, closed linear operator, such that [image: there is no content]. Let Y∈L([image: there is no content],[image: there is no content]).


	(i)

	Equation (5) has a strong solution if and only if there exists an operator valued measure M:B(σ(A))→L([image: there is no content],[image: there is no content]), such that:



M(K)h=∫Kd[image: there is no content](ζ)(Y(ζI−B)−1h),h∈[image: there is no content]








for each compact subset K of [image: there is no content]. The operator valued measure M exists if and only if:



supK∫Kd[image: there is no content](ζ)(Y(ζI−B)−1h)L([image: there is no content],[image: there is no content])<∞



(13)




for every h∈[image: there is no content]. Then, [image: there is no content]is the unique strong solution of Equation (5).



	(ii)

	If for each h∈[image: there is no content], the function [image: there is no content]given by Formula (11) is [image: there is no content]-integrable in E=L([image: there is no content])⊗^τ[image: there is no content]on [image: there is no content], then the map h⟼JE∫[image: there is no content]d[image: there is no content]⊗[image: there is no content], h∈[image: there is no content],defines a continuous linear operator ∫[image: there is no content]d[image: there is no content](ζ)Y(ζI−B)−1∈L([image: there is no content],[image: there is no content]), and the operator:



X=∫[image: there is no content]d[image: there is no content](ζ)Y(ζI−B)−1








is the unique strong solution of Equation (5).

Let h∈[image: there is no content]. The function [image: there is no content]is [image: there is no content]-integrable in E=L([image: there is no content])⊗^τ[image: there is no content]on [image: there is no content]if and only if:



supK∫Kd[image: there is no content](ζ)⊗(Y(ζI−B)−1h)L([image: there is no content])⊗^τ[image: there is no content]<∞



(14)








Proof. The proof of (i) is similar to the proof of (ii), which we now give. Suppose that for each h∈[image: there is no content], the function [image: there is no content] is [image: there is no content]-integrable in E=L([image: there is no content])⊗^τ[image: there is no content] on [image: there is no content]. Then, for [image: there is no content], we have:



A[image: there is no content](K)∫[image: there is no content]P(dζ)[image: there is no content](ζ)−[image: there is no content](K)∫[image: there is no content]P(dζ)ΦBh(ζ)=[image: there is no content](K)Yh








because [image: there is no content](K)∫[image: there is no content]P(dζ)Φu(ζ)=∫K[image: there is no content](dζ)[image: there is no content](K)Φu(ζ) for all u∈[image: there is no content], and by Formula (3), the operator XK=∫Kd[image: there is no content](ζ)[image: there is no content](K)Y(ζI−B)−1 is the unique solution of the equation:


([image: there is no content](K)A)XKh−XKBh=[image: there is no content](K)Yh,h∈D(B)








The case of unbounded B is mentioned in [23], Lemma 2.5. Because [image: there is no content](K)XK=XK and A and [image: there is no content](K) commute, we have AXKh−XKBh=[image: there is no content](K)Yh for all [image: there is no content]. Now, XKu=[image: there is no content](K)∫[image: there is no content]P(dζ)Φu(ζ) converges in [image: there is no content] as [image: there is no content] for each u∈[image: there is no content], so [image: there is no content] belongs to L([image: there is no content],[image: there is no content]) by the uniform boundedness principle. Suppose that [image: there is no content]. Then, [image: there is no content], so [image: there is no content] belongs to the closure of A restricted to the subspace:



{[image: there is no content](K)u:u∈[image: there is no content],K⊂σ(A)compact}








Hence, [image: there is no content], and X is therefore a strong solution of Equation (5). On the other hand, if (5) does have a strong solution X, it can be written as [image: there is no content] with XK=[image: there is no content](K)X uniformly bounded over compact sets [image: there is no content].

Conversely, suppose that the bound (14) holds for every h∈[image: there is no content]. There exists an increasing sequence of compact subsets [image: there is no content], [image: there is no content], of [image: there is no content], such that:



∥[image: there is no content]((σ(A)\[image: there is no content])∩S)∥<1/j








for every [image: there is no content] and [image: there is no content], because the spectral measure [image: there is no content] is a regular operator valued Borel measure. Let Ωj=[image: there is no content]\(∪i<jKi). Then, [image: there is no content] is [image: there is no content]-null, and [image: there is no content] are pairwise disjoint.
For each y′∈[image: there is no content], [image: there is no content] and [image: there is no content]:



∫Ωj∩S(Y(ζI−B)−1h)⊗([image: there is no content](dζ)y′)∈[image: there is no content]⊗^π[image: there is no content]








If the bound (14) holds, then:



Ch=supn,S,∥y′∥≤1∫(∪j=1nΩj)∩S(Y(ζI−B)−1h)⊗([image: there is no content](dζ)y′)[image: there is no content]⊗^π[image: there is no content]<∞








The projective tensor product [image: there is no content]⊗^π[image: there is no content] is associated with the trace class operators on [image: there is no content] via the embedding u:[image: there is no content]⊗^π[image: there is no content]→L([image: there is no content]) defined by [image: there is no content]. Then:



u∫(∪j=1nΩj)∩S(Y(ζI−B)−1h)⊗([image: there is no content](dζ)y′)k=∑j=1n∫Ωj∩S(Y(ζI−B)−1h)(k,[image: there is no content](dζ)y′)








for x,y,k∈[image: there is no content] and the bound:


∑j=1n∫Ωj∩S|(Y(ζI−B)−1h,x′)|.|(k,[image: there is no content]y′)|(dζ)≤4Ch∥x′∥.∥y′∥.∥k∥








holds for each x′,y′,k∈[image: there is no content] and [image: there is no content] by [31], Proposition I.1.11. It follows from the weak sequential completeness of the Hilbert space [image: there is no content] and the Orlicz–Pettis theorem ([31], Corollary I.4.4) that the sum ∑j=1∞∫Ωj∩S(Y(ζI−B)−1h)(k,[image: there is no content](dζ)y′) converges unconditionally in [image: there is no content] for each [image: there is no content] and:


k⟼∑j=1∞∫Ωj∩S(Y(ζI−B)−1h)(k,[image: there is no content](dζ)y′),k∈[image: there is no content]








is a bounded linear operator whose norm is bounded by [image: there is no content]. According to the non-commutative Fatou lemma (see Section 4),


∫S(Y(ζI−B)−1h)⊗([image: there is no content](dζ)y′)=∑j=1∞∫Ωj∩S(Y(ζI−B)−1h)⊗([image: there is no content](dζ)y′)








belongs to [image: there is no content]⊗^π[image: there is no content] and:


∫S(Y(ζI−B)−1h)⊗([image: there is no content](dζ)y′)[image: there is no content]⊗^π[image: there is no content]≤4Ch∥y′∥








for each [image: there is no content]. Hence, the function [image: there is no content] is [image: there is no content]-integrable in L([image: there is no content])⊗^τ[image: there is no content] on [image: there is no content] and ∫[image: there is no content]d[image: there is no content]⊗[image: there is no content]L([image: there is no content])⊗^τ[image: there is no content]≤4Ch. The uniform boundedness principle and the Vitali–Hahn–Saks theorem ensures that the formula M(S)=∫S[image: there is no content](dζ)(Y(ζI−B)−1) defines an L([image: there is no content],[image: there is no content])-valued measure M for the strong operator topology, so that (i) applies. ☐
Remark 4. The operator-valued measure M:B(σ(A))→L([image: there is no content],[image: there is no content]) is called a strong operator-valued Stieltjes integral in [23,24]. According to Lemma 4, for each compact subset K of [image: there is no content], the operator M(K)∈L([image: there is no content]) can be written as a Stieltjes integral:



M(K)h=lim[image: there is no content]∫K[image: there is no content](dζ)Y[image: there is no content](ζ)h








for [image: there is no content]-simple function [image: there is no content]:σ(A)→L([image: there is no content]), [image: there is no content], which may be chosen to be step functions based on finite intervals, restricted to the spectrum [image: there is no content] of A.
Example 5. The solution X in Theorem 3 is actually a strong solution. If A and B are self-adjoint and [image: there is no content], then:



∫Sd[image: there is no content](ζ)⊗(Y(ζI−B)−1h)=∫[image: there is no content]([image: there is no content](S)eitA)⊗(Ye−itBh)fδ(t)dt








belongs to L([image: there is no content])⊗^τ[image: there is no content] for each [image: there is no content] and h∈[image: there is no content]. To see this, let k∈[image: there is no content]. Then, the integral:


∫[image: there is no content](Ye−itBh)⊗([image: there is no content](S)e−itAk)fδ(t)dt








converges in [image: there is no content]⊗^π[image: there is no content] because t⟼(Ye−itBh)⊗([image: there is no content](S)e−itAk), t∈[image: there is no content], is continuous in [image: there is no content]⊗^π[image: there is no content] and fδ∈[image: there is no content]([image: there is no content]), so:


∫[image: there is no content]∥Ye−itBh)⊗([image: there is no content](S)e−itAk)fδ(t)∥[image: there is no content]⊗^π[image: there is no content]dt≤∫[image: there is no content]∥Ye−itBh∥.∥e−itAk∥.|fδ(t)|dt≤∥Y∥L([image: there is no content],[image: there is no content])∥h∥[image: there is no content]∥k∥[image: there is no content]∥fδ∥1








and ∥∫Sd[image: there is no content](ζ)⊗(Y(ζI−B)−1h)∥L([image: there is no content])⊗^τ[image: there is no content]≤∥Y∥L([image: there is no content],[image: there is no content])∥h∥[image: there is no content]∥fδ∥1. Then, by an appeal to Theorem 5 (ii), the operator:


X=∫[image: there is no content]d[image: there is no content](ζ)Y(ζI−B)−1=∫[image: there is no content]e−itAYeitBfδ(t)dt








is the unique strong solution of Equation (5). It is shown in [24], Lemma 4.2, that there is actually no distinction between weak and strong solutions of the Sylvester–Rosenblum Equation (5) because the bound (13) follows from the boundedness in the weak operator topology.
Example 6. If A is self-adjoint, B is densely defined and closed, [image: there is no content] and there exists [image: there is no content] and a sector:



Sω−={−z:z∈[image: there is no content]\{0},arg|z|<ω}∪{0}








that is contained in [image: there is no content], then according to [29], Theorem 15:


∫Sd[image: there is no content](ζ)⊗(Y(ζI−B)−1k)∈L([image: there is no content])⊗^π[image: there is no content],S∈B(σ(A)),k∈[image: there is no content]








The application of the integral representation of solutions of the Sylvester–Rosenblum Equation (5) to the spectral analysis of block operator matrices is discussed in detail in [23,24]. It is worthwhile to mention the background concerning self-adjoint operator block matrices:



[image: there is no content]








acting in the orthogonal sum [image: there is no content]=[image: there is no content]0⊕[image: there is no content]1 of separable Hilbert spaces [image: there is no content]0 and [image: there is no content]1. Then, H can also be written as [image: there is no content] for the operator matrices:


A=A000A1,B=0B01B100








with A self-adjoint and B bounded. A strong solution Q of the equation:


[image: there is no content]



(15)




having the form:


Q=0Q01Q100,Q10=−Q01*








determines a reducing subspace for the original block operator matrix operator H, so that:


[image: there is no content]








Consequently, if U is the unitary operator associated with the polar decomposition [image: there is no content], then U*HU=[image: there is no content]00[image: there is no content] is the block diagonalization of H for self-adjoint operators [image: there is no content], [image: there is no content] similar to the operators [image: there is no content] and [image: there is no content], respectively.

