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Abstract: Understanding the transmission and control of visceral leishmaniasis, a neglected 

tropical disease that manifests in human and animals, still remains a challenging problem 

globally. To study the nature of disease spread, we have developed a compartment-based 

mathematical model of zoonotic visceral leishmaniasis transmission among three different 

populations—human, animal and sandfly; dividing the human class into asymptomatic, 

symptomatic, post-kala-azar dermal leishmaniasis and transiently infected. We analyzed this 

large model for positivity, boundedness and stability around steady states in different 

diseased and disease-free scenarios and derived the analytical expression for basic 

reproduction number (R0). Sensitive parameters for each infected population were identified 

and varied to observe their effects on the steady state. Epidemic threshold R0 was calculated 

for every parameter variation. Animal population was identified to play a protective role in 

absorbing infection, thereby controlling the disease spread in human. To test the predictive 

ability of the model, seasonal fluctuation was incorporated in the birth rate of the sandflies 

to compare the model predictions with real data. Control scenarios on this real population 

data were created to predict the degree of control that can be exerted on the sensitive 

parameters so as to effectively reduce the infected populations. 
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1. Introduction 

Leishmaniasis is an endemic infectious disease that has a wide potential to infect large human 

populations on a global scale. Visceral leishmaniasis (VL), sometimes usually referred to as “kala-azar” 

is the most severe form of leishmaniasis, a systemic disease that is fatal, if left untreated. Though 

important, the World Health Organization (WHO) classifies leishmaniasis as a neglected tropical  

disease [1] posing a serious but important concern for researchers and epidemiologists to explore the 

disease, and provide practically feasible solutions to limit its spread through populations. The overall 

prevalence of leishmaniasis worldwide is between 10 and 12 million; out of which there is an estimated 

incidence of 500,000 VL cases alone per year [1–3]. WHO reports suggest that around 90% of visceral 

leishmaniasis cases are highly concentrated mainly, in six countries: Bangladesh, Brazil, Ethiopia, India, 

South Sudan and Sudan [1]. Reports also suggest that visceral leishmaniasis alone claims around 20,000 

human lives per year from India, pointing out the severity of disease and the serious threat that it poses 

to several developing countries [4,5]. 

Epidemiologically, visceral leishmaniasis can be transmitted through either the anthroponotic 

medium, where human is the sole source of infection and disease transmission is between human to 

human, or the zoonotic medium, where an animal is involved in the transmission cycle and the 

transmission is between animal and human [6] and is usually transmitted indirectly between hosts by 

sandflies of the genera Phlebotomus and Lutzomyia [7]. Further, the disease is also seasonal, with the 

infected cases fluctuating in accordance with varying vector populations [8,9]. On the other hand, 

clinically, the VL infected human cases can be categorized as asymptomatic, symptomatic and  

post-kala-azar dermal leishmaniasis (PKDL)-infected representing different stages of disease diagnosis. 

Asymptomatic infection represents that proportion of individuals which do not display any detectable 

symptoms of VL infection and clinically constitute the most crucial class of individuals responsible for 

spreading infection as they remain untreated until appearance of symptoms. Symptomatic infected 

individuals display symptoms within a defined period of parasite incubation within them. After 

continuous treatment and subsequent recovery from a VL infection, patients start developing a less 

severe complication of visceral leishmaniasis, termed as post-kala-azar-dermal leishmaniasis. It is 

largely characterized by a macular, maculopapular, and nodular rash in a patient, who has recovered 

from VL and who is otherwise well [6]. The PKDL-infected cases act as a constant source of VL 

infection spread among human populations. Both the impact of the mentioned diagnostic complications 

along with the diversity in mechanisms of disease spread among host populations impose the need of a 

deliberate effort to combat visceral leishmaniasis. Several conventional control strategies have been 

developed for control of leishmaniasis spread. They are broadly classified into—(a) vector-based control 

methods: Methods like insecticide and residual sprays, sandfly repellents, barrier for sandfly bites 

through appropriate netting and clothing provide control through either elimination of vector populations 

or barrier for sandfly bites [10]; (b) parasite-based control methods: Treatment of leishmaniasis patients 
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with drugs, like sodium stibogluconate, amphotericin B, miltefosine, paromomycin, etc. as a primary 

line of treatment [11]. Even though the above control strategies have been largely used separately to curb 

the spread of the disease, optimizing and combining different control strategies can further help in  

large-scale elimination of the disease [12]. 

A number of experimental and theoretical approaches are available to detect the spread of VL 

infection and provide solutions to control disease spread in the human population [11]. From the 19th 

century onwards, mathematical and statistical models of infection transmission have provided a greater 

understanding of infection persistence in a population and have played an imperative role in providing 

solutions to curb the spread of infection [13]. A number of mathematical and statistical modeling studies 

have been published [5,14–26] to explore the dynamics of leishmaniasis disease transmission and its 

incidence in populations. Most of these models have focused on transmission of cutaneous leishmaniasis 

through different populations [14,21–25]. Only a few studies that explicitly model visceral leishmaniasis 

transmission exist [15,16,19,20,27,28]. These models have attempted to study zoonotic VL disease 

transmission among populations. A general model for zoonotic transmission of visceral leishmaniasis 

through populations was developed and analyzed by Burattini et al. [17], where the sandfly, animal and 

human populations were considered as a SEIR type model. A region-specific SIR type model for 

modeling visceral leishmaniasis disease spread in Sudan was developed by ELmojtaba et al. [15], where 

they included one more class for PKDL individuals in addition to the infected human class considered 

by Burratini et al. [17]. Even though these models were formulated as standard SIR/SEIR type models, 

they did not consider the contribution of differential clinical manifestations of the disease in the human 

population to the infection spread. To address this issue, two models have been proposed to understand 

the VL disease dynamics in the Indian subcontinent via an anthroponotic medium [19,20]. Both these 

studies have explicitly divided the human infection class as asymptomatic, symptomatic and  

PKDL-infected to detect the spread of infections in human populations. However, none of the available 

studies have considered both the role of clinically distinct infected human classes and the animal 

population in VL disease dynamics. 

