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Abstract: In the light of the Newton–Wigner–Wightman theorem of localizability question,
we have proposed before a typical generation mechanism of effective mass for photons to
be localized in the form of polaritons owing to photon-media interactions. In this paper,
the general essence of this example model is extracted in such a form as quantum field
ontology associated with the eventualization principle, which enables us to explain the
mutual relations, back and forth, between quantum fields and various forms of particles in
the localized form of the former.
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1. Introduction

Extending the scope of our joint paper [1], the essence of which is summarized in (1) and (2) below,
we discuss in this paper the following points:

(1) The localizability of massless photons has been examined historically starting from a joint paper
of Newton and Wigner [2] and one due to Wightman [3], the essential contents of which can be
summarized in the form of the Newton–Wigner–Wightman theorem (Section 2). In the light of this
theorem concerning a specific problem involving the photon, we try here to clarify the mathematical
and conceptual relations among spatial points, localization processes of physical systems into restricted
regions in space (and time), in contrast to the usual formulation dependent directly on the concepts of
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particles and their masses (in a spacetime structure given in an a priori way). In this context, Wightman’s
mathematical formulation of the Newton–Wigner paper plays an important role: on the basis of an
imprimitivity system on the three-dimensional space, the absence of position observables is shown to
follow from the vanishing mass m = 0 of a free photon.

(2) We encounter here a sharp conflict between the mathematically clear-cut negative result and the
actual existence of experimental devices for detecting photons in quantum optics, which is impossible
without the spatial localization of detected photons. Fortunately, we have found in our joint paper [1]
an affirmative answer to this long-standing problem on the basis of the group-theoretical concept of
imprimitivity systems utilized in [3]: the above-mentioned conflict is resolved by the presence of coupled
modes of photons with material media, which generate non-trivial deviations of refractive index n from
one or equivalently generate the mass m > 0, in such typical example cases as “polaritons”, as will be
shown later (Section 3.3).

(3) Through the model example of polaritons, we learn that such fundamental issues concerning
a mass and its carrier particles should be viewed as something variable dependent on the contexts and
situations surrounding them. Thus, we need and can elaborate on highly philosophical abstract questions
like “what is a mass?” or “what are particles as mass points?”, in mathematically accessible contexts. For
this purpose, we certainly need to set up suitable theoretical and/or mathematical frameworks and models
so that they allow us to systematically control the dynamics of our object systems coupled with their
external systems. Once this coupling scheme is established, the external systems can be seen to serve
as reference frames for the purpose of describing the object systems and the processes carried out by
them. Such a framework and methodology are available in the form of Tomita’s integral decomposition
theorem (Section 4.3) viewed from the standpoint of the “quadrality scheme” based on “Micro-Macro
duality” (Sections 3.2 and Section 4.2).

(4) Whenever we try to observe and describe a physical system, the necessity is evident for a coupling
between the target physical system and a measuring system, without which any physical quantities
belonging to the former cannot be measured, visualized nor described. For the sake of a satisfactory
understanding of the connection between the above group-theoretical context and the description of
the actual physical processes, we need to explain the latter aspect in close relation to the imprimitivity
systems, which is one of the main purposes of the present paper.

For this purpose, a universal method is indispensable for constructing a model system consisting of
the target system to be described coupled with a reference system to register and to describe the results
of a measurement process: this purpose is successfully accomplished by means of Tomita’s theorem of
the integral decomposition of a state.

A satisfactory understanding of fundamental concepts of space (and time) coordinates and velocities
is attainable in the scheme, and at the same time, a crucial premise underlying such comprehension is the
understanding that these concepts are never among pre-existing attributes inherent in the object system,
but are epigenetic properties emerging through what is to be called the “eventualization processes”, as
will be explained in Section 5. These epigenetic aspects are closely related to the choices of different
contexts of placing an object system and the boundary conditions specifying various different choices of
subalgebras of central observables, reflected in the choices of sub-central (or central) measures appearing
in Tomita’s theorem (Section 4.4).
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(5) While the above explanation guarantees the naturality and genericity of the polariton picture
mentioned in (2), as one of the typical explicit examples for making photons localizable, the freedom in
choices of sub-central measures clarifies their specialty in the spatial homogeneity of mass generation.
In fact, under such conditions that the spatial homogeneity is not required, many such forms of photon
localizations are allowed as Debye shielding, various forms of dressed photons, among which cavity
QED can equally be understandable.