The Equation (15) is called Riccati’s equation. It also arises in optimal control theory when the operator entries may not be self-adjoint; see [23] for a list of references. Equation (15) is quadratic in Q, and provided that [image: there is no content] with respect to the distance [image: there is no content] between the spectra of U and V, a fixed point argument produces a unique strong solution Q of the associated operator equation [image: there is no content] ([23], Theorem 3.6) in the case that U and V are bounded self-adjoint operators; see also [24], Section 5. When [image: there is no content] and [image: there is no content] are separated and [image: there is no content] are small perturbations, solutions of (15) are constructed in [23], Theorems 7.4, 7.6 and 7.7. In the analysis of resonances between scattering channels, the situation where [image: there is no content] also arises [32].

Conditions for which the equation [image: there is no content] (mod [image: there is no content]) is valid almost everywhere are given in [23], Theorem 6.1, for the spectral shift function ξ with respect to the pair [image: there is no content] and the spectral shift function [image: there is no content] with respect to the self-adjoint pair [image: there is no content], [image: there is no content]. Actually, the almost sure decomposition [image: there is no content] can be deduced from [23], Lemma 7.10, and Equation (28) below, where the distinguished Birman–Solomyak representation is chosen for Krein’s spectral shift function by employing double operator integrals.



4. Double Operator Integrals

As mentioned in Example 5 above, if A:D([image: there is no content])→[image: there is no content] and B:D([image: there is no content])→[image: there is no content] are self-adjoint operators, [image: there is no content] and Y∈L([image: there is no content],[image: there is no content]), then for each h∈[image: there is no content], the function [image: there is no content], [image: there is no content], is [image: there is no content]-integrable in L([image: there is no content])⊗^τ[image: there is no content], and X=∫[image: there is no content]d[image: there is no content](ζ)Y(ζI−B)−1 is the unique strong solution of Equation (5). Because B is self-adjoint, we can rewrite the solution X as an iterated integral:



X=∫[image: there is no content]d[image: there is no content](ζ)Y∫[image: there is no content]d[image: there is no content](μ)ζ−μ








with respect to the spectral measures [image: there is no content], [image: there is no content] associated with A and B.
An application of the Fubini strategy sees the expression:



X=∫σ(A)×σ(B)d[image: there is no content](ζ)Yd[image: there is no content](μ)ζ−μ



(16)




as a representation of the strong solution of the operator equation:


[image: there is no content]








in the case that both A and B are self-adjoint operators.
Integrals like (16) have been studied extensively in the case that Y∈L([image: there is no content]) is a Hilbert–Schmidt operator and, more generally, when Y belongs to the Schatten ideal Cp([image: there is no content]) in L([image: there is no content]) for some [image: there is no content], where they are called double operator integrals [20].

Following [33], Section III.2, a subspace [image: there is no content] of the collection L([image: there is no content]) of all bounded linear operators on a separable Hilbert space [image: there is no content] is called a symmetrically-normed ideal with norm ∥·∥[image: there is no content] if ([image: there is no content],∥·∥[image: there is no content]) is a Banach space and:


	for S∈[image: there is no content], L,K∈L([image: there is no content]), we have LSK∈[image: there is no content] and ∥LSK∥[image: there is no content]≤∥L∥∥S∥[image: there is no content]∥K∥;


	if S has rank one, then ∥S∥[image: there is no content]=∥S∥; and


	the closed unit ball of ([image: there is no content],∥·∥[image: there is no content]) is sequentially closed in the weak operator topology of L([image: there is no content]), that is if Sn∈[image: there is no content] with supn∥Sn∥[image: there is no content]<∞ and if [image: there is no content] in the weak operator topology of L([image: there is no content]), then S∈[image: there is no content] and ∥S∥[image: there is no content]≤lim supn∥Sn∥[image: there is no content].




For [image: there is no content], the Schatten ideal Cp([image: there is no content]) consists of all compact operators T whose singular values [image: there is no content] belong to [image: there is no content] with the norm ∥T∥Cp([image: there is no content])p=∑j=1∞λjp for [image: there is no content] and ∥T∥C∞([image: there is no content])=∥T∥. The singular values [image: there is no content] are the eigenvalues of the positive operator [image: there is no content]. For [image: there is no content], [image: there is no content]=Cp([image: there is no content]) is a symmetrically-normed ideal. Condition c. is often called the non-commutative Fatou lemma. It fails for the compact operators C∞([image: there is no content]), but [image: there is no content]=L([image: there is no content]) is itself a symmetrically-normed (improper) ideal with the uniform norm. The symmetrically-normed ideal C1([image: there is no content]) of trace class operators on [image: there is no content] may be identified with the projective tensor product [image: there is no content]⊗^π[image: there is no content] ([30], III.7.1).

For a bounded linear operator T on a Hilbert space [image: there is no content], the expression:



[image: there is no content](T)=∫[image: there is no content]φ(λ,μ)E(dλ)TF(dμ)








is a double operator integral if E is an L([image: there is no content])-valued spectral measure on the measurable space [image: there is no content] and F is an L([image: there is no content])-valued spectral measure on the measurable space [image: there is no content]. The function φ:Λ×M→[image: there is no content] is taken to be uniformly bounded on [image: there is no content]. In Formula (16), [image: there is no content], so that [image: there is no content] is bounded by [image: there is no content] for [image: there is no content] when the spectra [image: there is no content] and [image: there is no content] are a positive distance δ apart.
The map [image: there is no content], T∈C2([image: there is no content]), is continuous into the space C2([image: there is no content]) of Hilbert–Schmidt operators and:



∥[image: there is no content]∥C2([image: there is no content])=∥φ∥[image: there is no content](Λ×M)








so that the map (E⊗F)C2([image: there is no content]):U⟼IχU, [image: there is no content], is actually a spectral measure acting on C2([image: there is no content]), and the equality:


[image: there is no content]=∫[image: there is no content]φd(E⊗F)C2([image: there is no content])








holds for all bounded measurable functions φ:Λ×M→[image: there is no content] ([20], Section 3.1).
The situation is more complicated if the space C2([image: there is no content]) of Hilbert–Schmidt operators (with the Hilbert–Schmidt norm) is replaced by the Schatten ideal [image: there is no content]=Cp([image: there is no content]) in L([image: there is no content]) for some [image: there is no content] not equal to two or as in the case of Formula (16), by [image: there is no content]=L([image: there is no content]) itself, because the map U×V↦Iχ[image: there is no content], [image: there is no content], [image: there is no content], only defines a finitely-additive set function [image: there is no content] acting on elements T∈[image: there is no content], so that:



[image: there is no content](U×V)T=E(U)TF(V),U∈[image: there is no content],V∈[image: there is no content].








For a bounded function φ:Λ×M→[image: there is no content], the double operator integral [image: there is no content] may be viewed as a continuous generalisation of a classical Schur multiplier:



Tμ:x⟼∑i,jμijαij[image: there is no content],x=∑i,jαij[image: there is no content]



(17)




for an infinite matrix [image: there is no content], with respect to the matrix units [image: there is no content] corresponding to an orthonormal basis [image: there is no content] of [image: there is no content]. If [image: there is no content] denotes the orthogonal projection onto the linear space span[image: there is no content] for each [image: there is no content], then:


Tμ=∑i,jμij(Pi⊗[image: there is no content])M








for the operators (Pi⊗[image: there is no content])M:x⟼Pix[image: there is no content] acting on the infinite matrix [image: there is no content] for [image: there is no content].
To be more precise, let [image: there is no content] be a symmetrically-normed ideal in L([image: there is no content]). The linear map J[image: there is no content]:L([image: there is no content])⊗L([image: there is no content])→L([image: there is no content]) is defined by J[image: there is no content](A⊗B)T=ATB for T∈[image: there is no content] and A,B∈L([image: there is no content]). In the language of [20], Section 4, the element J[image: there is no content](A⊗B) of L([image: there is no content]) is the transformer on [image: there is no content] associated with [image: there is no content]. The tensor product W=L([image: there is no content])⊗^τ[image: there is no content] is defined by completion with respect to the norm (9).

Definition 7. Let [image: there is no content] and [image: there is no content] be measurable spaces and [image: there is no content] a separable Hilbert space. Let m:[image: there is no content]→Ls([image: there is no content]) be an operator valued measure for the strong operator topology and n:[image: there is no content]→[image: there is no content] be a [image: there is no content]-valued measure.

An [image: there is no content]-measurable function φ:Λ×M→[image: there is no content] is said to be [image: there is no content]-integrable in W=L([image: there is no content])⊗^τ[image: there is no content] if for every x,x′,y′∈[image: there is no content], the function φ is integrable with respect to the scalar measure [image: there is no content] and for every [image: there is no content], there exists φ.[image: there is no content](A)∈L([image: there is no content])⊗^τ[image: there is no content], such that:



⟨φ.[image: there is no content](A),x⊗x′⊗y′⟩=∫Aφd((mx,x′)⊗(n,y′))








for every x,x′,y′∈[image: there is no content].
If φ is [image: there is no content]-integrable in L([image: there is no content])⊗^τ[image: there is no content] and JW:L([image: there is no content])⊗^τ[image: there is no content]→[image: there is no content] is the multiplication map, then:



∫Aφd(mn)=JW(φ.[image: there is no content](A)),A∈[image: there is no content]⊗[image: there is no content]








The following observation is useful for treating double operator integrals.

Proposition 6. Let [image: there is no content], m:[image: there is no content]→Ls([image: there is no content])and n:[image: there is no content]→[image: there is no content]be as in Definition 7. If T∈C1([image: there is no content]), then there exists a unique vector measure:



m⊗(Tn):[image: there is no content]⊗[image: there is no content]→L([image: there is no content])⊗^τ[image: there is no content]








such that (m⊗(Tn))(E×F)=m(E)⊗(Tn(F))∈L([image: there is no content])⊗[image: there is no content]for each [image: there is no content]and [image: there is no content]. Consequently, every bounded [image: there is no content]-measurable function φ:Λ×M→[image: there is no content]is [image: there is no content]-integrable in W=L([image: there is no content])⊗^τ[image: there is no content]and:


∫Aφd(m(Tn))=JW(φ.(m⊗(Tn))(A)),A∈[image: there is no content]⊗[image: there is no content].