With this background, we propose a detailed compartment-based mathematical model that studies the 

VL transmission process in three distinct populations—the human and the animal as hosts, and sandfly 

as the vector, further considering the detailed division of the human infected population into its clinically 

distinct classes—symptomatic, asymptomatic and PKDL infected. With respect to these population 

groups, the model comprises a total of 14 compartments (modelled as variables) and the rate of disease 

transmission as a flow from one compartment to another. The model was analyzed both analytically and 

numerically for this large system to demonstrate the effect of disease transmission between the 

heterogeneous populations and to estimate the possible control mechanism. 

As a first step, positivity and boundedness analysis of the model was performed. The VL infection 

dynamics was investigated in the presence or absence of the constituent compartments to understand 

their individual contribution in disease spread. For this, the disease-free equilibrium points for different 

scenarios under the presence or absence of each population in the infection was calculated analytically 

and conditions of their stability were elucidated. The expression for key epidemiological parameter 

determining the persistence of infection in the population, that is the basic reproduction number (R0) [29], 

was derived for this large system. 
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The model was also verified numerically in these different scenarios to compare it with the analytical 

results. The model dynamics not only agrees with previously published models [17], but also provides a 

detailed explanation of disease transmission through the host populations. We also performed local 

parameter sensitivity analysis to identify the most sensitive parameters for epidemiologically important 

variables in the model. The sensitive parameters were then varied to understand the effect of these 

parameters in the steady state of each variable. The epidemic thresholds were identified from the model 

by calculating R0 of the system for every parameter change. With respect to these results, we discuss 

important control measures that could be taken in order to the curb the disease spread. Most importantly, 

from our analysis, we suggest that combinatorial control of the identified sensitive parameters in specific 

ranges is the most optimal and effective way to eliminate VL disease spread. In addition, from our model 

predictions, we could hypothesize that animal populations recovering from infection can be effective 

absorbers of infection thereby, reducing infection spread through human populations. Finally, as an 

assertive point, we consider the birth rate of sandfly (density) as a binormal distribution function of 

rainfall and attempted to fit the model outcomes to the number of cases occurred in Muzaffarpur district, 

Bihar, India for the year 2005 [26]. The model predictions were comparable with the behavior of real 

population data, thereby substantiating the importance of our detailed model in capturing the disease 

dynamics. We further extended our parameter control analysis to real population data where we observe 

the effect of variation in the identified sensitive parameters on real population data substantiating their 

role in control of infection. 

2. Model Construction 

Visceral leishmaniasis demonstrates a complex disease dynamics by infecting heterogeneous host 

populations [6]. Obtaining a realistic perspective of VL infection dynamics among heterogeneous 

populations is a challenging task. In order to model VL infection dynamics, we considered three different 

population groups possibly required for the infection to persist—the human, the animal and the sandfly. 

The model equations were derived with respect to few assumptions. The total population of each group 

was assumed to be constant (each group normalized by its total population) [17]. Similarly, the total 

human infected class consisted of symptomatic infected, asymptomatic infected and the PKDL-infected 

individuals considering each as a separate sub-compartment [19,20]. The asymptomatic infected human 

population represents the set of individuals that do not present any clinical/physiological symptoms of 

leishmaniasis [19]. With respect to the immunogenic potential of individual, the asymptomatic 

individuals may show some symptoms adding to the symptomatic infected population or they might get 

recovered gradually. Accordingly, a transient stage between the asymptomatic infected and the 

recovered human classes, was introduced as a separate compartment to capture the delay in conversion 

of asymptomatic infected into the recovered human population separately. The transmission of exposed 

class to infected class is absolutely assumed to be dependent on the number of infectious bites provided 

by the sandfly to the human or animal and ability to induce an infection in human or animal. In addition, 

the transition of the population from one compartment to another depends on the ability of the human, 

animal and sandfly population to fight back the infection. 

Considering the aforementioned assumptions, we constructed a compartment based model integrating 

the three heterogeneous population groups. Let NH (t) represent the total human population, NF (t) 
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represent the total sandfly (vector) population and NA(t) the total animal population. To observe the 

changes in the relative proportion of individuals in each stage/compartment for each population group 

during transmission of disease, we considered NH (t) = NF (t) = NA(t) = 1. In addition, the model parameter 

values have been scaled accordingly to capture changes in relative population fractions. To represent a 

biologically realistic complex scenario among populations, we have further divided the total human 

population into seven compartments namely, susceptible SH(t), exposed EH(t), asymptomatic infected 

IHa(t), symptomatic infected IHs(t), PKDL infected IHp(t), transient stage population TH(t) and recovered 

populations, those who are permanently immune to the infection RH(t). Similarly, the vector population 

is divided in to three compartments, susceptible sand-flies SF(t), latent sand-flies EF(t) and infected  

sand-flies IF(t), and the animal or reservoir populations into four compartments, susceptible animal SA(t), 

latent animal EA(t), infected animal IA(t) and recovered animal RA(t). The TH or the transient class 

represents a fraction of asymptomatic individuals that display symptoms after a delayed period of time 

and are subsequently treated to become recovered [19]. The individuals belonging to this class 

demonstrate recovery solely due to the primary and secondary lines of treatment that attempt to eliminate 

the parasite population within each host. The flow of infection between these compartments in the human 

and animal populations have been modeled using the standard SEIR model whereas the flow of infection 

through the vector has been modeled using the SEI carrier type model [30]. Figure 1 represents the model 

structure encompassing various components considered in the model, each arrow between the 

compartments denoting the flow of infection from one compartment to another. The arrows providing 

to each susceptible population denote the birth rate of individuals αH, αA, αF and arrows leaving from 

each compartments denote the mortality rate µH, µA, µF of each individual compartment considered in 

the model. pH and pA denote the probabilities that any sandfly will bite a susceptible human or animal, 

with respect to the availability of the corresponding host blood meal. Further, the interactions of 

susceptible animals and humans with the fly populations have been modeled using standard incidence 

function, considering the probability that an infected sandfly would transmit infection to susceptible 

human or animal host (pHi, pAi). A latent period of infection (incubation period) is considered between 

the exposed and infected individuals of each population (σHs, σHa, σHp, σA, and σF) to differentiate 

between the infectious (exposed) and the infected. We also assume that a fraction of exposed individuals 

become either symptomatic (bHs) or asymptomatic (1-bHs). As mentioned before, the asymptomatic 

individuals become symptomatic and the symptomatic individuals after treatment might become  