(6) Along this line of thought, it becomes also possible to compare and unify various other forms of
localizations and their “leakages” at the same time: for instance, the presence of non-vanishing mass m
can be viewed as an index of timelike and spacetime-homogeneous parameter of leakage from spatial
localization as exhibited by the decay rate ∝ e−mr of correlation functions in the clustering limit. On
the other hand, the decay width Γ in the energy spectrum can also be interpreted as a time-homogeneous
parameter of leakage from chronological localizations of resonance modes (as exhibited through the
decay rate ∝ e−Γt/2 of the relaxation of correlations; to be precise, it is more appropriate to regard the
inverse of m and Γ as leakages). The tunneling rate ∝

√
|E − V | can be interpreted as the leakage rate

of spatial localization materialized by the potential barrier V .
(7) The universality, naturality and the necessity of the present standpoint is verified by the above

considerations in terms of sub-central measures and of the corresponding commutative algebras B.
On the basis of the bi-directionality between quantum fields and particles, moreover, such a unified
viewpoint will be meaningful that the microscopic quantum systems consisting of quantum fields can be
controlled and designed from the macro side via the control of quantum fields.

(8) To make the above possibility certain, it would be important to recognize the constitution of the
macroscopic levels in close relation to the microscopic quantum regimes. This question is answered
in terms of “eventualization processes”, which can be mathematically described as the filtered “cones”
to amplify the connections between macro and micro (which is analogous to the forcing method in the
context of the foundations of mathematics), with micro ends given by the dynamics of quantum fields
and macro ones by the point-like events as the apices of cones of eventualization.

2. Newton–Wigner–Wightman Theorem

In 1949, Newton and Wigner [2] raised the question of the localizability of single free particles. They
attempted to formulate the properties of the localized states on the basis of the natural requirements of
relativistic covariance.

Physical quantities available in this formulation admitting direct physical meaning are restricted
inevitably to the generators of Poincaré group P↑+ = R4 o L↑+ (with L↑+ the orthochronous proper
Lorentz group), which is locally isomorphic to the semi-direct productH2(C) o SL(2,C) of the Jordan
algebraH2(C) of Hermitian (2× 2)-matrices and SL(2,C), consisting of the energy-momentum vector
Pµ and of the Lorentz generators Mµν (composed of angular momenta Mij and of Lorentz boosts M0i).
The problem is then to find conditions under which “position operators” can naturally be derived from
the Poincaré generators (Pµ,Mµν). In [2], position operators have been shown to exist in massive
cases in an essentially unique way for “elementary” systems in the sense of the irreducibility of the
corresponding representations of P↑+, so that the localizability of a state can be defined in terms of such
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position operators. In massless cases, however, no localized states are found to exist in the above sense.
That was the beginning of the story.

Wightman [3] clarified the situation by recapturing the concept of “localization” in quite a general
form as follows. In place of the usual approaches with unbounded generators of position operators, he
has formulated the problem in terms of their spectral resolution in the form of Axioms (i)–(iii):

(i) The spectral resolution of position operators: This is defined by a family B(R3) 3 ∆ 7−→ E(∆) ∈
Proj(H) of projection-valued measures E(∆) in a Hilbert space H defined for each Borel subset
∆ of R3, characterized by the following Properties (ia), (ib) and (ic):

(a) E(∆1 ∩∆2) = E(∆1)E(∆2);
(b) E(∆1 ∪∆2) = E(∆1) + E(∆2), if ∆1 ∩∆2 = φ;
(c) E(R3) = 1;

(ii) Physical interpretation of E(∆): When the system is prepared in a state ω, the expectation value
ω(E(∆)) of a spectral measureE(∆) gives the probability for the system to be found in a localized
region ∆;

(iii) Covariance of the spectral resolution: Under a transformation (a,R) with a spatial rotation
R followed by a spatial translation a, a Borel subset ∆ is transformed into R∆ + a. The
corresponding unitary implementer is given in H by U(a,R), which represents (a,R) covariantly
on E in such a way that:

E(∆)→ E(R∆ + a) = U(a,R)E(∆)U(a,R)−1

Note that, in spite of the relevance of the relativistic covariance, the localizability discussed above
is the localization of states in space at a given time formulated in terms of spatial translations a and
rotations R, respectively. To understand the reason, one should imagine the situation with Axioms
(i)–(iii) replaced with those for the whole spacetime; then, the CCR relations hold between four-momenta
pµ and space-time coordinates xν , which implies the Lebesgue spectrum covering the whole R4 for both
observables p̂µ and x̂ν . Therefore, any such physical requirement as the spectrum condition or as the
mass spectrum cannot be imposed on the energy-momentum spectrum p̂µ, and hence, the concept of the
localizability in space-time does not make sense.