Proof. If T is a trace class operator on [image: there is no content], then there exists orthonormal sets [image: there is no content], [image: there is no content] and a summable sequence [image: there is no content] of scalars, such that [image: there is no content] for every h∈[image: there is no content]. For each [image: there is no content], the total variation of the product measure:



(mh,k)⊗(n,ψj):E×F⟼(m(E)h,k)⊗(n(F),ψj),E∈[image: there is no content],F∈[image: there is no content]








is bounded by [image: there is no content] for every h,k∈[image: there is no content]. Here, [image: there is no content] and [image: there is no content] denote the semi-variation of m and n, respectively ([31], p. 2). It follows that [image: there is no content] admits a unique countably-additive extension Mj:[image: there is no content]⊗[image: there is no content]→L([image: there is no content])⊗[image: there is no content] whose semi-variation with respect to the norm (9) is bounded by [image: there is no content] and [image: there is no content] converges in L([image: there is no content])⊗^τ[image: there is no content] uniformly on [image: there is no content].  ☐
Corollary 7. Let [image: there is no content]and [image: there is no content]be measurable spaces and [image: there is no content]a separable Hilbert space. Let m:[image: there is no content]→Ls([image: there is no content])and n:[image: there is no content]→Ls([image: there is no content])be operator valued measures for the strong operator topology. Then, there exists a unique operator valued measure:



JC1([image: there is no content])[image: there is no content]:[image: there is no content]⊗[image: there is no content]→Ls(C1([image: there is no content]),Ls([image: there is no content]))








such that:


JC1([image: there is no content])[image: there is no content](E×F)=JC1([image: there is no content])(m(E)⊗n(F)),E∈[image: there is no content],F∈[image: there is no content].








Proof. It is easy to check that for [image: there is no content] and T∈C1([image: there is no content]), the formula:



JC1([image: there is no content])[image: there is no content](A)Th=JW((m⊗(T(nh)))(A)),h∈[image: there is no content]








defines a linear operator JC1([image: there is no content])[image: there is no content](A)T on [image: there is no content] whose operator norm is bounded by ∥m∥(Λ).∥n∥(M)∥T∥C1([image: there is no content]), and A⟼JC1([image: there is no content])[image: there is no content](A)T, [image: there is no content], is countably additive in L([image: there is no content]) for the strong operator topology for each T∈C1([image: there is no content]).  ☐
Given T∈C1([image: there is no content]), the expression [image: there is no content], [image: there is no content] and [image: there is no content], is the restriction to product sets of the L([image: there is no content])-valued measure mTn=JC1([image: there is no content])[image: there is no content]T.

The following notation gives an interpretation of Formula (16) in the case that the operator Y belongs to the symmetrically-normed ideal [image: there is no content]=Cp([image: there is no content]), [image: there is no content] or [image: there is no content]=L([image: there is no content]). The collection C1([image: there is no content]) of trace class operators is a linear subspace of [image: there is no content] in each case.

Let [image: there is no content][image: there is no content] be the finitely-additive set function defined by:



[image: there is no content][image: there is no content](E×F)=J[image: there is no content](m(E)⊗n(F)),E∈[image: there is no content],F∈[image: there is no content]








that is [image: there is no content][image: there is no content]:[image: there is no content]→L([image: there is no content]) is finitely additive on the algebra [image: there is no content] of all finite unions of product sets [image: there is no content] for [image: there is no content], [image: there is no content].
Suppose that the function φ:Λ×M→[image: there is no content] is integrable with respect to the measure JC1([image: there is no content])[image: there is no content] with values in Ls(C1([image: there is no content]),Ls([image: there is no content])). If for [image: there is no content] and [image: there is no content], the linear map:



u⟼∫[image: there is no content]φd[JC1([image: there is no content])[image: there is no content]]u,u∈C1([image: there is no content])








is the restriction to C1([image: there is no content]) of a continuous linear map [image: there is no content]∈L([image: there is no content]), then we write:


∫[image: there is no content]φd[image: there is no content][image: there is no content]








for for the continuous linear map [image: there is no content] and we say that φ is [image: there is no content][image: there is no content]-integrable if:


∫[image: there is no content]φd[image: there is no content][image: there is no content]∈L([image: there is no content])








for every [image: there is no content] and [image: there is no content].
To check that the operator ∫[image: there is no content]φd[image: there is no content][image: there is no content]∈L([image: there is no content]) is uniquely defined, observe that C1([image: there is no content]) is norm dense in Cp([image: there is no content]) for [image: there is no content]. In the case [image: there is no content]=L([image: there is no content]), the closure in the ultra-weak topology can be taken.

Although [image: there is no content][image: there is no content] is only a finitely-additive set function, the L([image: there is no content])-valued set function:



E×F⟼∫[image: there is no content]φd[image: there is no content][image: there is no content],E∈[image: there is no content],F∈[image: there is no content]








of an [image: there is no content][image: there is no content]-integrable function φ defines a finitely-additive L([image: there is no content])-valued set function on the algebra generated by all product sets [image: there is no content] for [image: there is no content] and [image: there is no content].
Corollary 7 tells us that for an [image: there is no content]C1([image: there is no content])-integrable function φ:Λ×M→[image: there is no content], the L([image: there is no content])-valued set function:



A⟼∫Aφd[image: there is no content]C1([image: there is no content])T,A∈[image: there is no content]⊗[image: there is no content]








is countably additive in the strong operator topology for each T∈C1([image: there is no content]). The following simple observation describes the situation for other operator ideals [image: there is no content].
Proposition 8. Suppose that φ:Λ×M→[image: there is no content]is an [image: there is no content][image: there is no content]-integrable function. For each T∈[image: there is no content], the set function:



E×F⟼∫[image: there is no content]φd[image: there is no content][image: there is no content]T,E∈[image: there is no content],F∈[image: there is no content]








is separately σ-additive in the strong operator topology of L([image: there is no content]), that is,


∫(∪j=1∞Ej)×Fφd[image: there is no content][image: there is no content]T=∑j=1∞∫Ej×Fφd[image: there is no content][image: there is no content]T,F∈[image: there is no content]∫E×(∪j=1∞Fj)φd[image: there is no content][image: there is no content]T=∑j=1∞∫E×Fjφd[image: there is no content][image: there is no content]T,E∈[image: there is no content]








for all pairwise disjoint [image: there is no content], [image: there is no content]and all pairwise disjoint [image: there is no content], [image: there is no content].
The following result was proven by Birman and Solomyak ([20], Section 3.1).

Theorem 9. Let [image: there is no content]and [image: there is no content]be measurable spaces and [image: there is no content]a separable Hilbert space. Let P:[image: there is no content]→Ls([image: there is no content])and Q:[image: there is no content]→Ls([image: there is no content])be spectral measures. Then, there exists a unique spectral measure (P⊗¯Q)C2([image: there is no content]):[image: there is no content]⊗[image: there is no content]→L(C2([image: there is no content])), such that (P⊗¯Q)C2([image: there is no content])(A)=(P⊗Q)C2([image: there is no content])(A)for all A∈[image: there is no content]and:



∫Aφd[image: there is no content]C2([image: there is no content])=∫Aφd(P⊗¯Q)C2([image: there is no content])∈L(C2([image: there is no content])),A∈[image: there is no content]⊗[image: there is no content]








for every bounded [image: there is no content]-measurable function φ:Λ×M→[image: there is no content]. Moreover,


∥(P⊗¯Q)C2([image: there is no content])(φ)∥L(C2([image: there is no content]))=∥φ∥∞.








For spectral measures P and Q, the formula:



∫[image: there is no content]φd[image: there is no content][image: there is no content]T=∫[image: there is no content]φd[image: there is no content][image: there is no content]P(E)TQ(F)








holds for each [image: there is no content], [image: there is no content] and T∈[image: there is no content], so it is only necessary to verify that ∫[image: there is no content]φd[image: there is no content][image: there is no content]∈L([image: there is no content]) in order to show that φ is [image: there is no content][image: there is no content]-integrable.
The following observation gives an interpretation of Formula (16) as a double operator integral. The Fourier transform of f∈[image: there is no content]([image: there is no content]) is the function f˰:[image: there is no content]→[image: there is no content] defined by f˰(ξ)=∫[image: there is no content]e−iξxf(x)dx for ξ∈[image: there is no content].

Theorem 10. Let [image: there is no content]be a separable Hilbert space. Let P:B([image: there is no content])→Ls([image: there is no content])and Q:B([image: there is no content])→Ls([image: there is no content])be spectral measures on [image: there is no content]. Let [image: there is no content]=Cp([image: there is no content])for some [image: there is no content]or [image: there is no content]=L([image: there is no content]). Suppose that f∈[image: there is no content]([image: there is no content])and [image: there is no content]for all λ,μ∈[image: there is no content]. Then, ∫[image: there is no content]×[image: there is no content]φd[image: there is no content][image: there is no content]∈L([image: there is no content])and:



∫[image: there is no content]×[image: there is no content]φd[image: there is no content][image: there is no content]L([image: there is no content])≤∥f∥1



(18)




Proof. For T∈C1([image: there is no content]) and Borel subsets [image: there is no content] of [image: there is no content], by Fubini’s theorem, we have:



∫[image: there is no content]φd[JC1([image: there is no content])[image: there is no content]]T=∫[image: there is no content]∫Ee−iλξdP(λ)T∫FeiμξdQ(μ)f(ξ)dξ








The right-hand side is a Bochner integral in the strong operator topology of L([image: there is no content]) because:



ξ⟼∫[image: there is no content]e−iλξdP(λ),ξ⟼∫[image: there is no content]eiμξdQ(μ),ξ∈[image: there is no content]








are continuous unitary groups in the strong operator topology. Moreover,


ξ⟼∫Ee−iλξdP(λ)T∫FeiμξdQ(μ),ξ∈[image: there is no content]








is continuous in the norm of [image: there is no content] for compact subsets [image: there is no content] of [image: there is no content], because [image: there is no content] is a symmetrically-normed ideal in L([image: there is no content]); so, the Bochner integral converges in [image: there is no content] itself, and we obtain:


∫[image: there is no content]φd[JC1([image: there is no content])[image: there is no content]]T[image: there is no content]≤∥f∥1∥T∥[image: there is no content]








For [image: there is no content] increasing to [image: there is no content], the inclusion ∫[image: there is no content]×[image: there is no content]φd[image: there is no content][image: there is no content]∈L([image: there is no content]) and the bound (18) is now a consequence of the non-commutative Fatou lemma.  ☐

Corollary 11. Let [image: there is no content]be a separable Hilbert space, and let [image: there is no content]be self-adjoint operators with spectral measures [image: there is no content]:B(σ(A))→Ls([image: there is no content])and [image: there is no content]:B(σ(B))→Ls([image: there is no content]), respectively. Let [image: there is no content]=Cp([image: there is no content])for some [image: there is no content]or [image: there is no content]=L([image: there is no content]). If the spectra of A and B are separated by a distance [image: there is no content], then ∫σ(A)×σ(B)(λ−μ)−1([image: there is no content]⊗[image: there is no content])[image: there is no content](dλ,dμ)∈L([image: there is no content])and:



∫σ(A)×σ(B)([image: there is no content]⊗[image: there is no content])[image: there is no content](dλ,dμ)λ−μL([image: there is no content])≤π2δ








In particular, Equation (5) has a unique strong solution for Y∈[image: there is no content]given by the double operator integral:



X=∫σ(A)×σ(B)d[image: there is no content](λ)Yd[image: there is no content](μ)λ−μ:=∫σ(A)×σ(B)([image: there is no content]⊗[image: there is no content])[image: there is no content](dλ,dμ)λ−μY








so that ∥X∥[image: there is no content]≤π2δ∥Y∥[image: there is no content].
Although the Heaviside function [image: there is no content] is not the Fourier transform of an [image: there is no content]-function, the following result of Gohberg and Krein ([34], Section III.6) holds, in case [image: there is no content]. The general case is outlined in [20], Theorem 7.2.