PKDL-infected. To include this, we assume that a fraction of asymptomatic individuals (bHt) remain 

dormant representing the transient population and the remaining become symptomatic (1-bHt). Similarly, 

a fraction of symptomatic individuals after treatment become PKDL-infected (bHp) and the remaining 

recover from the infection (1-bHp). The corresponding rates of transition between the asymptomatic to 

symptomatic and symptomatic to PKDL-infected are given by ρHs and ρHp respectively. Further, each 

human and animal infected population is assumed to recover from the infection with a specific recovery 

rate (γHt, γHs, γHp, γA). The transition rate of the infection from the asymptomatic infected to the transient 

stage (γHs) was also considered separately. As we consider the division of the infected human class into 

its 3 constituent sub-classes (asymptomatic, symptomatic and PKDL), we also assume that the weight 

of infection gained by the vector from each of these three infected subclasses (fHa, fHs, fHp) is unequal, 

assuming a higher weight of infection from the symptomatic human populations. 
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Figure 1. Schematic representing the flow of infection between different population groups 

considered in the model. Each directed arrow represents the flow of infection. The 

corresponding parameters are given above each arrow. Arrows leaving a compartment but 

not connected to any other compartment represent the mortality (death) of individuals in that 

compartment. The arrows directed towards the susceptible compartments and not connected 

with any other compartment represent the birth rates of that population. 

With respect to the assumptions reflected, by formulating a set of coupled ordinary differential 

equations (Equations (1)–(14)) that considers these compartments as variables, we attempted to 

understand the transmission dynamics of VL infection through these heterogeneous populations. 

H H

d[ ]
=  -  -  

dt 
HiH

H F H H
H Hi A Ai

pS
p I S S

N p N p
  


 (1)

Hs Ha H

d[ ]
 =  -  - (1- ) - 

dt
HiH

H F H Hs H Hs H H
H Hi A Ai

pE
p I S b E b E E

N p N p
   


 (2)

Ha Ha H Ha Hs

d[ ]
 =  -  -  -  - (1- )

dt
Ha

H Hs H Ha Ht Ha Ht Ha

I
E b E I b I b I      (3)

Hs Hs H Hs Hp Hs

d[ ]
 =  + (1 - )  - ( )  -  - (1 )

dt
Hs

Hs H Ht Ha Hs Hp Hs Hp Hs

I
b E b I I b I b I        (4)

Hp H Hp

d[ ]
 =  -  - 

dt
Hp

Hp Hs Hp Hp

I
b I I I    (5)



Mathematics 2015, 3 919 

 

 

Ha H Ht

d[ ]
 =  -  - 

dt
H

Ht Ha H H

T
b I T T    (6)

Ht Hs Hs Hp H

d[ ]
 =  +  -  +  - 

dt
H

H Hs Hp Hs Hp H

R
T I b I I R      (7)

A A

d[ ]
 =  -  - 

dt
AiA

A F A A
H Hi A Ai

pS
p I S S

N p N p
  


 (8)

A A

d[ ]
 =  -  - 

dt
AiA

A F A A A
H Hi A Ai

pE
p I S E E

N p N p
  


 (9)

A A A

d[ ]
 =  -  - 

dt
A

A A A

I
E I I    (10)

A A A

d[ ]
=  - R

dt
A

A

R
I   (11)

F

F

d[ ]
 =  -  -  

dt

              -  -  - 

Hi HiF
H Hp Hp F H Hs Hs F

H Hi A Ai H Hi A Ai

Hi Ai
H Ha Ha F A A A F F

H Hi A Ai H Hi A Ai

p pS
p f I S p f I S

N p N p N p N p

p p
p f I S p f I S S

N p N p N p N p

  

  

 

 

 (12)

  F F

d[ ]
 =  +  

dt

+ +  -  - 

Hi HiF
H Hp Hp F H Hs Hs F

H Hi A Ai H Hi A Ai

Hi Ai
H Ha Ha F A A A F F F

H Hi A Ai H Hi A Ai

p pE
p f I S p f I S

N p N p N p N p

p p
p f I S p f I S E E

N p N p N p N p

 

   

 

 

 (13)

F F

d[ ]
 =  - 

dt
F

F F

I
E I   (14)

where, NH(t) = SH(t) + EH(t) + IHa(t) + IHs(t) + IHp(t) + TH(t) + RH(t) =1; NF(t) = SF(t) + EF(t) + IF(t) = 1; 

NA(t) = SA(t) + EA(t) + IA(t) + RA(t) = 1; NH, NF, NA is the total population of humans, flies and animal, 

respectively. The other parameters and their values curated from literature have been defined and enlisted 

in Table 1. As mentioned before, the parameter values have been scaled to per individual in a population 

so as to compute dynamic changes in relative fraction of individuals in each compartment. For simplicity 

of the model, we have also assumed that αH = μH, αF = μF and αA = μA. 

Table 1. Model parameters and their numeric values used for further simulations. 

Parameters Symbols Values References 

Natural birth/mortality rate of human αH, μH 7.95 × 10−5 day−1 [31] 

Biting rate of infected sandfly (kept constant for both 

human and animal infection spread) 
β 0.2856 day−1 [15] 

Natural birth, mortality rate of animal αA, μA 0.00167 day−1 [18] 

Natural birth, mortality rate of sandfly αF, μF 0.07 day−1 [18] 

Incubation period of sandfly σF 1 day−1 [18] 

Latent period of infection through animals σA 0.005 day−1 [18] 

Recovery rate of the animal population γA 0.015 day−1 [18] 
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Table 1. Cont. 