According to Mackey’s theory of induced representations, Wightman’s formulation can easily be
seen as the condition for the family of operators {E(∆)} to constitute a system of imprimitivity [4]
under the action of the unitary representation U(a,R) in H of the three-dimensional Euclidean group
SE(3) := R3 o SO(3) given by the semi-direct product of the spatial translations R3 and the
rotation group SO(3). In a more algebraic form, the pair (E,U) can also be viewed as a covariant
W*-dynamical system L∞(R3) x

τ
SE(3), [τ(a,R)(f)](x) := f(R−1(x − a)), given by the covariant

*-representation E : L∞(R3) 3 f 7−→ E(f) =
∫
f(x)dE(x) ∈ B(H), s.t. E(χ∆) = E(∆), of the

commutative algebra L∞(R3) generated by the position operators acted on by SE(3) characterized by
the covariance condition:

E(τ(a,R)(f)) = U(a,R)E(f)U(a,R)−1 (1)

for f ∈ L∞(R3), (a,R) ∈SE(3)
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As will be seen later, this algebraic reformulation turns out to be useful for constructing coupled systems
of photon degrees of freedom with matter systems, which play crucial roles in observing or measuring
the former in the actual situations. Thus, Wightman’s formulation of the Newton–Wigner localizability
problem is just to examine whether the Hilbert space H of the representation (U,H) of SE(3) can
accommodate a representationE of the algebra L∞(R3) consisting of position operators, covariant under
the action of SE(3) in the sense of Equation (1). If this condition holds, then the abelian components R3

in the semi-direct product group SE(3) provide us with the position operators; in the case of a massless
spinless field, Equation (1) trivially holds, owing to the triviality of the representation of the spin rotation
group and of the commutativity between R3 and the function f on R3.

Applying Mackey’s general theory to the case of the three-dimensional Euclidean group SE(3),
Wightman proved the following fundamental result as a purely kinematical consequence:

Theorem 1 ([3], excerpt from Theorems 6 and 7). A Lorentz covariant massive system is always
localizable. The only localizable massless elementary system (i.e., irreducible representation) has
spin zero.

Corollary 2. A free photon is not localizable.

The essential mechanism causing (non-)localizability in the sense of Newton–Wigner–Wightman can
be found in the structure of Wigner’s little groups, the stabilizer groups of standard four-momenta on
each type of P↑+-orbits in p-space.

When m 6= 0, the little group corresponding to the residual degrees of freedom in a rest frame
is the group SO(3) of spatial rotations. As a consequence, “the space of rest frames” becomes
SO(1, 3)/SO(3) ∼= R3. The physical meaning of this homeomorphism is just a correspondence between
a rest frame r ∈ SO(1, 3)/SO(3) for registering positions and a boost k ∈ SO(1, 3) required for
transforming a fixed rest frame r0 to the chosen one r = kr0. The universality (or independence
for the choice of the frame) of positions is recovered up to Compton wavelength h/(mc), again due
to massiveness.

Remark 3. Here, the coordinates of rest frames just play the role of the order parameters (or “sector
parameters”) on each P↑+-orbit as the space of “degenerate vacua” associated with certain symmetry
breaking, which should play the roles of position operators appearing in the imprimitivity system.

In sharp contrast, there is no rest frame for a massless particle if it has a non-trivial spin: its little group
is isomorphic to the two-dimensional Euclidean group SE(2) = R2oSO(2) (locally isomorphic to Co
U(1)), whose rotational generator corresponds to the helicity. Since the other two translation generators
corresponding to gauge transformations span non-compact directions in contrast to the massive cases
with a compact SO(3), the allowed representation (without an indefinite inner product) is only the trivial
one, which leaves the transverse modes invariant, and hence, the little group cannot provide position
operators in the massless case. Here, we note again the special situation with massless spinless particles:
in this case, the little group SE(2) = R2 o SO(2) does not cause any obstructions, since it reduces to
the abelian R2 owing to the absence of helicity components.

After the papers by Newton and Wigner and by Wightman, many discussions have been developed
around the photon localization problem. As far as we know, the arguments seem to be divided into two
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opposite directions, one relying on purely dynamical bases [5] and another on pure kinematics [6], where
it is almost impossible to find any meaningful agreements. Below, we propose an alternative strategy
based on the concept of “effective mass”, which can provide a reasonable reconciliation between these
conflicting ideas because of its “kinematical” nature arising from some dynamical origin.