Theorem 12. Let [image: there is no content]be a separable Hilbert space. Let P:B([image: there is no content])→Ls([image: there is no content])and Q:B([image: there is no content])→Ls([image: there is no content])be spectral measures on [image: there is no content]. Then:



∫[image: there is no content]×[image: there is no content]χ{λ>μ}d[image: there is no content]Cp([image: there is no content])∈L(Cp([image: there is no content]))








for every [image: there is no content].
The following recent result of Sukochev and Potapov [35] settled a long outstanding conjecture of Krein for the index p in the range [image: there is no content].

Theorem 13. Let [image: there is no content]be a separable Hilbert space. Let P:B([image: there is no content])→Ls([image: there is no content])and Q:B([image: there is no content])→Ls([image: there is no content])be spectral measures on [image: there is no content]. Suppose that [image: there is no content]is a continuous function for which the difference quotient:



φf(λ,μ)=f(λ)−f(μ)λ−μ,λ≠μ0,λ=μ








is uniformly bounded. Then, for every [image: there is no content],


∫[image: there is no content]×[image: there is no content]φfd[image: there is no content]Cp([image: there is no content])∈L(Cp([image: there is no content]))








and there exists [image: there is no content], such that:


∫[image: there is no content]×[image: there is no content]φfd[image: there is no content]Cp([image: there is no content])Cp([image: there is no content])≤Cp∥φf∥∞








Such a function f is said to be uniformly Lipschitz on [image: there is no content] and [image: there is no content].

Corollary 14. Suppose that [image: there is no content]is a uniformly Lipschitz function. Then, for every [image: there is no content], there exists [image: there is no content], such that:



∥f(A)−f(B)∥Cp([image: there is no content])≤Cp∥f∥Lip1∥A−B∥Cp([image: there is no content])








for any self-adjoint operators A and B on a separable Hilbert space [image: there is no content].
Proof. Let [image: there is no content] and [image: there is no content] be the spectral measures of A and B, respectively, and suppose that ∥A−B∥Cp([image: there is no content])<∞. Then, according to [20], Theorem 8.1 (see also [21], Corollary 7.2), the equality:



f(A)−f(B)=∫[image: there is no content]×[image: there is no content]φfd([image: there is no content]⊗[image: there is no content])Cp([image: there is no content])(A−B)








holds, and the norm estimate follows from Theorem 13.  ☐


5. Traces of Double Operator Integrals

In this section, let [image: there is no content] and [image: there is no content] be given measurable spaces, [image: there is no content] a separable Hilbert space and P:[image: there is no content]→Ls([image: there is no content]), Q:[image: there is no content]→Ls([image: there is no content]) spectral measures. Let [image: there is no content]=Cp([image: there is no content]) for some [image: there is no content] or [image: there is no content]=L([image: there is no content]). The Banach space [image: there is no content](P) of P-integrable functions is isomorphic to the C*-algebra [image: there is no content] of P-essentially bounded functions. The analogous result for [image: there is no content][image: there is no content]-integrable functions follows.

Proposition 15. For an [image: there is no content]-measurable function φ:Λ×M→[image: there is no content], let [image: there is no content]be the equivalence class of all functions equal to φ [image: there is no content]-almost everywhere. Let:



[image: there is no content]([image: there is no content][image: there is no content])={[image: there is no content]:φis[image: there is no content][image: there is no content]-integrable}








with the pointwise operations of addition and scalar multiplication with the norm:


∥[image: there is no content]∥[image: there is no content]=∫Λ×Λφd[image: there is no content][image: there is no content]L([image: there is no content])








Then, ∥[image: there is no content]∥∞≤∥[image: there is no content]∥[image: there is no content], and [image: there is no content]([image: there is no content][image: there is no content])is a commutative Banach *-algebra under pointwise multiplication. If [image: there is no content]=C2([image: there is no content]), then:



[image: there is no content]([image: there is no content][image: there is no content])=[image: there is no content][image: there is no content]








is a commutative [image: there is no content]-algebra. Furthermore, the Banach *-algebras:


[image: there is no content]([image: there is no content]C1([image: there is no content]))=[image: there is no content]([image: there is no content]C∞([image: there is no content]))=[image: there is no content]([image: there is no content]L([image: there is no content]))








are isometric, where C∞([image: there is no content])is the uniformly-closed subspace of L([image: there is no content])consisting of compact operators on [image: there is no content].
Remark 8. The analogy of double operator integrals with multiplier theory in harmonic analysis is fleshed out in [21], Example 2.13, as follows.

If Λ is a locally-compact abelian group with Fourier transform [image: there is no content], the spectral measure Q is defined by multiplication by characteristic functions on [image: there is no content] and P=[image: there is no content]−1Q[image: there is no content] is the spectral measure of the “momentum operator” on Λ, then for [image: there is no content], the space [image: there is no content] of Fourier multipliers on [image: there is no content] coincides with the commutative Banach *-algebra [image: there is no content](Pp) for the finitely-additive set function Pp:[image: there is no content]→L(Lp(Λ)) defined as in [21], Example 2.13, by the spectral measure P acting on on [image: there is no content]. For example, when Λ=[image: there is no content], the operator ∫[image: there is no content]sgndPp∈L(Lp(Λ)) is the Hilbert transform for [image: there is no content].

It is only in the case [image: there is no content] that [image: there is no content](P2)=[image: there is no content](P). One might argue that multiplier theory in commutative harmonic analysis is devoted to the study of the commutative Banach *-algebra [image: there is no content](Pp) for [image: there is no content]. The analysis of the commutative Banach *-algebra [image: there is no content]([image: there is no content])) for general spectral measures E and F and symmetric operator ideal [image: there is no content] has many applications to scattering theory and quantum physics [20].

The commutative Banach *-algebra [image: there is no content] is characterised by a result of Peller [25].

Theorem 16. Let φ:Λ×M→[image: there is no content]be a uniformly-bounded function. Then, [image: there is no content]∈[image: there is no content]([image: there is no content]L([image: there is no content]))if and only if there exist a finite measure space [image: there is no content]and measurable functions α:Λ×T→[image: there is no content]and β:M×T→[image: there is no content], such that ∫T∥α(·,t)∥[image: there is no content]∥β(·,t)∥[image: there is no content]dν(t)<∞and:



φ(λ,μ)=∫Tα(λ,t)β(μ,t)dν(t),λ∈Λ,μ∈M



(19)




The norm of [image: there is no content]∈[image: there is no content]([image: there is no content]L([image: there is no content]))with the representation (19) satisfies:



KG−1∫T∥α(·,t)∥[image: there is no content]∥β(·,t)∥[image: there is no content]dν(t)≤∥[image: there is no content]∥[image: there is no content]([image: there is no content]L([image: there is no content]))










≤∫T|α(·,t)|2dν(t)12[image: there is no content]∫T|β(·,t)|2dν(t)12[image: there is no content]



(20)




for Grothendieck’s constant [image: there is no content]. Moreover, ∥[image: there is no content]∥[image: there is no content]is the infimum of all numbers on the right-hand side of the inequality (20) for which there exists a finite measure ν, such that the representation (19) holds for φ.
Formula (19) is to be interpreted in the sense that φ is a special representative of the equivalence class [image: there is no content]∈[image: there is no content]([image: there is no content]L([image: there is no content])). It is worthwhile to make a few remarks on the significance of Formula (19) in order to motivate its proof below.

If the functions α and β in the representation (19) have the property that [image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content], are strongly ν-measurable in [image: there is no content] and [image: there is no content], respectively, then the function [image: there is no content], [image: there is no content], is strongly measurable in the projective tensor product [image: there is no content], and:



∫T∥α(·,t)∥[image: there is no content]∥β(·,t)∥[image: there is no content]dν(t)<∞








Hence, the function [image: there is no content], [image: there is no content], is Bochner integrable in [image: there is no content], that is [image: there is no content]∈[image: there is no content](P)⊗^π[image: there is no content](Q). However, it is only assumed α is [image: there is no content]-measurable and β is ([image: there is no content]⊗S)-measurable, so this conclusion is unavailable.
Let [image: there is no content] be a finite measure, such that [image: there is no content] for [image: there is no content] and [image: there is no content] for all h∈[image: there is no content] with [image: there is no content]. Such a measure exists by the Bartle–Dunford–Schwartz Theorem ([31], Corollary I.2.6) or, more simply, [image: there is no content] for some orthonormal basis [image: there is no content] of [image: there is no content]. Let [image: there is no content]:[image: there is no content]→[0,∞) be a finite measure corresponding to Q. Then, [image: there is no content] and [image: there is no content].

There is a bijective correspondence between elements [image: there is no content] of the projective tensor product [image: there is no content] and nuclear operators Tk:[image: there is no content]([image: there is no content])→[image: there is no content]([image: there is no content]), such that for each f∈[image: there is no content]([image: there is no content]),



(Tkf)(λ)=∫Mk(λ,μ)f(μ)d[image: there is no content](μ)








for [image: there is no content] almost all [image: there is no content], in the sense that for functions with:


∑j=1∞∥ϕj∥[image: there is no content]([image: there is no content])∥ψj∥[image: there is no content]([image: there is no content])<∞








the kernel [image: there is no content]=∑j=1∞ϕj⊗ψj corresponds to the nuclear operator:


(Tkf)=∑j=1∞ϕj∫Mfψjd[image: there is no content],f∈[image: there is no content]([image: there is no content])








Nuclear operators between Banach space are discussed in [30], Section III.7.
In the case that [image: there is no content]=[image: there is no content] and [image: there is no content] are projections onto the standard basis vectors, then ∫[image: there is no content]×[image: there is no content]φd[image: there is no content]L([image: there is no content]) is the classical Schur multiplier operator (17) and Grothendieck’s inequality ensures that [image: there is no content]([image: there is no content]L([image: there is no content]))=[image: there is no content]⊗^π[image: there is no content]; see Proposition 18 below and [26], Theorem 3.2. In this case, the measure ν in Formula (19) is the counting measure on [image: there is no content], and there is no difficulty with strong ν-measurability in an [image: there is no content]-space.

The passage from the discrete case to the case of general spectral measures P and Q sees the nuclear operators from [image: there is no content]([image: there is no content]) to [image: there is no content]([image: there is no content]) replaced by one-integral operators from [image: there is no content]([image: there is no content]) to [image: there is no content]([image: there is no content]), which leads to the Peller representation (19).