Parameters Symbols Values References 

Probability of sandfly biting a human host according 

to availability of human blood meal  
pH 0.4 Assumed 

Probability of sandfly biting an animal host according 

to availability of animal blood meal 
pA=1-pH 0.6 Assumed 

Probability that an infected sandfly transmits 

infection to susceptible human host  
pHi 1 Assumed 

Probability that an infected fly transmits infection to 

susceptible animal host 
pAi 1 Assumed 

Proportion of humans who become symptomatically 

infected 
bHs 0.3 Assumed 

Duration between developing symptoms and 

becoming PKDL 
ρHp 0.001 day−1 Assumed 

Duration between asymptomatic infection and onset 

of symptoms 
ρHs 0.01 day−1 Assumed 

Duration of the latent stage in asymptomatically 

infected humans 
σHa 0.03333 day−1 Assumed 

Duration of the latent stage in symptomatically 

infected humans 
σHs 0.01 day−1 [32] 

Proportion of asymptomatic infections which recover 

directly (via transient state) 
bHt 0.001 Assumed 

Proportion of symptomatic infected who  

develop PKDL 
bHp 0.1 [33] 

Duration of the infectious period in asymptomatic 

patients leading to a delayed transition period 
γHa 0.01 day−1 Assumed 

Recovery rate of asymptomatic patients γHt 0.01 day−1 Assumed 

Recovery rate of symptomatic patients γHs 0.01 day−1 [34] 

Recovery rate of PKDL patients γHp 0.0055 day−1 [35] 

Weight for infection of flies from human 

asymptomatic patients 
fHa 0.001 Assumed 

Weight for infection of flies from human 

symptomatic patients 
fHs 0.299 Assumed 

Weight for infection of flies from human  

PKDL patients 
fHp 0.3 Assumed 

Weight for infection of flies from animal fAb = 1 − (fHa + fHs + fHp) 0.4 Assumed 

3. Results and Discussion 

The set of ordinary differential equations (ODEs) were analyzed both analytically and numerically to 

interpret the biological significance of the VL infection. Primarily, positivity and boundedness 

conditions of the system of equations (Equations (1)–(14)) were proven. Equilibrium points and 

epidemic threshold were calculated for the set of formulated ODEs. With respect to these calculated 

values the stability of the system was analyzed. 
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3.1. Positivity and Boundedness 

The equations of this model can be analyzed with the initial conditions defined in a fourteen 

dimensional variable space. 
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Therefore, the positivity condition holds. For boundedness of the solutions we propose the  

following theorem: 

Theorem 1. All the solutions of Equations (1)–(14) which initiate in 14
0R   are uniformly bounded if 
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Using the theory of differential inequality [36], above inequality is transformed into, 
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B ={( ,  ,   ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  )  : W < ( +  ,   >0)},

if ,     .

H H Ha Hs Hp H H A A A A F F F

H H A A F F

S E I I I T R S E I R S E I R

and

 


     

 

  
 

3.2. Deriving the Equilibrium Points from the Model 

The model equations (Equations (1)–(14)) were analyzed to calculate the equilibrium points for the 

disease free scenario and the endemic scenario. Each scenario was incorporated in the model as distinct 

mathematical conditions and the model was thoroughly analyzed. The equilibrium points in each 

situation were calculated using substitution method [13]. 

3.2.1. Disease Free Equilibrium 

Disease-free equilibria were calculated for three distinct conditions—first, when there was no 

infection that means there were no infected sandflies; second, when animal populations were not infected 

and other two populations (human and sandfly) were infected and third, when animal and sandfly 

populations are infected and human populations were not infected. These conditions were created to 

substantiate the usability of the model in predicting disease-free equilibria for any single host and vector 

pair and eventually to compare the behavior in different conditions of specific host availability. 

(a) Absence of infected sandflies: In order to create the situation during which there were no infected 

sandflies, for calculations of equilibrium point (SH
*, EH

*, IHa
*, IHs

*, IHp
*, TH

*, RH
*, SA

*, EA
*, IA

*, 

RA
*, SF

*, EF
*, IF

*), the infected fly population IF was set to zero. This led all infected populations 

to become zero, without which the disease could not sustain in the populations considered. Hence, 

total population consisted of susceptible individuals alone with respect to each group. Therefore, 
* * * * * * *

* * *

 ,  0,  0,   0,   0,  0,  0,

* , * 0,  * 0,  * 0 , 

,   0,  0. 

H
H H Ha Hs Hp H H

H

A
A A A A

A

F
F F F

F

S E I I I T R

S E I R
µ

S E I








      

   

  

 

(b) Absence of infected animal population: In this situation, only disease transmission between 

human and sandfly populations was considered but animal populations remained non-infected. 

To calculate equilibrium point (SH**, EH**, IHa**, IHs**, IHp**, TH**, RH**, SA**, EA**, IA**, 

RA**, SF**, EF**, IF**) in this scenario, EA**, IA** and RA** were set to zero. When animal 

populations were not infected, the disease transmission was between human and sandfly 
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population alone. Therefore total animal population would be equal to susceptible animal 

population. The equilibriums of all other variables were found by substituting value of IF**. Hence, 

** , ** 0,  ** 0,  ** 0,  A
A A A A

A

S E I R
µ


     

2
4 5

2
4 5 4 5

 - (  )( )
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p p
K K p K K p
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H
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H F H
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p I
N p N p



 





 

( ) ** **
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p
p I S
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E

b b
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** (1- ) **
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

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**   ,

( )
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H
H Ht

b I
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
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
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** (1- ) ** **
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( )( ** ** **)  

F
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S
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 
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( )( ** ** **) **

**  ,
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H Hp Hp Hs Hs Ha Ha F

H Hi A Ai
F

F F

p
p f I f I f I S

N p N p
E
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1 3
5 4

2

( )
(1- )
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(1- ) (1- )

Hi
H

H Hi A Ai Hs Hs Hs Ha

Hs Hs Hs Ha H H Ht Ha Ht Hs

where

p
p

N p N p K b K b
K K and

b b K b b


 

     
  

           

 

1
3 2 1

2

(1- )
 ,    (1- ) ,    .

( )
Hp Hp HpHt Hs

Ha H Hs Hp Hp Hp Hs Hs
H Hp

f bK b
K f K b b K f

K

    
 

 
        

  
 

(c) Absence of infected humans: In this situation, only disease transmission between animal and 

sandfly populations was considered but human populations remained non-infected. To calculate 

the equilibrium point (SH***, EH***, IHa***, IHs***, IHp***, TH***, RH***, SA***, EA***, IA***, 

RA***, SF***, EF***, IF***), EH***, IHa***, IHs***, IHp***, RH*** were set to be zero. Therefore, 

the total human population would be equal to susceptible human population. The equilibriums of 

all other variables were found by substituting value of IF***. Hence, 
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2 ( )Ai
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p
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3 F A F A A F A A F A A A
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p p
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6 ( ).Ai
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H Hi A Ai
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M p

N p N p
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
 

3.2.2. Endemic Equilibrium 

Endemic equilibrium is the steady state solutions of the variables (all are greater than zero), where 

the disease persists in all population groups. The endemic equilibrium point (SH****, EH****, IHa****, 