3. Polariton as a Typical Model of Effective Mass Generation

3.1. Physical Roles Played by a Coupled External System

In spite of the above theoretical difficulty in the localizability of photons, however, it is a plain fact
that almost no experiments can be performed in quantum optics where photons must be registered by
localized detectors. To elaborate on this problem, we will see that it is indispensable to reexamine
the behavior of a photon in composite systems coupled with some external system, such as a material
media constituting apparatus without which any kind of measurement processes cannot make sense.
For this purpose, the above group-theoretical analysis of the localizability of kinematical nature should
be extended to incorporate algebraic aspects involved in the formation of a coupled dynamics between
photons to be detected and the measuring devices consisting of matters.

Our scheme of the localization for photons can be summarized as follows:

• Photons are coupled with external system into a composite system with a coupled dynamics.
• Positive effective mass emerges in the composite system.
• Once a positive effective mass appears, Wightman’s theorem itself provides the “kinematical basis”

for the localization of a photon.

From our point of view, therefore, this theorem of Wightman’s interpreted traditionally as a no-go
theorem against localizability becomes actually an affirmative support for it. It conveys such a strongly
selective meaning (which will be discussed in detail in Section 4) that, whenever a photon is localized,
it should carry a non-zero effective mass.

In the next subsection, we explain the meaning of our scheme from a physical point of view.

3.2. How to Define the Effective Mass of a Photon

As a typical example of our scheme, we focus first on a photon interacting with homogeneous
medium, in the case of monochromatic light with angular frequency ω as a classical light wave. For
simplicity, we neglect here the effect of absorption, that is the imaginary part of the refractive index.
When a photon interacting with matter can be treated as a single particle, it is natural to identify its
velocity v with the “signal velocity” of light in the medium. The relativistic total energy E of the
particle should be related to v :=

√
v · v by its mass meff :

E =
meffc

2√
1− v2

c2

(2)



Mathematics 2015, 3 903

Since v is well known to be smaller than the light velocity c (theoretically or experimentally), meff

is positive (when the particle picture above is valid). Then, we may consider meff as the relativistic
“effective (rest) mass of a photon”, and identify its momentum p with:

p =
meffv√
1− v2

c2

(3)

Hence, as long as “an interacting photon” can be well approximated by a single particle, it should be
massive, according to which its “localization problem” is resolved. The validity of this picture will be
confirmed later in the next subsection.

The concrete forms of energy/momentum are related to the Abraham–Minkowski controversy [7–9]
and modified versions of Einstein/de Broglie formulae [1].

Our argument itself, however, does not depend on the energy/momentum formulae. The only essential
point is that a massless particle can be made massive through some interactions. That is, while a free
photon satisfies:

E2
free − c2p2

free = 0 (4)

an interacting photon satisfies:
E2 − c2p2 = m2

effc
4 > 0 (5)

To sum up, an “interacting photon” can gain a positive effective mass, while a “free photon” remains
massless! This is the key we have sought for. We note, however, that the present argument is based
on the assumption that “a photon dressed with interactions” can be viewed as a single particle. We
proceed to consolidate the validity of this picture, especially the existence of particles whose effective
mass is produced by the interactions, analogous to Higgs mechanism: such a universal model for photon
localization certainly exists, which is based on the concept of polariton, well known in optical and
solid physics.

3.3. Polariton Picture

In these areas of physics, the propagation of light in a medium is viewed as follows: by the interaction
between light and matter, the creation of an “exciton (an excited state of a polarization field above
the Fermi surface)” and annihilation of a photon will be followed by annihilation of an exciton and
creation of a photon, · · · , and so on. This chain of processes itself is often considered as the motion of
particles called polaritons (in this case, “exciton-polaritons”), which constitute particles associated with
the coupled wave of the polarization wave and the electromagnetic wave.

The concept of polariton has been introduced to develop a microscopic theory of electromagnetic
interactions in materials ([10,11]). Injected photons become polaritons by the interaction with matter.
As the exciton-phonon interaction is dissipative, the polariton picture gives a scenario of absorption. It
has provided an approximation better than the scenarios without it. Moreover, the group velocity of
polaritons discussed below gives another confirmation of the presence of an effective mass.

As is well known, permittivity ε(ω) is given by the following equality,

ε(ω) = n2 =
c2k2

ω2
(6)
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and hence, we can determine the dispersion relation (between frequency and wave number) of the
polariton once the formula of permittivity is specified. In general, this dispersion relation implies
branching, analogous to the Higgs mechanism. The signal pulse corresponding to each branch can
also be detected in many experiments, for example in [12] cited below.