5.1. Schur Multipliers and Grothendieck’s Inequality

If E is any L([image: there is no content])-valued spectral measure and h∈[image: there is no content], the identity:



∑n=1∞∥E(fn)h∥[image: there is no content]2=E∑n=1∞|fn|2h,h








ensures that the [image: there is no content]-valued measure [image: there is no content] has bounded [image: there is no content]-semi-variation in [image: there is no content]([image: there is no content]), the Hilbert space tensor product [image: there is no content]⊗^[image: there is no content]=⊕j=1∞[image: there is no content] with norm ∥u∥[image: there is no content]([image: there is no content])2=∑j=1∞∥uj∥[image: there is no content]2. It follows from [5] that for any essentially bounded functions f:Λ→[image: there is no content] and g:M→[image: there is no content] and h∈[image: there is no content], the [image: there is no content]-valued function f is [image: there is no content]-integrable in [image: there is no content]([image: there is no content]), and the [image: there is no content]-valued function g is [image: there is no content]-integrable in [image: there is no content]([image: there is no content]). Then, there exist operator-valued measures f⊗P:[image: there is no content]→L([image: there is no content],[image: there is no content]([image: there is no content])) and g⊗Q:[image: there is no content]→L([image: there is no content],[image: there is no content]([image: there is no content])), such that:


(f⊗P)(E)h=(f⊗(Ph))(E),E∈[image: there is no content],h∈[image: there is no content]and(g⊗Q)(F)h=(g⊗(Qh))(F),F∈[image: there is no content],h∈[image: there is no content]








There is a simple sufficient condition for φ∈[image: there is no content]([image: there is no content]L([image: there is no content])). Observe first that the linear map J:[image: there is no content]([image: there is no content])⊗[image: there is no content]([image: there is no content])→[image: there is no content]⊗^π[image: there is no content] defined by:



[image: there is no content]








has a continuous linear extension to a contraction J¯:C1([image: there is no content]([image: there is no content]))→C1([image: there is no content]) corresponding to taking the trace in the discrete index. The formula:


(((f⊗P)⊗(g⊗Q))C1([image: there is no content])(E×F))(h⊗k):=(((f⊗[image: there is no content])(E))⊗(g⊗(Qk))(F))








for h,k∈[image: there is no content], [image: there is no content] and [image: there is no content] defines a finitely-additive set function:


((f⊗P)⊗(g⊗Q))C1([image: there is no content])








with values in L(C1([image: there is no content]),C1([image: there is no content]([image: there is no content]))), because C1([image: there is no content]) can be identified with [image: there is no content]⊗^π[image: there is no content] for any Hilbert space [image: there is no content]. Moreover,


∥((f⊗P)⊗(g⊗Q))C1([image: there is no content])(Λ×M)∥L(C1([image: there is no content]),C1([image: there is no content]([image: there is no content])))≤∥f∥∞.∥g∥∞








Then, the operator:



∫[image: there is no content](f,g¯)d[image: there is no content]C1([image: there is no content])=J¯[((f⊗P)⊗(g⊗Q))C1([image: there is no content])(Λ×M)]








is an element of L(C1([image: there is no content])), that is [image: there is no content] belongs to [image: there is no content]([image: there is no content]C1([image: there is no content]))=[image: there is no content]([image: there is no content]L([image: there is no content])), and we have the representation:


[image: there is no content]



(21)




where [image: there is no content] and [image: there is no content]. Moreover, the bound:


∫[image: there is no content]φd[image: there is no content]L([image: there is no content])L(L([image: there is no content]))≤∑n=1∞|fn|212[image: there is no content].∑n=1∞|gn|212[image: there is no content]



(22)




holds. The same argument works if the spectral measures P, Q are replaced by any two operator valued measures m:[image: there is no content]→Ls([image: there is no content]) and n:[image: there is no content]→Ls([image: there is no content]) by appealing to the metric form ([26], Theorem 2.4) of Grothendieck’s inequality, so that:


∫[image: there is no content]φd[image: there is no content]L([image: there is no content])L(L([image: there is no content]))≤[image: there is no content]∥m∥(Λ)∥n∥(M)∑n=1∞|fn|212[image: there is no content](m).∑n=1∞|gn|212[image: there is no content](n).








Alternatively, for each T∈L([image: there is no content]), the linear operator:



∫[image: there is no content]φd[image: there is no content]L([image: there is no content])T∈L([image: there is no content])








can be realised as the operator associated with the bounded sesquilinear form:


[image: there is no content]








See ([20], Theorem 4.1).
A remarkable consequence of Grothendick’s inequality is that for φ∈[image: there is no content]([image: there is no content]L([image: there is no content])), Peller’s representation (19) is necessary ([image: there is no content]⊗[image: there is no content]) almost everywhere. The analysis of Pisier [26] leads the way.

The projective tensor product [image: there is no content] is the completion of the tensor product [image: there is no content] with respect to the norm:



∥u∥π=inf∑j=1n∥xj∥∞∥yj∥∞:u=∑j=1nxj⊗yj,xj,yj∈[image: there is no content]








Another distinguished norm on [image: there is no content] is given by:



[image: there is no content]








where the infimum runs over all possible representation [image: there is no content] for [image: there is no content], [image: there is no content] and [image: there is no content] . Then, [image: there is no content] may also be viewed as the norm of factorisation through a Hilbert space:


[image: there is no content](u)=inf{supi∥xi∥.supj∥yj∥}








where the infimum runs over all Hilbert spaces [image: there is no content] and all xj,yj∈[image: there is no content] for which [image: there is no content] has the finite representation [image: there is no content] with respect to the standard basis [image: there is no content] of [image: there is no content]. Another way of viewing [image: there is no content](u) is:


[image: there is no content](u)=inf∑j=1n|xj|212∞.∑j=1n|yj|212∞








over representations [image: there is no content], [image: there is no content], because:


supξ∈ℓ1∑j=1n|ξ(xj)|212=sup∑j|αj|2≤1∑j=1nαjxj∞=supk∑j=1n|xj(k)|212=∑j=1n|xj|212∞








Proposition 17. Let φ:[image: there is no content]×[image: there is no content]→[image: there is no content]be a function that defines a Schur multiplier Mφ:L([image: there is no content])→L([image: there is no content]), that is in matrix notation Mφ([image: there is no content]i,j∈[image: there is no content])={φ(i,j)aij}i,j∈[image: there is no content]. The following conditions are equivalent.


	(i)

	∥Mφ∥L(L([image: there is no content]))≤1.



	(ii)

	There exists a Hilbert space [image: there is no content]and functions x:[image: there is no content]→B1([image: there is no content]), y:[image: there is no content]→B1([image: there is no content])with values in the closed unit ball B1([image: there is no content])of [image: there is no content], such that [image: there is no content], n,m∈[image: there is no content].



	(iii)

	For all finite subsets [image: there is no content]of [image: there is no content], the bound:



∑i∈E,j∈Fφ(i,j)ei⊗ej[image: there is no content]⊗[image: there is no content][image: there is no content]≤1








holds.





Proof. Suppose first that φ is zero off a finite set [image: there is no content]. Then, the bound (i) is equivalent to the condition that:



[image: there is no content]








for all linear maps a:[image: there is no content](E)→[image: there is no content](F) with norm [image: there is no content] and matrix [image: there is no content] with respect to the standard basis and all α∈B1([image: there is no content](E)), β∈B1([image: there is no content](F)), that is φ belongs to the polar [image: there is no content] of the set [image: there is no content] of all matrices [image: there is no content] with a, α, β as described. According to [26], Remark 23.4, the set [image: there is no content] is itself the polar [image: there is no content] of the set [image: there is no content] of all matrices [image: there is no content] with ∑i∈E,m∈Fψ(i,j)ei⊗ej[image: there is no content]⊗[image: there is no content][image: there is no content]≤1. Then (i) holds if and only if φ belongs to C2∘∘=[image: there is no content], which is exactly Condition (iii). Conditions (ii) and (iii) are equivalent by the the definition of the norm [image: there is no content]. The passage to all of [image: there is no content]×[image: there is no content] follows from a compactness argument. ☐
Remark 9. (a) The argument above uses the factorisation of the norm [image: there is no content] dual to [image: there is no content] described in [26], Proposition 3.3 and Remark 23.4; this only relies on the Hahn–Banach Theorem.

(b) The representation (21) is the measure space version of the implication (ii) ⇒ (i) above. The necessity of the condition (21) in the general measure space setting is proven using complete boundedness arguments in [36], Theorem 3.3; see also [37,38].

One version of Grothendieck’s inequality from [26] is that the norm [image: there is no content] and the projective tensor product norm are equivalent on [image: there is no content] with:



[image: there is no content](u)≤∥u∥π≤[image: there is no content][image: there is no content](u),u∈[image: there is no content]⊗[image: there is no content]








The constant [image: there is no content] is Grothendieck’s constant. The projective tensor product version of Proposition 17 follows, with the same notation.

Proposition 18. Let [image: there is no content]be finite subsets of [image: there is no content], and let φ:[image: there is no content]×[image: there is no content]→[image: there is no content]be a function vanishing off [image: there is no content]. Then:



1[image: there is no content]∑i∈E,j∈Fφ(i,j)ei⊗ej[image: there is no content]⊗π[image: there is no content]≤∥Mφ∥L(L([image: there is no content]))=∑i∈E,j∈Fφ(i,j)en⊗ej[image: there is no content]⊗[image: there is no content][image: there is no content]








Passing to infinite sets, a bounded function φ:[image: there is no content]×[image: there is no content]→[image: there is no content] with ∥Mφ∥L(L([image: there is no content]))<∞ necessarily has a representation:



φ(i,j)=∑k=1∞a(i,k)β(j,k),i,j∈[image: there is no content]








with [image: there is no content], as in Peller’s representation (19).


5.2. Schur Multipliers on Measure Spaces

We first note that for any choice of finite measures [image: there is no content], [image: there is no content] equivalent to P and Q, respectively, the Banach algebra [image: there is no content]([image: there is no content]L([image: there is no content]))) is isometrically isomorphic to the set of multipliers of the projective tensor product L2([image: there is no content])⊗^πL2([image: there is no content]), that is [image: there is no content]∈[image: there is no content]([image: there is no content]L([image: there is no content]))) if and only if for every [h]∈L2([image: there is no content])⊗^πL2([image: there is no content]), the function [image: there is no content] is equal ([image: there is no content]⊗[image: there is no content])-a.e. to an element of L2([image: there is no content])⊗^πL2([image: there is no content]) and ∥[image: there is no content]∥[image: there is no content]([image: there is no content]L([image: there is no content]) is equal to the norm of the linear map:



[h]⟼[φ.h],[h]∈L2([image: there is no content])⊗^πL2([image: there is no content])








If [image: there is no content] and [image: there is no content] are another pair of such equivalent measures, then the operator of multiplication by d[image: there is no content]/d[image: there is no content] is a unitary map from L2([image: there is no content]) to L2([image: there is no content]) and similarly for [image: there is no content], so that multiplication by d[image: there is no content]/d[image: there is no content]⊗d[image: there is no content]/d[image: there is no content] is an isometric isomorphism from the space L2([image: there is no content])⊗^πL2([image: there is no content]) onto L2([image: there is no content])⊗^πL2([image: there is no content]).