IHs****, IHp****, TH****, RH****, SA****, EA****, IA****, RA****, SF****, EF****, IF****) for all 

the model variables were found by substitution method. Expression of IF**** was substituted in other 

variables to get exact expression of each variable. Therefore, solving Equations (1)–(14): 

1 2 3
2      0A I A I A

F F
    
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2 2 1 3
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2- ( -  4 )
****    

2
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 2 2 1 3
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2- - ( - 4 )
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For the positivity of the endemic equilibrium point, **** 0, this is possible if and only ifI
F
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2 1 3 2 1 3 2
2 2( - 4 ) 0  ( - 4 ) - .A A A and A A A A   

Therefore, 
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Lemma 1. The endemic equilibrium point (SH****, EH****, IHa****, IHs****, IHp****, TH****, 
RH****, SA****, EA****, IA****, RA****, SF****, EF****, IF****) of the model system (Equations 
(1)–(14)) exists if and only if 

2 1 3 2 1 3 2 1 2 3
2 2( - 4 ) 0  ( - 4 ) - ,  where ,  and ,are defined in the Equations (32)-(37).A A A and A A A A A A A   

Proof: The proof of the Lemma 1 is obvious from the positivity conditions of the endemic equilibrium 

point (SH****, EH****, IHa****, IHs****, IHp****, TH****, RH****, SA****, EA****, IA****, RA****, 

SF****, EF****, IF****) of the model (Equations (1)–(14)) and from Equations (18)-(37) along with the 

positivity of IF****, this is possible if and only if the following inequalities hold true

2 1 3 2 1 3 2 1 2 3
2 2( - 4 ) 0  ( - 4 ) - ,  where ,  and ,are defined in the Equations (32)-(37).A A A and A A A A A A A   

3.3. Basic Reproduction Number 

The basic reproduction number (R0) suggests the nature of the disease spread through a population [29]. 

The basic reproduction number (R0) is an important parameter that gives the average number of 

susceptible individuals each infected individual would infect in a population over a period of infection. 

In theoretical epidemiology, R0 is calculated as a dominant eigenvalue r(K) of next-generation operator 

K [29]. For our model, R0 can also be calculated as R0 = r (FV−1), where the matrices, for the new 

infection terms, F, and, of the transition terms, V, are given, respectively, by 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0
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 
 
 
  

(1 ) 0 0 0 0 0 0 0 0

(1 ) (1 ) 0 0 0 0 0 0 0

(1 ) (1 ) 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0
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0 0 0 0 F F 

 
 
 
 
 
 
 
 
 
 
 
 
  

Hence for our system, the basic reproduction number (R0) can be calculated by substituting the 

expressions of the equilibrium points in the matrix F and subsequently finding the dominant eigenvalue 

of FV−1 through symbolic evaluation of the matrix inverse, multiplication and eigenvalue determination 

using MATLAB Mathworks R2012a, and performing algebraic manipulations to obtain a simplified 

expression as, 

1/2
0 01 02 03( )  R R R R   (38)

where, 
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From our R0 expression it is clear that the explicit relationship between the parameters  

and the epidemiological threshold, basic reproduction number, is difficult to obtain. Since, R0  

represents the average number of secondary cases generated when one infected case is introduced  

into a completely susceptible population, hence from the expression it can be observed that  

the number of sandfly infections generated by infectious human and animal (near the equilibria)  

is given by the sum of the product of the infection rate of infected humans and animals 

( ) ,Hi Ai
H HA Hs Hp A A

H Hi A Ai H Hi A Ai

p p
p f f f p f

N p N p N p N p
 
 

     
 calculated at the equilibrium  

value [37], where the susceptible sand flies can acquire infection through blood meal from an infectious 

human (different groups) and animals. However, due to the complex expression of R0, numerical 

estimation of R0 and its variations due to different parametric conditions, which eventually can alter the 

disease endemicity, is presented subsequently. It is to be noted here that while studying the stability of 

the system around each of the equilibrium points (different disease-free and endemic scenarios) as well 

as variations of R0 through changes of parameters to observe endemicity, the respective equilibrium 

values are substituted in the R0 expression (or in the F matrix) and the results were obtained numerically. 
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3.4. Stability Analysis 

The local asymptotic stability of the system around disease free and endemic equilibrium points were 

analyzed. Stability analysis was performed by finding the eigenvalues of the Jacobian matrix of this large 

system. Since from our model, the Jacobian matrix is of size 14 × 14, we have used the following 

definition [38,39] and Theorems 2 and 3 [40,41] related to the stability of matrices of higher orders. 

 T;   there exits a positive diagonal matrix  such that J   positive-definite

           (positive) stable matrices,

J W WJ W is

the diagonally

  



 T;   there exits a positive diagonal matrix  such that J   negative-definite

           (negative) stable matrices,

J W WJ W is

the diagonally

  



 k={ ;   all the signed principal minors of ,  i.e., M ,......, = -1  det  J ,......,   i i i i1 k 1 k
 J J

for any subset 1   i  <  .... <  i   n  of the integers {1,2,...,n}, are positive}
1 k

 
 

Theorem 2. Let J be a 14 × 4 matrix of this model then J will be reducible to the form 

1 2

0 3

J J
J

J J

 
  
   

where blocks J1 and J3 are square matrices. Then J   ϑ, if J1   ϑ; J3   ϑ and J0 is a null matrix. 

Theorem 3. Let J be a square real matrix. Then all the eigenvalues of a matrix J have negative (positive) 

real part if only if there exists a symmetric positive-definite matrix H such that, HJ + JTH is negative 

(positive) definite. Such a matrix J is said to be negative (positive) stable. 

3.4.1. Stability Analysis around Disease-Free Equilibrium 

The model stability was analyzed for disease free situations of each population group. Under disease 

free scenario, the possible situations for the model are: first when sandfly were not infected, secondly 

when animal populations were non-infected and last when human populations were non-infected. 

Therefore, using the matrices J1 and J3 found from Theorem 2 and Theorem 3 on ODEs (Equations (1)–(14)), 

we analyzed the stability of the system (Equations (1)–(14)). 