In the simple case, the permittivity is given by the transverse frequency ωT of the exciton (lattice
vibration) as follows:

ε(ω) = ε∞ +
ω2
T (εst − ε∞)

ω2
T − ω2

(7)

where ε∞ denotes limω→∞ ε(ω) and εst = ε(0) (static permittivity). With a slight improvement through
the wavenumber dependence of the exciton energy, the theoretical result of polariton group velocity
∂ω/∂k < c based on the above dispersion relation can explain satisfactorily the experimental data of
the passing time of light in materials (for example, [12]). This strongly supports the validity of the
polariton picture.

From the above arguments, polaritons can be considered as a universal model of the “interacting
photons in a medium” in the previous section. The positive mass of a polariton gives a solution to its
“localization problem”. Conversely, as the “consequence” of Wightman’s theorem, it follows that “all”
physically accessible photons as particles, which can be localized, are more or less polaritons (or similar
particles) because only the interaction can give a photon its effective mass, if it does not violate the
particle picture.

4. Effective Mass Generation in General

4.1. Toward General Situations

In the last subsection, we have discussed that the interaction of photons with media can cause their
localization by giving effective masses to them. Then a natural question arises: is the existence of media
a necessary condition for the emergence of effective photon mass? The answer is no: in fact, light beams
with a finite transverse size have group velocities less than c.

In a recent publication [13], Giovannni et al. show experimentally that even in a vacuum, photons (in
the optical regime) travel at a speed less than c when it is transversally structured, such as Bessel beams
or Gaussian beams, by measuring a change in the arrival time of time-correlated photon pairs. They
show a reduction in the velocity of photons in both a Bessel beam and a focused Gaussian one. Their
work highlights that, even in free space, the invariance of the speed of light only applies to plane waves,
i.e., free photons.

From our viewpoint, this result can be understood quite naturally in the light of the
Newton–Wigner–Wightman theorem. As we have seen, the theorem states that every localizable
elementary system (particle) with spin must be massive. It implies that photons in the real world should
travel less than c, in any conditions, which makes the probability distribution of its position well defined
without contradicting the presence of spin. Hence, transversally-structured photons should become slow.

The scenario also applies to more general settings. Any kinds of boundary conditions with finite
volume (like cavity) or even nanoparticles in the context of dressed photons [14] will make photons
heavier and slower, even without medium!
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4.2. Wightman’s Theorem Reinterpreted as the “Basis” for Localization

Our general scheme of the localization for photons can be depicted as follows, the essence of which
can be understood in accordance to the basic formulation of the “quadrality scheme” [15] underlying the
Micro-Macro duality [16–19]:

Localization of photons
⇑

Effective mass of photons =⇒ Change in kinematics
⇑

Dynamical interaction
between photons and the external system

In order to actualize the physical properties of a given system, such as photons driven by an invisible
microscopic dynamics, we need to couple it with some external measuring system through which
a composite system is formed. According to this formation of coupled dynamics, the kinematics
controlling the observed photons is modified, and what can be actually observed is a result of this
changed kinematics, realized in our case in the form of localized photons.

4.3. Araki–Borchers–Arveson Theorem on Space-Time Shifts

Before going into the details of mass generation mechanisms, we examine here the theoretical
framework relevant to our context. For this purpose, we first need the qualification of the unitary
operators U(x) and their generators of space-time translations acting on a von Neumann algebra X .
Among several versions of such results due to Borchers [20,21], Arveson [22], etc., the most relevant
one to us can be found in the following theorem due to Araki [23]:

Theorem 4 (Araki [23]). Let (X , τa) be a W*-dynamical system consisting of a von Neumann algebra
X in a Hilbert space H acted upon by the group of space-time translations a ∈ R4 via automorphisms
τa(A) = U(a)AU(a)−1 (A ∈ X ) implemented by a strongly continuous unitary representation U(a) ∈
U(H). If U(a) satisfies the spectrum condition with the spectrum of its generators contained in the
forward light cone, then:

(i) each element of the center Z ≡ X ∩ X ′ = (X ∨ X ′)′ commutes with all U(a): i.e.,
U(a) ∈ (X ∨ X ′)′′ = X ∨ X ′;

(ii) if there is a vector Ω ∈ H cyclic forX and invariant underU(a), thenU(a) belongs toX : U(a) ∈ X .