Proposition 19. Let [image: there is no content], [image: there is no content]be finite measures equivalent to the spectral measures P, Q, respectively. Then, [image: there is no content]is isometrically isomorphic to the set of multipliers of the projective tensor product L2([image: there is no content])⊗^πL2([image: there is no content])and the identity:



∥[image: there is no content]∥[image: there is no content]=sup∥h∥[image: there is no content]≤1,∥g∥[image: there is no content]≤1∥[image: there is no content]∥L2((Ph,h))⊗^πL2((Qg,g))



(23)




holds.
Proof. Let [image: there is no content] be a sequence of vectors in [image: there is no content] with [image: there is no content], such that {P(E)hn:n=1,2,⋯} is an orthogonal set of vectors in [image: there is no content] for each [image: there is no content]. Such a sequence of vectors can always be manufactured by taking any vectors ξn∈[image: there is no content] with [image: there is no content] and for a measure [image: there is no content] equivalent to P, the sets [image: there is no content] where d(Pξn,ξn)/d[image: there is no content]>0. Then, hn=P([image: there is no content]\⋃m<n[image: there is no content])ξn, [image: there is no content], will do the job. Let [image: there is no content] be the corresponding vectors for Q.

As noted above, the norm of L2([image: there is no content])⊗^πL2([image: there is no content]) is invariant under a change of equivalent measures, so we may as well assume that:



[image: there is no content]=∑n=1∞(Phn,hn)and[image: there is no content]=∑n=1∞(Qgn,gn)








so that the mappings [image: there is no content], [image: there is no content], and [image: there is no content], [image: there is no content], define a unitary equivalences [image: there is no content], [image: there is no content] between L2([image: there is no content]) and L2([image: there is no content]) and [image: there is no content], respectively.
The map Tk:L2([image: there is no content])→L2([image: there is no content]) with integral kernel k∈L2([image: there is no content])⊗^πL2([image: there is no content]) is the trace class. Let T˜k∈C1([image: there is no content]) be the corresponding trace class operator [image: there is no content]. Then:



∑n,m=1∞(T˜kQ(F)gm,P(E)hn)=∫[image: there is no content]kd([image: there is no content]⊗[image: there is no content])








Let [image: there is no content]∈[image: there is no content]([image: there is no content]L([image: there is no content])))=[image: there is no content]([image: there is no content]C1([image: there is no content]))). Then, T˜k∈C2([image: there is no content]) and:



∫[image: there is no content]φd[image: there is no content]C1([image: there is no content])T˜k∑m=1∞Q(F)gm,∑n=1∞P(E)hn=tr∫[image: there is no content]φd[image: there is no content]C2([image: there is no content]))T˜k∑m=1∞Q(F)gm⊗∑n=1∞P(E)hn*=∑n,m=1∞∫[image: there is no content]φd((PT˜kQ)gm,hn)=∫[image: there is no content]φ.kd([image: there is no content]⊗[image: there is no content])








It follows that [image: there is no content] is the kernel of the trace class operator T[image: there is no content]:L2([image: there is no content])→L2([image: there is no content]), such that:



[image: there is no content]T[image: there is no content]UQ*=∫[image: there is no content]φd[image: there is no content]C1([image: there is no content]))T˜k∈C1([image: there is no content])








the equality ∥φ.k∥L2([image: there is no content])⊗^πL2([image: there is no content])=∫[image: there is no content]φd[image: there is no content]C1([image: there is no content]))T˜kC1([image: there is no content]) holds and:


∥[image: there is no content]∥[image: there is no content]([image: there is no content]L([image: there is no content])=sup{∥φ.k∥L2([image: there is no content])⊗^πL2([image: there is no content]) : ∥k∥L2([image: there is no content])⊗^πL2([image: there is no content])≤1}



(24)




According to the identities above,



∫[image: there is no content]φd(PT˜kQ)C1([image: there is no content])=∥φ.k∥L2([image: there is no content])⊗^πL2([image: there is no content])








for all k∈L2([image: there is no content])⊗L2([image: there is no content]), so if:


∥φ.k∥L2([image: there is no content])⊗^πL2([image: there is no content])≤C








for all k∈L2([image: there is no content])⊗L2([image: there is no content]) satisfying ∥k∥L2([image: there is no content])⊗^πL2([image: there is no content])≤1, then [image: there is no content]∈[image: there is no content]([image: there is no content]L([image: there is no content]))), the identity (24) holds and:


∥[image: there is no content]∥[image: there is no content]([image: there is no content]L([image: there is no content])=supsup∥u∥2≤1,∥v∥2≤1∥φ.(u⊗v)∥L2([image: there is no content])⊗^πL2([image: there is no content])








The equality (23) follow from the identities:


∫Λ|ψ1|2|ψ2|2d[image: there is no content]=∑n=1∞P(ψ1.ψ2)hn[image: there is no content]2=(P(|ψ1|2)([image: there is no content]ψ2),([image: there is no content]ψ2))








for ψ1∈[image: there is no content]([image: there is no content]), ψ2∈L2([image: there is no content]) and the unitary equivalence [image: there is no content] defined above. The analogous identities hold for the spectral measure Q.  ☐
Proof of Theorem 16 We proceed by reduction to the [image: there is no content]-case considered in Proposition 18. A Lusin μ-filtration of a σ-finite measure space [image: there is no content] is an increasing family [image: there is no content]=⟨[image: there is no content]n⟩n∈[image: there is no content] of σ-algebras, such that for a set [image: there is no content] of full measure, [image: there is no content]∩[image: there is no content]=⋁([image: there is no content]∩[image: there is no content]), and each element of [image: there is no content]n is the countable union of sets belonging to a countable partition [image: there is no content] of [image: there is no content] into sets of finite positive μ-measure and such that each set in [image: there is no content] is contained in an element of [image: there is no content], for [image: there is no content].

Let [image: there is no content], [image: there is no content] be finite measures equivalent to P, Q, respectively. Because both L2([image: there is no content]) and L2([image: there is no content]) are isomorphic to the separable Hilbert space [image: there is no content], for the purpose of obtaining the representation (19), we may suppose that the underlying σ-algebras are countably generated.

Let [image: there is no content]={[image: there is no content]n}n be a Lusin [image: there is no content]-filtration, and let [image: there is no content] be a Lusin [image: there is no content]-filtration. Suppose that [image: there is no content], [image: there is no content] is the n-th partition associated with [image: there is no content] and [image: there is no content] is the n-th partition associated with [image: there is no content]. The corresponding projection operators Pn:[image: there is no content]([image: there is no content])→ℓ1 and Qn:[image: there is no content]([image: there is no content])→ℓ1 are defined by:



Pn:f⟼∫Aifd[image: there is no content]i=1∞,f∈[image: there is no content]([image: there is no content])Qn:g⟼∫Bjfd[image: there is no content]j=1∞,g∈[image: there is no content]([image: there is no content])








The conditional expectation (En⊗Fn)(f)=E(f|[image: there is no content]n⊗[image: there is no content]n) is defined for any measurable function f:Λ×M→[image: there is no content] that is integrable over any set [image: there is no content], i,j∈[image: there is no content].

It is easy to verify that [image: there is no content] for the matrix:



[image: there is no content]=∫[image: there is no content]φd([image: there is no content]⊗[image: there is no content])[image: there is no content](Ai)[image: there is no content](Bj)i,j=1∞








and the operator T[image: there is no content]:ℓ1→[image: there is no content] with kernel [image: there is no content].
Moreover, for every finite rank operator U:[image: there is no content]([image: there is no content])→[image: there is no content]([image: there is no content]), the bound:



|tr(Pn*T[image: there is no content]QnU)|=|tr(T[image: there is no content]QnUPn*)|≤∥[image: there is no content]∥[image: there is no content]∥QnUPn*∥








Suppose that there exists [image: there is no content], such that ∥[image: there is no content]∥[image: there is no content]≤C for all [image: there is no content]

Then, tr(Pn*T[image: there is no content]QnU)=tr(T(En⊗Fn)φU)= tr([image: there is no content]EnUFn), and taking [image: there is no content], the martingale convergence theorem shows that the bound:



|tr([image: there is no content]U)|≤C∥U∥L([image: there is no content],[image: there is no content])








holds for every finite rank operator U:[image: there is no content]([image: there is no content])→[image: there is no content]([image: there is no content]). It follows from [39], Theorem 6.16, that [image: there is no content] belongs to the Banach ideal I1([image: there is no content]([image: there is no content]),[image: there is no content]([image: there is no content])) of one-integral operators from [image: there is no content]([image: there is no content]) to [image: there is no content]([image: there is no content]). Because [image: there is no content]([image: there is no content]) is a dual space, [39], Corollary 5.4, ensures that [image: there is no content] enjoys the factorisation:


[image: there is no content]([image: there is no content])[image: there is no content]⟶[image: there is no content]([image: there is no content])T1↓↑T2[image: there is no content](ν)⟶j[image: there is no content](ν)








for some bounded linear operators T1 and T2 and finite measure space (T; [image: there is no content]; ν). The given factorisation also follows by the original 1954 Grothendieck argument with the choice E=[image: there is no content]([image: there is no content]), F=[image: there is no content]([image: there is no content]) in [30], Section IV.9.2.
Every bounded linear operator u from [image: there is no content](η1) to [image: there is no content](η2) is an integral operator with a bounded kernel, because [image: there is no content] defines a continuous linear functional on [image: there is no content](η1)⊗^π[image: there is no content](η2)≡[image: there is no content](η1⊗η2) (see [40], Lemma 2.2, for a compactness argument), so there exist bounded measurable functions α:Λ×T→[image: there is no content] and β:M×T→[image: there is no content], such that:



(T1f)(t)=∫Mβ(μ,t)f(λ)d[image: there is no content](λ),f∈[image: there is no content]([image: there is no content])(T2g)(λ)=∫Tα(λ,t)g(t)dν(t),g∈[image: there is no content](ν)








The representation (19) and the associated bounds follow if we can take:



C=[image: there is no content]∥[image: there is no content]∥[image: there is no content]([image: there is no content]L([image: there is no content]))








We know from the bounds (18) that:



∥[image: there is no content]∥[image: there is no content]≤[image: there is no content]∥M[image: there is no content]∥L(L([image: there is no content]))=[image: there is no content]∥[image: there is no content]∥[image: there is no content]⊗^[image: there is no content][image: there is no content]








The norm [image: there is no content] defined on [image: there is no content] is the norm of factorisation through a Hilbert space. For any bounded linear operator [image: there is no content] between Banach spaces X and Y, [image: there is no content](u)=inf{∥u1∥,∥u2∥} where the infimum runs over all Hilbert spaces [image: there is no content] and all possible factorisations:



u:X⟶  u2  [image: there is no content]⟶  u1  Y








of [image: there is no content] through [image: there is no content] with [image: there is no content]. Taking X=[image: there is no content]([image: there is no content]) and Y=L∞([image: there is no content]), the bound (22) says that:


∥φ∥[image: there is no content]≤∥φ∥[image: there is no content]([image: there is no content])⊗^[image: there is no content][image: there is no content]([image: there is no content])








with respect to the completion L∞([image: there is no content])⊗^[image: there is no content]L∞([image: there is no content]) of L∞([image: there is no content])⊗L∞([image: there is no content]) in the norm ϕ⟼[image: there is no content](Tϕ), ϕ∊L∞([image: there is no content])⊗L∞([image: there is no content])
The norm estimates:



∥[image: there is no content]∥[image: there is no content]⊗^[image: there is no content][image: there is no content]=∥(En⊗Fn)φ∥[image: there is no content]([image: there is no content])⊗^[image: there is no content][image: there is no content]([image: there is no content])≤∥φ∥[image: there is no content]([image: there is no content])⊗^[image: there is no content][image: there is no content]([image: there is no content])








follow from the definition of [image: there is no content] and the contractivity of the conditional expectation operators [image: there is no content].
According to Proposition 19, the norm of the linear operator:



Mφ:C1(L2([image: there is no content]),L2([image: there is no content]))→C1(L2([image: there is no content]),L2([image: there is no content]))








associated with multiplication by φ on L2([image: there is no content])⊗^πL2([image: there is no content]) is equal to:


∥[image: there is no content]∥[image: there is no content]=∥[image: there is no content]∥[image: there is no content]([image: there is no content]C1([image: there is no content]))








The equality ∥φ∥[image: there is no content]([image: there is no content])⊗^[image: there is no content][image: there is no content]([image: there is no content])=∥Mφ∥L(L(L2([image: there is no content]),L2([image: there is no content])) is proven in [36], Theorem 3.3, using complete boundedness techniques, but this can be established in a more elementary way by noting that if [image: there is no content]∈[image: there is no content]([image: there is no content]C1([image: there is no content])), then the martingale convergence theorem ensures that [image: there is no content] in the strong operator topology of:



L(C1(L2([image: there is no content]),L2([image: there is no content])),C1(L2([image: there is no content]),L2([image: there is no content]))








as [image: there is no content] and also:


∥(En⊗Fn)φ∥[image: there is no content]([image: there is no content])⊗^[image: there is no content][image: there is no content]([image: there is no content])⟶∥φ∥[image: there is no content]([image: there is no content])⊗^[image: there is no content][image: there is no content]([image: there is no content])








as [image: there is no content]. Then, [image: there is no content] by duality. The equality:


∥(En⊗Fn)φ∥[image: there is no content]([image: there is no content])⊗^[image: there is no content][image: there is no content]([image: there is no content])=∥M(En⊗Fn)φ)∥L(L(L2([image: there is no content]),L2([image: there is no content])))








follows for each [image: there is no content] from Proposition 17 by replacing [image: there is no content] in (iii) by χ[image: there is no content] for [image: there is no content] . The final assertion of Theorem 16 follows from the equalities:


∥φ∥[image: there is no content]([image: there is no content])⊗^[image: there is no content][image: there is no content]([image: there is no content])=∥Mφ∥L(L(L2([image: there is no content]),L2([image: there is no content])))=∥[image: there is no content]∥[image: there is no content]








☐
Remark 10. (a) The original proof of Peller [25,40], Theorem 2.2, factorises the finite rank operator U:[image: there is no content]([image: there is no content])→[image: there is no content]([image: there is no content]) instead, so the constant [image: there is no content] appears in place of [image: there is no content] in the bound associated with (19).

(b) Let [image: there is no content]([image: there is no content])⊗˜[image: there is no content]([image: there is no content]) be the closure of the linear space of all k∈[image: there is no content]([image: there is no content])⊗[image: there is no content]([image: there is no content]) in the uniform norm of the space of operators Tk∈L([image: there is no content]([image: there is no content]),[image: there is no content]([image: there is no content])) corresponding to the compact linear operators from [image: there is no content]([image: there is no content]) to [image: there is no content]([image: there is no content]). By [30], Section IV.9.2, the function [image: there is no content] in Formula (19) is ν-integrable in the space of one-integral operators:



I1([image: there is no content]([image: there is no content]),[image: there is no content]([image: there is no content]))≡([image: there is no content]([image: there is no content])⊗˜[image: there is no content]([image: there is no content]))′








and φ=∫Tα⊗βdν.
(c) The proof above shows that operator [image: there is no content]:[image: there is no content]([image: there is no content])→[image: there is no content]([image: there is no content]) is (strictly) one-integral in the sense of [39], p. 97, and [30], Section IV.9.2, if and only if [image: there is no content]∈[image: there is no content]([image: there is no content]L([image: there is no content])). The reason that we may have ∥[image: there is no content]∥[image: there is no content]([image: there is no content])⊗^π[image: there is no content]([image: there is no content])=∞ for some [image: there is no content]∈[image: there is no content]([image: there is no content]L([image: there is no content])), that is the function [image: there is no content] associated with the representation (19) fails to be ν-integrable in [image: there is no content]([image: there is no content])⊗^π[image: there is no content]([image: there is no content]), so that [image: there is no content]:[image: there is no content]([image: there is no content])→[image: there is no content]([image: there is no content]) thereby fails to be a nuclear operator, is that the vector measure [image: there is no content] associated with a continuous linear map u from [image: there is no content] to [image: there is no content] has a weak*-density, but not necessarily a strongly-measurable density in [image: there is no content].

For any u∈C1([image: there is no content]) and φ∈[image: there is no content]((P⊗P)L([image: there is no content])), the operator:



Mφu=∫Λ×Λφd(P⊗P)C1([image: there is no content]))u








is the trace class. Moreover, the expression [image: there is no content], [image: there is no content], is a complex measure [image: there is no content] on the σ-algebra [image: there is no content], such that |[image: there is no content]|<<[image: there is no content]. As indicated in [20], Section 9.1, the identity:


tr(Mφu)=∫Λφ(λ,λ)d[image: there is no content](λ)



(25)




holds. In the case that u:[image: there is no content]→[image: there is no content] is a finite rank operator, together with the polarisation, the bound (23) shows that the operator [image: there is no content]:L2([image: there is no content])→L2([image: there is no content]) with integral kernel φ is the trace class and:


∥[image: there is no content]∥C1(L2([image: there is no content]))≤16∥[image: there is no content]∥[image: there is no content]([image: there is no content]L([image: there is no content])∥u∥C1([image: there is no content]).








The same bound holds for all u∈C1([image: there is no content]). The identity:


|ψ|2.[image: there is no content]=(P([image: there is no content]ψ),([image: there is no content]ψ)),ψ∈L2([image: there is no content])








ensures that [image: there is no content] for Tϕ1⊗ϕ2∈C1(L2([image: there is no content])) with u∈C1([image: there is no content]) and [image: there is no content] bounded on Λ. Then, the equality:


tr(Mφu)=tr([image: there is no content])








holds, because both sides are continuous for φ∈[image: there is no content]([image: there is no content])⊗^[image: there is no content][image: there is no content]([image: there is no content]).
The representation (21) converges in [image: there is no content]([image: there is no content])⊗^[image: there is no content][image: there is no content]([image: there is no content]), and there exists a set [image: there is no content] of full [image: there is no content]-measure, such that:



[image: there is no content]








for all λ,μ∈[image: there is no content], where the right-hand sum converges absolutely. The expression above constitutes a distinguished element of the equivalence class [image: there is no content]. Consequently, Formula (25) is valid because:


tr([image: there is no content])=∑n=1∞tr(Tfn⊗gn)=∑n=1∞∫Λfn(λ)gn(λ)d[image: there is no content](λ)=∫Λφ(λ,λ)d[image: there is no content](λ)








As in the proof of Theorem 16, for any Lusin [image: there is no content]-filtration [image: there is no content]=⟨[image: there is no content]k⟩k of Λ, for each [image: there is no content], the conditional expectation operators Ek:f⟼E(f|[image: there is no content]k) with respect to the σ-algebra [image: there is no content]k and the finite measure [image: there is no content] have the property that:



∑n=1∞|fn.gn−Ek(fn).Ek(gn)|≤∑n=1∞|(fn−Ek(fn)).gn|+∑n=1∞|Ek(fn).(gn−Ek(gn)|≤∑n=1∞|(fn−Ek(fn))|212.∑n=1∞|gn|212+∑n=1∞|Ek(fn)|212.∑n=1∞|(gn−Ek(gn)|212→0[image: there is no content]-almosteverywhereask→∞








by the martingale convergence theorem. Consequently, setting:


[image: there is no content]








wherever the limit exists, the equality [image: there is no content] holds for [image: there is no content]-almost all [image: there is no content].
Remark 11. There is a representative function φ of the equivalence class [image: there is no content] that is continuous for the so-called ω-topology of [37], Proposition 9.1, so Formula (25) may also be derived from the trace formula for a trace class operator with a continuous integral kernel. In fact, Peller’s representation (19) can be deduced directly from Proposition 18 by employing the ω-continuity of φ rather than the martingale convergence theorem; see [37], Remark p. 139.




6. The Spectral Shift Function

The following perturbation formula of Birman and Solomyak ([20], Theorem 8.1) was mentioned in the proof of Corollary 14. The operator ideal [image: there is no content] is taken to be Cp([image: there is no content]) for [image: there is no content] or L([image: there is no content]) for a given Hilbert space [image: there is no content].

Theorem 20. Let [image: there is no content]be a separable Hilbert space, and let A and B be self-adjoint operators with the same domain, such that A−B∈[image: there is no content]. Let [image: there is no content]:B([image: there is no content])→Ls([image: there is no content])and [image: there is no content]:B([image: there is no content])→Ls([image: there is no content])be the spectral measures on [image: there is no content]associated with A and B, respectively. Suppose that [image: there is no content]is a continuous function for which the difference quotient:



φf(λ,μ)=f(λ)−f(μ)λ−μ,λ≠μ0,λ=μ








is uniformly bounded and φf∈[image: there is no content](([image: there is no content]⊗QB)[image: there is no content]). Then:


∫[image: there is no content]×[image: there is no content]φfd([image: there is no content]⊗[image: there is no content])[image: there is no content]∈L([image: there is no content])








and:


f(A)−f(B)=∫[image: there is no content]×[image: there is no content]φfd([image: there is no content]⊗[image: there is no content])[image: there is no content](A−B)








If [image: there is no content]=C1([image: there is no content]), then we would like to calculate the trace of [image: there is no content]. The method of the preceding section is unavailable with different spectral measures [image: there is no content], [image: there is no content], so we can try to invoke the Daletskii–Krein formula ([20], Equations (9) and (10)). For a sufficiently smooth function f, this takes the form:



f(A)−f(B)=∫01∫[image: there is no content]×[image: there is no content]φf(λ,μ)d([image: there is no content]⊗[image: there is no content])C1([image: there is no content])(A−B)dt








with [image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content]. At each point [image: there is no content], the same spectral measure [image: there is no content] is involved, so from Formula (25), we can expect that:


tr(f(A)−f(B))=∫[image: there is no content]f′(λ)d(λ)








for the complex measure :E⟼∫01tr(V[image: there is no content](E))dt, E∈B([image: there is no content]), with V=(A−B)∈C1([image: there is no content]). It turns out that is absolutely continuous with respect to the Lebesgue measure on [image: there is no content] from which the formula:


tr(f(A)−f(B))=∫[image: there is no content]f′(λ)ξ(λ)dλ



(26)




is obtained. The function ξ:[image: there is no content]→[image: there is no content] is Krein’s spectral shift function.
We now turn to establishing the validity of Formula (26) for a restricted class of functions f. Better results are known, for example, from [25,41,42,43], but our purpose is to describe applications of singular bilinear integrals, such as double operator integrals to problems in the perturbation theory of linear operators. The approach of Boyadzhiev [44] best suits the purpose.