(a) Absence of infected sandflies: The behavior of system could be understood by finding 

eigenvalues of J1 and J2 matrix. The eigenvalues were found after substituting the equilibrium 

points which were calculated for the sandfly uninfected case. As there was no infection in sandfly 

population, implies that there would be no infection through other population group. We obtained 

eigenvalues for this condition from the model as -µH, -µA, -µF, 0,0,0,0,0,0,0,0,0,0,0. When there 

is no disease transmission throughout the population, the system would be stable if 
1/ 2

0 01 02 03( )   < 1, holds true. R R R R   
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Theorem 4. The system (Equations (1)–(14)) is locally, asymptotically stable around the disease 

free equilibrium points (SH
*, EH

*, IHa
*, IHs

*, IHp
*, TH

*, RH
*, SA

*, EA
*, IA

*, RA
*, SF

*, EF
*, IF

*) if 
1/ 2

0 01 02 03( )  R R R R   < 1, otherwise unstable. 

Proof: From the above eigenvalue analysis using Theorems 2 and 3, the proof of Theorem 4 is 

obvious if the inequality, 1/ 2
0 01 02 03( )  R R R R   < 1 holds true. 

(b) Absence of infected animal populations: The previously calculated equilibrium points were 

incorporated into the aforementioned matrices (J1 and J3). The following eigenvalues were obtained 

(-  -  ),  - ,  ( -   -  ),  ( -   -  ),Hi
H F H H Hp H Ht H

H Hi A Ai

p
I p

N p N p
      



 7 3
(-  -   -  ),  (  -   -  -  ),

10 10
Ha Hs

H Hp Hs Hs Hp Hp Hb b
       

   ( -  -   -  ),  - ,  - ,  ( - -  ),  0,  0,  0.Ht Hs Hs Ht Ha H A F F Fb b       

 Theorem 5. The system (Equations (1)–(14)) is locally asymptotically stable around the  

infected animal free equilibrium points (SH**, EH**, IHa**, IHs**, IHp**, TH**, RH**, SA**, EA**, 

IA**, RA**, SF**, EF**, IF**), if bHpγHs < γHs + bHpρHp + μH and bHtρHs < ρHs + bHtμHa + μH, 

otherwise unstable. 

Proof: From the above eigenvalue analysis it is clear that if bHpγHs < γHs + bHpρHp +μH and  

bHtρHs < ρHs + bHtμHa + μH holds true, only then the system is locally asymptotically stable, 

otherwise, it is unstable. 

(c) Absence of infected humans: The previously calculated equilibrium point (SH***, EH***, IHa***, 

IHs***, IHp***, TH***, RH***, SA***, EA***, IA***, RA***, SF***, EF***, IF***) were then 

incorporated into the aforementioned matrices (J1 and J3). The following eigenvalues were obtained 

- ,  0,  0,  0,  0,  0 ,0 ,  ( -   -  ),   - ,  ( -   - ),Ai
H A F A F F F

H Hi A Ai

p
I p

N p N p
     

  

- ,  ( -   -  ),  ( -   -  ),  [ -   -  ( )].Ai
A A A A A F A A A

H Hi A Ai

p
I f p

N p N p
      


 

Since the obtained eigenvalues from matrix J1 and J3 were not all real and negative, the system 

is locally unstable. 

3.4.2. Stability Analysis around Endemic Equilibrium 

To observe the behavior of the system when all three group populations were infected, the system 

was analyzed on the basis of eigenvalues of matrix J1 and J3. The eigenvalues were determined after 

substituting the critical points which were calculated for the endemic scenario. The eigenvalues 

calculated were, 

 ( -  -  ),  - ,   ( -   -  ),  ( -  -  ),Hi
H F H H Hp H Ht H

H Hi A Ai

p
I p

N p N p
      


 

(-  -  ),  (  -   -  -   -  ),  Ht Ha H Hs Ha Ha H Hs Hs Hs Ht Hsb b b b         
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(-  -   -   -  ),  - ,H Hs Hs Hp Hp Hp Hs Ab b       

-  -  ,   - ,  ( -  -  ),  ( -   -  ),  ( -   -  ),Ai
F F F A F A A A A A

H Hi A Ai

p
I p

N p N p
        


 

[-  -  ( ) (     ) -  (  )].Hi Ai
F H Ha Ha Hp Hp Hs Hs A A A

H Hi A Ai H Hi A Ai

p p
p I f I f I f I f p

N p N p N p N p
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   
Hence we propose the following theorem. 

Theorem 6. The system (Equations (1)–(14)) is locally asymptotically stable around the endemic 

equilibrium point (SH****, EH****, IHa****, IHs****, IHp****, TH****, RH****, SA****, EA****, 

IA****, RA****, SF****, EF****, IF****) provided bHtρHs < bHsσHa + σHa + µH + bHsσHs + ρHs and  

bHpγHs < µH + µHs + γHs + bHpρHp, alongwith the existence conditions stated in Lemma 1. 

Proof: The above theorem can be proved easily by obtaining the eigenvalues of the jacobian matrix at 

the endemic equilibrium point by using the definition [37,38] and Theorems 2 and 3 [39,40] related to 

the stability of matrices of higher orders. The analytical expressions of some eigenvalues are not explicit 

as they contain the steady state values of the endemic equilibrium point, but if we use the positivity 

conditions for the endemic equilibrium point to exist (Lemma 1), then we can easily show that the 

inequality stated in Theorem 6 will hold true to obtain real and negative eigenvalues, which ensures the 

stability of the endemic equilibrium point. 

The conditions obtained from local stability analysis and the system around each of the equilibrium 

points provides a strong biological basis to interpret the system behavior under different parametric 

conditions. The dependency of the biologically important parameters on other system parameters for 

obtaining the stable situation under different disease scenario can also be estimated from the above 

analysis. Moreover, the estimation of R0 and its variations due to different parametric conditions, which 

eventually can alter the disease endemicity, can also be tested. This further helps to get a coherent 

estimation of the control of disease conditions. All the above analytical results were further verified by 

numerical simulations. The existence of different equilibria (disease free or endemic) and the conditions 

stated in Theorems 4, 5 and 6 for the stability of the system around different equilibria are verified 

numerically using the biologically feasible parameter values in Table 1. The inequalities in Theorems 4, 

5 and 6 are not satisfied and the existence conditions are violated if parameter values are not  

biologically feasible. 