Putting the Newton–Wigner localizability in this context, we examine whether we can find some
such operators in X as playing similar roles to the position operators x̂ (affiliated with X ) behaving like
U(a)x̂U(a)−1 = x̂ + a. From this viewpoint, the problem of the localizability of quantum fields just
reduces to examining whether a quantum-mechanical CCR (x̂, p̂) can be embedded in a von Neumann
algebra X describing a system of quantum fields in the vacuum situation characterized by the spectrum
condition. While this problem can be answered affirmatively for quantum fields with mass m > 0, it is
not in the case with mass m = 0 and with spin s > 0.
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The essence of the obstruction in the latter case is interpreted from Wightman’s viewpoint in the above
as the violation of the covariance condition E(τ(a,R)(f)) = U(a,R)E(f)U(a,R)−1 to characterize the
imprimitivity. From a more naive intuitive angle, the absence of localization operator x̂may also be taken
tentatively as the absence of such operators in X (of massless theory) as non-commutative with U(a),
which means U(a) ∈ X ′, and hence, U(a) ∈ X ∩ X ′ = Z. This means the non-triviality of the center
Z = X ∩X ′ 6= C1, as is avoided as much as possible in the usual approach to quantum theory sticking to
the irreducibility of the algebraX . Once one accepts the plain fact of the presence of superselection rules
with non-trivial sector structures, however, the appearance of the non-trivial center is nothing mysterious.
As has been elaborated in the context of Micro-Macro duality [16–19], the non-triviality of the center
can be nicely and universally controlled by the concept of central decomposition, which provides us
with the canonical path from a given expectation value ω to the actual measurement situations to exhibit
the precise contents of ω according to its probabilistic interpretation based on the Born rule [24]. To
see the precise contents of this statement, we should clarify the interplay between the group-theoretical
context of the imprimitivity system and the algebraic aspect of the same situation formulated by Tomita’s
theorem of the integral decomposition of a state.

4.4. Tomita’s Theorem of the Integral Decomposition of a State

From the mathematical viewpoint, an idealized form of constructing a coupled system of the object
system with an external reference one can be found conveniently in Tomita’s theorem of the integral
decomposition of a state as follows:

Theorem 5 (Tomita [25]). For a state ω of a unital C*-algebra A, the following three sets are in a
one-to-one correspondence:

1. sub-central measures µ (pseudo-)supported by the space FA of factor states on A;
2. abelian von Neumann subalgebras B of the center Zπω(A) = πω(A)′′ ∩ πω(A)′;
3. central projections C on Hω, such that:

CΩω = Ωω, Cπω(A)C ⊂ {Cπω(A)C}′ (8)

If µ, B and C are in the above correspondence, then the following relations hold:

(i) B = {πω(A) ∪ {C}}′;
(ii) C = [BΩω]: projection operator onto the subspace spanned by BΩω;

(iii) µ(Â1Â2 · · · Ân) = 〈Ωω| πω(A1)C πω(A2)C · · ·Cπω(An)Ωω〉
for A1, A2, · · · , An ∈ A;

(iv) The map κµ : L∞(EA, µ)→ B defined by:

〈Ωω| κµ(f)πω(A)Ωω〉 =

∫
dµ(ω′)f(ω′)ω′(A) (9)

for f ∈ L∞(EA, µ) andA ∈ A is a *-isomorphism, satisfying the following equality forA,B ∈ A:

κµ(Â)πω(B)Ωω = πω(B)Cπω(A)Ωω (10)
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Some vocabulary in the above need be explained: the space FA of factor states onA is the set of all of
the factor states ϕ whose (GNS) representations πϕ have trivial centers: πϕ(A)′′ ∩ πϕ(A)′ = C1Hϕ . This
FA divided by the quasi-equivalence relation ≈ defined by the unitary equivalence up to multiplicity
FA/ ≈ plays the role of sector-classifying space (or sector space for short) whose elements we call
“sectors” mathematically or “pure phases” physically. Then, Tomita’s theorem plays a crucial role in
verifying mathematically the so-called Born rule [24] postulated in quantum theory in physics.

Via the definition Â(ρ) := ρ(A), ρ ∈ EA, any element A ∈ A can be expressed by a continuous
function Â : EA → C on the state space EA. Among measures on EA, a measure µ is called barycentric
for a state ω ∈ EA if it satisfies ω =

∫
EA
ρdµ(ρ) ∈ EA and is said to be sub-central if linear functionals∫

∆
ρdµ(ρ) and

∫
EA\∆

σdµ(σ) on A are disjoint for any Borel set ∆ ⊂ EA, having no non-vanishing
intertwiners between them: i.e., T