Setting V=A−B∈C1([image: there is no content]), we first note that eisA(t)−eisB∈C1([image: there is no content]) for each s∈[image: there is no content] and [image: there is no content], because the perturbation series:



eisA(t)=eisB+∑n=1∞(is)n∫0t⋯∫0s2eisB(s−[image: there is no content])V⋯eisB(s2−s1)VeisBs1ds1⋯d[image: there is no content]








converges in the norm of C1([image: there is no content]) and [image: there is no content] is norm differentiable in C1([image: there is no content]). Moreover,


∥eisA(t)−eisB∥C1([image: there is no content])≤(e|s|∥V∥C1([image: there is no content])−1)



(27)




The following result is straightforward, but it depends on some measure theoretic facts. It establishes that Ξ is a complex measure.

Lemma 21. The function t⟼[image: there is no content](E)h, [image: there is no content], is strongly measurable in [image: there is no content]for each h∈[image: there is no content]and E∈B([image: there is no content]). There exists a unique operator-valued measure M:B([0,1])⊗B([image: there is no content])→Ls([image: there is no content]), σ-additive for the strong operator topology, such that the equality:



(M(X×Y)h,h)=∫X([image: there is no content](Y)h,h)dt,X∈B([0,1]),Y∈B([image: there is no content])








holds for each h∈[image: there is no content]. For each V∈C1([image: there is no content]), the set function [image: there is no content], E∈B([0,1])⊗B([image: there is no content]), is a complex measure, and we have:


tr(VM([0,1]×Y))=∫01tr(V[image: there is no content](Y))dt=(Y),Y∈B([image: there is no content])



(28)




Proof. If [image: there is no content] is the Fourier transform of a finite measure μ, then:



([image: there is no content]h)(f)=∫[image: there is no content]e−iξA(t)hdμ(ξ)








as a Bochner integral and by dominated convergence t⟼([image: there is no content]h)(f), [image: there is no content], is continuous in [image: there is no content] for each h∈[image: there is no content]. By a monotone class argument, t⟼([image: there is no content]h)(f), [image: there is no content], is strongly measurable for all bounded Borel measurable functions f.
For each h∈[image: there is no content], the set function [image: there is no content] is nonnegative and finitely additive, and the algebra [image: there is no content] is generated by product sets [image: there is no content] for [image: there is no content] and Y∈B([image: there is no content]), so [image: there is no content], A∈[image: there is no content]. The set function [image: there is no content]:[image: there is no content]→[0,∥h∥2] is separately countably additive with respect to Borel sets, so it is inner regular with respect to compact product sets and, so, countably additive (countable additivity may fail without inner-regularity; see [45]).

Denoting the extended measure by the same symbol, [image: there is no content] for all E∈B([0,1])⊗B([image: there is no content]). The [image: there is no content]-valued measure [image: there is no content] is weakly countable additive by polarity and, so, norm countably additive by the Orlicz–Pettis theorem.

For each V∈C1([image: there is no content]) and orthonormal basis [image: there is no content]j of [image: there is no content], the bound:



∑j=1∞|(VM(E)hj,hj)|≤4∥V∥C1([image: there is no content]),E∈B([0,1])⊗B([image: there is no content])








holds and:


tr(VM([0,1]×Y))=∑j=1∞(VM([0,1]×Y)hj,hj)=∫01∑j=1∞(V[image: there is no content](Y)hj,hj)dt








by the Beppo–Levi convergence theorem, because:


∑j=1∞|(V[image: there is no content](Y)hj,hj)|≤4∥V∥C1([image: there is no content]),0≤t≤1








so Equation (28) holds.  ☐
An application of Fubini’s Theorem for disintegrations of measures shows that:



∫[0,1]×[image: there is no content]e−iλsd[image: there is no content](t,λ)=∫[image: there is no content]e−iλs∫01([image: there is no content]h,h)dt(dλ)=∫01∫[image: there is no content]e−iλs([image: there is no content]h,h)(dλ)dt=∫01(e−isA(t)h,h)dt








for each h∈[image: there is no content]. The identity:


∫[image: there is no content]e−iλs∫01(V[image: there is no content]h,h)dt(dλ)=∫01(Ve−isA(t)h,h)dt








follows for each h∈[image: there is no content] by polarisation. Because:


Ξ(E)=∫01tr(V[image: there is no content](E))dt=∑j=1∞∫01(V[image: there is no content](E)hj,hj)dt,E∈B([image: there is no content])








for any orthonormal basis [image: there is no content]j of [image: there is no content], the Fourier transform of the measure Ξ is:


∫[image: there is no content]e−iλsdΞ(λ)=∫01tr(Ve−isA(t))dt=i∫01s−1ddttr(e−isA(t))dt=itr(e−isA−e−isB)s








We need to establish that the inverse Fourier transform [image: there is no content] of the uniformly bounded, continuous function:



Φ:s⟼itr(e−isA−e−isB)s,s∈[image: there is no content]\{0},Φ(0)=tr(V)








belongs to [image: there is no content]([image: there is no content]). Then, ξ=[image: there is no content] is the spectral shift function. Clearly, the value of Φ at zero is irrelevant.
It suffices to show that there exists ξ∈[image: there is no content]([image: there is no content]), such that:



μ(Φ)=2π∫[image: there is no content]ξ(t)μˇ(t)¯dt=∫[image: there is no content]ξ(t)μ^(t)dt








with μˇ(t)=(2π)−1∫[image: there is no content]eistdμ(s) and μ^(t)=∫[image: there is no content]e−istdμ(s), t∈[image: there is no content], for every finite positive measure μ, because then [image: there is no content]=ξ as elements of the space [image: there is no content] of Schwartz distributions on [image: there is no content]. Therefore, we consider the class of functions [image: there is no content] for which [image: there is no content] and [image: there is no content] and, consequently, [image: there is no content].
Theorem 22. Let [image: there is no content]be a separable Hilbert space, and let A and B be self-adjoint operators with the same domain, such that A−B∈C1([image: there is no content]). Then, there exists a function ξ∈[image: there is no content]([image: there is no content]), such that:



tr(f(A)−f(B))=∫[image: there is no content]f′(λ)ξ(λ)dλ



(29)




for every function f:[image: there is no content]→[image: there is no content] for which there exists a finite positive Borel measure μ on [image: there is no content], such that:


f(x)=i∫[image: there is no content]e−isx−1sdμ(s),x∈[image: there is no content]









	(a)

	tr(A−B)=∫[image: there is no content]ξ(λ)dλ.



	(b)

	∥ξ∥1≤∥A−B∥C1([image: there is no content]).



	(c)

	If [image: there is no content], then [image: there is no content] a.e.



	(d)

	ξ is zero a.e. outside of the interval [image: there is no content].





Proof. The proof is set out in considerable detail in [44]. Here, we review the salient points.

The estimate ∥f(A)−f(B)∥C1([image: there is no content])≤μ([image: there is no content])∥A−B∥C1([image: there is no content]) follows from the bound (27) and the calculation:



f(A)−f(B)=i2π∫[image: there is no content]e−isA−e−isBsdμ(s)








obtained from an application of Fubini’s theorem with respect to [image: there is no content]⊗μ and [image: there is no content]⊗μ on [image: there is no content]×[ϵ,∞) for [image: there is no content]. Then:


tr(f(A)−f(B))=12π∫[image: there is no content]Φdμ








An expression for the spectral shift function ξ may be obtained from Fatou’s theorem ([46], Theorem 11.24). Suppose that ν is a finite measure on [image: there is no content] and:



ϕν(z)=12πi∫[image: there is no content]dν(λ)λ−z,z∈[image: there is no content]\[image: there is no content]








is the Cauchy transform of ν. Then, ν is absolutely continuous if:


ν˰(ξ)=∫[image: there is no content]e−iξx(ϕν(x+i0+)−ϕν(x+i0−))dx,ξ∈[image: there is no content].








The jump function [image: there is no content] defined for almost all x∈[image: there is no content] is then the density of ν with respect to the Lebesgue measure. For [image: there is no content], if the representation:



Φ(s)=itr(e−isA−e−isB)s=12πi∫[image: there is no content]e−isx(lim[image: there is no content]∫01tr(V(A+tV−x−iϵ)−1−V(A+tV−x+iϵ)−1)dt)dx








were valid, then we would expect that ξ=[image: there is no content] has the representation:


ξ(s)=12πilim[image: there is no content]∫[image: there is no content]eisx−ϵ|x|tr(e−ixA−e−ixB)xdx,s∈[image: there is no content],










=lim[image: there is no content]1πtrarctanA−sIϵ−arctanB−sIϵ



(30)




where the arctan function may be expressed as:


arctant=12i∫[image: there is no content]eist−1se−|s|ds,t∈[image: there is no content]








In the case that [image: there is no content] for [image: there is no content] and w∈[image: there is no content], [image: there is no content], a calculation, given explicitly in [44], shows that the function:



h(x,y)=1πtrarctanA−xIy−arctanB−xIy=12πilog(1+2iyα((B−z)−1w,(B−z)−1w)),z=x+iy,y>0








is harmonic and uniformly bounded in the upper half-plane. By Fatou’s theorem ([46], Theorem 11.23), the boundary values [image: there is no content] are defined for almost all x∈[image: there is no content] and satisfy:


limy→∞πyh(x,y)=∫[image: there is no content]ξ(t)dt=∥ξ∥1≤∥A−B∥C1([image: there is no content])








for every x∈[image: there is no content], so in the case that [image: there is no content] has rank one, Formula (30) is valid.
For an arbitrary self-adjoint perturbation:



[image: there is no content]








with ∑j=1∞|αj|=∥A−B∥C1([image: there is no content])<∞, the function ξn∈[image: there is no content]([image: there is no content]) may be defined in a similar fashion for [image: there is no content], [image: there is no content], so that [image: there is no content] in [image: there is no content]([image: there is no content]) as [image: there is no content] from which it verified that ξ=[image: there is no content].  ☐
The representation ξ=[image: there is no content] obtained above may be viewed as the Fourier transform approach. In the case of a rank one perturbation [image: there is no content], the Cauchy transform approach is developed by Simon [47] with the formula:



tr((A−zI)−1−(B−zI)−1)=−∫[image: there is no content]ξ(λ)(λ−z)2dλ








for z∈[image: there is no content]\[a,∞) for some a∈[image: there is no content], established in [47], Theorem 1.9, by computing a contour integral. Here, the boundary value [image: there is no content] is expressed as:



[image: there is no content]








for almost all x∈[image: there is no content] with respect to the Cauchy transform:


F(z)=∫[image: there is no content]d([image: there is no content]w,w)(λ)λ−z,z∈[image: there is no content]\(−∞,a)








The Cauchy transform approach is generalised to Type II von Neumann algebras in [41].
Many different proofs of Krein’s Formula (29) are available for a wide class of functions f, especially in a form that translates into the setting of non-commutative integration [41,42,43]. As remarked in [20], p. 163, an ingredient additional to double operator integrals (such as complex function theory) is needed to show that the measure is absolutely continuous with respect to the Lebesgue measure on [image: there is no content]. Krein’s original argument uses perturbation determinants from which follows the representation Det[image: there is no content] for the scattering matrix [image: there is no content] for A and B ([22], Chapter 8).
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