3.5. Numerical Analysis of the Model 

The model was also analyzed numerically to observe the behavior of the infection transmission in the 

considered heterogeneous populations. Parameter values are given in Table 1. The numerical simulations 

were performed using the 4th order Runge-Kutta method implemented as a C program. The simulated 

results were plotted to visualize the behavior of model using MATLAB R2012a, Mathworks. In addition, 

the most sensitive parameters for infection to occur were identified from the model by performing local 

parameter sensitivity. The equations were incorporated as reaction rate laws in COPASI [42] for 

performing parameter sensitivity analysis. These sensitive parameters were varied in appropriate and 

wide ranges to capture the changes in the steady state behavior of some important model variables. 
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Dynamics of Visceral Leishmaniasis Transmission: 

To compare the numerical simulations with the analytical solutions of the model, the previously 

mentioned disease free and disease-persistent scenarios were re-created and analyzed numerically. The 

model was simulated for 1000 days and dynamics of disease transmission was monitored. Simulations 

were performed using parameters, mostly obtained from literature and few are assumed to be biologically 

feasible, and are provided in Table 1. 

The following situations in the model represent the different disease-persistent and disease-free scenarios 

(a) Vector populations remain uninfected: In order to create this situation, IF was kept to be zero. 

Hence, it is evident that absence of infected sandflies in the population would lead to no disease 

transmission. This could be captured from the model simulations as well (vector uninfected, 

Figure 2). The susceptible population stabilized around 1 and other populations stabilized around 0. 

As no infection persists in the population, the equilibrium prevalence of all population fractions 

remains same as the initial value justifying our analytical observation. 

(b) No infections through the animal population: When there were no infected animals, the disease 

transmission was restricted to humans and sandflies alone (animal uninfected, Figure 2). In order 

to create this situations, the preference of sandfly blood meal to animal (pA) and human 

population (pH) was changed from their default values to 0 and 1.The infected fly population 

shows a transient increase within a few days as disease load is totally dependent on a single host 

population that is the human population, avoiding delay in infection spread as opposed to 

distribution within two hosts where the infection would be lost by clearance of infection from 

each host. Hence the corresponding infected human populations also show a transient increase. 

As the susceptible human population (SH) becomes continually infected, SH shows a rapid 

decrease until it is totally transported. In addition, with respect to immunity of individual the 

recovered class shows a similar increase. 

(c) No infections through the human population: When there were no infected humans, the disease 

transmission was restricted to animals and sandflies alone (human uninfected, Figure 2). Similar 

to the non-infected animal scenario, the preference of sandfly blood meal to animal (pA) and 

human population (pH) was changed from their default values to 1 and 0 respectively to maintain 

infection only through animals. The infected fly population shows an increase similar to the 

animal uninfected case for the initial few days after which a rapid decline is observed. However, 

comparing both the situations, it can be observed that steady state of IF is around 100 fold higher 

in the situation when only animals are present as compared to situation when they are absent. 

This suggests that the animal population act as the major contributor for continual infection. 

(d) All populations were infected: Under the influence of both the host populations (human and 

animal), the dynamics of infected sandfly population demonstrated a combinatorial effect where 

the initial population rise resembled the infection under presence of only the human infected 

population and the latter persistent infected population resembled the infection under presence 

of only the animal infected population (all infected, Figure 2). Another observation was that the 

steady state of recovered animal population decreased further in presence of both animals and 

human populations as compared to situation where only animals were present suggesting an 

increased flow of infection from animals to humans via the increase in proportion of infected 
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sandflies. A similar behavior of each population considered in our model was also observed in a 

previous study [17]. 

 

Figure 2. Numerical simulations of the model were performed in the vector uninfected, 

animal uninfected, human uninfected and all infected scenarios for every variable (in the 

human, animal and sandfly compartments) considered in the model and the temporal behavior 

of the system was monitored for each population group. 

An interesting observation in this context (i.e., for endemic steady state) is that for a wide range of 

parameter variations (105 fold increase and decrease from the basal values mentioned in Table 1, for all 

the parameters involved in the inequality stated in Theorem 6) the condition of Theorem 6 holds true, 

i.e., the system is stable around the endemic steady state. Due to the largeness of the system, we have 

not been able to prove explicitly the global stability of the system. However, from our numerical 

simulation and biologically feasible parameter variations within a wide range of values we can expect 

globally stability around the endemic equilibrium point. 

3.6. Animal Populations Act as a Reservoir of VL Infection 

The equilibrium prevalence of infections in each population under the above created scenarios was 

compared (Figure 3). It can be observed that the equilibrium value of infected sandfly population (IF) 

was high under the human non-infected scenario (Figure 3A) as compared to the animal non-infected 

scenario (Figure 3B). Similarly, while considering spread of infection in all the three populations  

(Figure 3C), the equilibrium value of animal infected population (IA) was high as compared to every 

infected human compartment as well as the total infection in human. Both these observations suggest 

that the animal population contributes more to the VL infection than the human, clearly indicating that 

sandfly prefers animal over human. Further, R0 values were calculated in each of the aforementioned 

scenarios (Figure 3D). R0 for the non-infected animal scenario was higher than non-infected human 

scenario confirming that infection spread is highly modulated by the animal population. It has been 

previously reported that when a reservoir host is removed from the system, R0 increases [43]. This 

confirms that indeed the animal population acts as a reservoir for VL infection. 
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Figure 3. Comparison of equilibrium and R0 values in different scenarios created from the 

model. (A) Comparison of equilibria of infected populations in the non-infected animal 

scenario; (B) Comparison of equilibria in the non-infected human scenario; (C) Comparison 

of equilibria in the default, all infected scenario; (D) R0 values in the above three scenarios. 

3.7. Designing Disease Control Strategies from Model Predictions 

The most important aim of our study is to model the complex disease dynamics of visceral 

leishmaniasis and to understand important parameters that can control disease transmission among 

different populations. By identifying the most important parameters that govern VL infection, it can be 

possible to develop optimal strategies that can lead to the control of these parameters and hence, cause 

reduction in spread of the infection through populations. For identification of the most important 

parameters, a two-way analysis was performed where the most important parameters that are sensitive 

to infected population groups in our model was identified, followed by variation of these sensitive 

parameters in feasible ranges to understand the dependency of equilibrium infected populations on  

these parameters. 