∫
∆
πρ(A)dµ(ρ) =

∫
EA\∆

πσ(A)dµ(σ)T for ∀A ∈ A implies T = 0

(by close analysis, the basic mechanism can be traced back to the very definition of disjointness of states
in terms of the barycentric measure, by which the algebra B is abelianized and by which the entangled
coupling is established between the spectrum of B and the states of A). If the abelian subalgebra B
in the above theorem is equal to the center B = Zπω(A), the measure µ is called the central measure
of ω, determined uniquely µ = µω by the state ω, and the corresponding barycentric decomposition
ω =

∫
FA
ρdµω(ρ) = b(µω) is called the central decomposition of ω. This last concept plays

crucial roles in establishing precisely the bi-directional relations between microscopic and macroscopic
aspects in quantum theory, as has been exhibited by the examples of Micro-Macro duality (see, for
instance, [16–19]). In what follows, the connection to the previous subsection can be clarified through
such notation that the von Neumann algebra πω(A)′′ corresponding via the representation πω to the
C*-algebra A is denoted by X = πω(A)′′, and hence, Zπω(A) = πω(A)′′ ∩ πω(A)′ = X ∩ X ′ = Z.

Now, we focus on the parallelism between Tomita’s theorem of the integral decomposition of a state
and the imprimitivity theorem, on the basis of the common features in the presence of commutative
directions, B = κµ(C(EX ))′′ in the former and N or N̂ in the latter: namely, we embed the group W*
algebra W ∗(N) ' L∞(N̂) of the latter in B = κµ(L∞(EX )) of the former, which is consistent with
their spectra, N̂ ⊂ FX (⊂ EX ). From the Lie algebraic viewpoint, the Lie algebra n of space(-time)
translations N is spanned by the (energy-)momentum p̂, and hence, its dual N̂ has an abelian Lie algebra
n̂ generated by x̂ dual to p̂ and which is embedded in the spectrum Spec(B) ⊂ FX . To justify this
correspondence, we need to supplement it by specifying how these group-theoretical entities act on the
relevant mappings acting on the relevant algebraic structures constituting Tomita’s theorem. In terms of
the automorphic action τg ∈ Aut(X ) of g ∈ G = N o L on X , we have ω(τg(A)) = (ω ◦ τg)(A) for
A ∈ X , and hence,

ω ◦ τg =

∫
(ρ ◦ τg)dµω(ρ) =

∫
ρdµω◦τg(ρ)

which implies τ rg (f)(ρ) := f(ρ ◦ τg) for f ∈ C(EX ), because of:

µω◦τg(f) =

∫
f(ρ)dµω◦τg(ρ) =

∫
f(ρ)dµω(ρ ◦ τ−1

g )

=

∫
f(ρ′ ◦ τg)dµω(ρ′) = µω(τ rg (f))

In this way, the action ρ 7−→ ρ ◦ τg = τ ∗g (ρ) of g ∈ G = N o L on ρ ∈ Spec(B) ⊂ FX is just
contravariant to τg. Thus, from the assumption on the symmetry corresponding to the subgroup L to be
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unbroken, the relation ω ◦ τg = ω ◦ τ(x,l) = ω ◦ τx = τ ∗x(ω) follows for g = (x, l) ∈ G = N o L, which
justifies N̂ ⊂ FX = supp(µω).

At first sight, the above distinction between central and sub-central may look too subtle, but it plays
important roles in different treatments, for instance between spatial and spacetime degrees of freedom
in Wightman’s theorem concerning the localizability, as mentioned already after the theorem. In this
connection, we consider the problem as to how classically visible configurations of electromagnetic field
can be specified in close relation to its microscopic quantum behavior, for the purpose of which the most
convenient concept seems to be the coherent state and the Segal–Bargmann transform associated with it.
Since coherent states are usually treated within the framework of quantum mechanics for systems with
finite degrees of freedom, the aspect commonly discussed is the so-called overcompleteness relations
due to the non-orthogonality, 〈α|β〉 6= 0, between coherent states â|α〉 = α|α〉 with different coherence
parameters α 6= β.

We note that, in connection with Tomita’s theorem, a composite system arises in such a form as
A ⊗ C(Σ) consisting of the object system A and of the external system Σ(⊂ FA) to which measured
data are to be registered through measurement processes involving A. In this scheme, the universal
reference system Σ can be viewed as naturally emergent from the object system A itself just as the
classifying space of its sector structure. Then, via the logical extension [26] to parametrize the object
systemA by its sectors in Σ, an abstract model of quantum fields ϕ : Σ→ A can be created, constituting
a crossed product ϕ ∈ A o Û(Σ) (via the co-action of the structure group U(Σ) of Σ). Thus, the
above non-orthogonality can be resolved by the effects of the classifying parameters of sectors Σ in FA.
As a result, we arrive at the quantum-probabilistic realization of coherent states in such a form as the
“exponential vectors” treated by Obata [27] in the context of “Fock expansions” of white noises. What
is important conceptually in this framework is the analyticity due to the Segal–Bargmann transform and
the associated reproducing kernel (RK) to be identified through the projection operator P in L2(Σ, dµ)

onto its subspace HL2(Σ, dµ) of coherent states expressed by holomorphic functions on Σ [28], where
dµ denotes the Gaussian measure.

As commented on briefly above, we can find various useful relations and connections of quantum
theory in terms of the concept of “quantum fields”. From this viewpoint, we elaborate on its roles in
attaining a transparent understanding of the mutual relations among fields, particles and mass in the
next section.

5. Quantum Field Ontology

5.1. From Particles to Fields

As we have discussed in Section 4, the scenario of generating effective mass applies to general
settings. Any kinds of boundary conditions with finite volume (like cavity) will make photons heavier
and slower, even without medium. This fact itself leads to a paradoxical physical question: how can the
boundary condition affect a particle traveling in vacua? What is a spooky action through vacua?

Our answer is quite simple: in fact, a photon is not “a particle traveling in vacua”. It is just a
field filling the space time, before it “becomes” a particle, or more rigorously, before it appears in a
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particle-like event caused via the interaction (energy-momentum exchange with the external system). As
we will discuss in this section, it is quite unreasonable to imagine a photon as a traveling particle unless
any kinds of interaction are there.

On the basis of the above arguments, we discuss the limitation of the particle concept in connection
with a new physical interpretation of Newton–Wigner–Wightman analysis. To begin with, we note the
inconsistency between the concept of spin and that of a particle, which seems to have been forgotten at
some stage in history. In fact, the concept of a classical massless point particle with non-zero spin cannot
survive special relativity with the world line of such a particle obscured by the spin: instead of being
a purely “internal” degree of freedom, the spin causes kinematical extensivity of the particle, which is
exhibited in a boost transformation, as is pointed out by Bacry in [29].

The result of Newton–Wigner–Wightman analysis can be understood to show that this inconsistency
cannot be eliminated by generalizing the problem in the context of quantum theory: a massless particle
cannot be localized unless the spin is zero. Even in the massive case, the concept of localization is
not independent of the choice of reference frames. There is no well-defined concept of “spacetime
localization”, as we have mentioned.

These facts are consistent with the idea that the position is not a clear cut a priori concept, but
an emergent property. Instead of a point particle, therefore, we should find something else having a
spacetime structure to accommodate events in point-like forms, which is nothing but the quantum field.
In other words, the Newton–Wigner–Wightman analysis should be re-interpreted as “the existence proof
of a quantum field”, showing its inevitability.

5.2. From Fields to Particles: The Principle of Eventualization

This does not mean that the particle-like property is artificial nor fictional. On the contrary, point-like
events do take place in any kind of elementary process of quantum measurement, such as exposure on a
film, photon counting, and so on.

This apparent contradiction is solved if we adopt the universality of the indeterminate processes
emerging as point-like events (energy-momentum exchanges) from quantum fields via formation
of a composite system with external systems (like media or systems giving boundary conditions),
even the latter coming from the part of the degrees of freedom of quantum fields. Let us call
these fundamental processes eventualization. From our viewpoint, the most radical implication of
Newton–Wigner–Wightman analysis is that we should abandon the ontology based on the naive particle
picture and replace it by the one based on quantum fields with their eventualization.

At first sight, the idea of eventualization may look like just a palliative to avoid the contradiction
between abstract theory of localization and the concrete localization phenomena. Actually, however,
it opens the door to the quite natural formulation of quantum physics. In fact, the notion of the
measurement process can be considered as a special kind of eventualization process with amplification.
As we will discuss in a forthcoming paper [30], a glossary of “quantum paradoxes” is solved by just
imposing an axiom that we call the “eventualization principle”.

Eventualization principle: Quantum fields can affect macroscopic systems only
through eventualization.
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In other words, we hypothesize that the notion of “macroscopic systems”, including a Schrödinger
cat, can be characterized, or defined, by the collection of events, formed by perpetual eventualization.

6. Conclusions

In the present article, we have tried to put the physical mechanism of photon localization in general
and wide contexts, on the mathematical basis of Tomita’s theorem of integral decompositions of
states and on the conceptual one formulated as the eventualization. Owing to the latter one, invisible
microscopic quantum processes are visualized at the macroscopic levels in the form of various types
of “events”.
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