3.7.1. Identification of Important Parameters that Control VL Infection 

Local sensitivity analysis is a mathematical procedure that identifies the most sensitive parameters in 

a system of ODEs for a given output [44]. Local sensitivity analysis was performed in our model using 

COPASI 4.11 (Build 65) [42] to identify the most sensitive parameters that influence VL disease 

dynamics. The importance of local sensitivity analysis is that it suggests the importance of parameter 

that is affecting the output of the model when perturbed in a very small local range. According to the 
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standard procedure, every parameter was increased or decreased up to 0.1% of its original value (keeping 

the other parameters constant) and then its sensitivity in this local range to steady state of the output as 

checked. The sensitivity of variables is measured by the values of the sensitivity coefficients. The scaled 

sensitivities of each of the model parameters to steady state of infected human, animal and fly 

populations (IHa, IHs, IHp, IA, and IF) are plotted in Figure 4. The negative values of sensitivity coefficients 

indicate negative effect of that particular parameter on steady state and positive values of sensitivity 

coefficients indicate that the particular parameter has a positive effect on the steady state of all infected 

population groups considered in the model. 

 

Figure 4. Local parameter sensitivity analysis for different model parameters and its effects 

on infected population groups. (A) Local parameter sensitivity for the variable IHa; (B) Local 

parameter sensitivity for the variable IHs; (C) Local parameter sensitivity for the variable IHp; 

(D) Local parameter sensitivity for the variable IA; (E) Local parameter sensitivity for the 

variable IF. As some parameters are common for different events occurring in the model, the 

variable affected during the event has been indicated in brackets along with the parameter. 

For example, μF, death rate of a sandfly is a parameter that is common for susceptible, 

exposed and infected flies. However, µF (SF) indicates the death rate of susceptible flies. 

There are few parameters αH, αF, αA, μH, μA and μF, which are common for different populations in 

the model, the population affected in the reaction has been indicated in brackets along with the 

parameter. From Figure 4, it can be observed that the biting rate β as expected has a positive effect on 

the infected individuals of each population. Similarly, the birth rates of each population (αH, αF, and αA) 



Mathematics 2015, 3 936 

 

 

have a positive effect on the corresponding variables. In addition, the mortality rates (µH, µA) of each 

population except IF have very small negative effect on their corresponding variable. In Figure 4A, we 

could observe that ρHs has negative effect on IHa suggesting that increase in duration between 

asymptomatic infection and symptoms lead to reduction in asymptomatic infection. Another trivial result 

was that the increase in recovery rate of infection (γHs, γHp, γA) reduces rate of infections (Figure 4A–D), 

which depends on immunogenic potential of the corresponding population to the parasite infection. 

Other trivial results include the highly negative effect of µF (IF) and on IF (Figure 4E). In addition, the 

death rate of susceptible fly µF (SF) has negative effect on IF indicating cessation in transmission of the 

infection from susceptible to infected under increased death rate of susceptible flies. 

A unique result was that ρHs (recovery rate of symptomatic individuals) had a positive effect on IHp 

probably suggesting the flow of infection through an alternative route, i.e., IHp (Figure 4C). Conversely, 

γHs demonstrates a negative effect on IHp (Figure 4C) signifying the reduction in the rate of conversion 

of IHs into IHp. Further, it was further observed that the recovery rate of animal from infection (γA) had a 

high negative effect on IHp and IF (Figure 4E) further suggesting the role of the animal population in 

absorbing the infection towards itself. 

3.7.2. Variation of Parameters to Control VL Infection Spread 

The parameters identified through sensitivity analysis were varied in appropriate ranges to study 

equilibrium dependence of the infected populations on each identified parameter. By performing 

extensive parameter variations, we also compare the choice of parameter values and identify ranges 

where disease transmission would be considerably reduced. Further, in each case, change in R0 was also 

monitored with corresponding change in the parameter value to identify epidemic thresholds for each 

parameter that can lead to termination of the disease. 

(a) Infected sandfly biting rate vs. fly mortality rate: As indicated by parameter sensitivity (Figure 4), 

the infected sandfly biting rate (β) has a positive effect whereas the fly death rate has a negative effect 

on equilibrium infected populations. Varying β between 0–1/person/day, it can be observed that all the 

equilibrium infected populations demonstrate a sigmoidal increase with variation in biting rate (Figure 5A). 

When β < 0.2/person/day, there are no or low proportion of infected individuals in each population. But 

for a β > 0.2/person/day, the proportion of infected individuals switches from low numbers to 

considerably high numbers, representing the spontaneous spread of infection through all the populations. 

Change in infection spread can also be monitored by R0. Hence, varying the infected sandfly biting rate, 

it can be observed that R0 < 1 when, β ≤ 0.168 suggesting no infections in the population. Similarly, 

varying the fly death rate (μF) between 0–0.5/cycle, a sigmoidal decrease in proportion of all infected 

humans can be observed with increase in fly death rate (IHa, IHs, IHp in Figure 5B). At the same time, an 

exponential decrease can also be observed in the infected animal and fly populations (IA, IF in Figure 5B). 

In addition, R0 exponentially decreases with increase in μF. An R0 < 1 can be observed when μF > 0.1. 

Thus, maintaining the infected fly biting rate β ≤ 0.168/person/day or mortality rate of flies μF > 0.1/cycle, 

can lead to cessation of the disease. 

Apart from varying either of the parameters, we also perform variations in the above two parameters 

simultaneously to identify combinatorial ranges of parameters where the infection dies out. It can be 

observed that for mortality rate of flies (μF) > 0.23, R0 is always less than 1 (Figure 5C). This suggests 
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that μF is more influential as compared to β in reducing the infection. However, when μF < 0.12, β 

contributes more in spreading the infection among different populations. This can be observed by the 

high R0 values (orange colored regions, Figure 5C) under the presence of increasing β. This indicates 

that combinatorial strategies that can control both the infected sandfly biting rate (β) and mortality rate 

of flies (μF) in the predicted ranges can lead to better reduction of disease spread. 

 

Figure 5. Parameter variations in β and μF—(A) Effect of β on equilibrium infection 

dynamics and R0; (B) Effect of μF on equilibrium infection dynamics and R0; (C) Effect of 

simultaneous variations in β and μF on R0. 

(b) Recovery rate of animal vs. symptomatic humans: As indicated by parameter sensitivity (Figure 4), 

both the recovery rate of animal and recovery rate of symptomatic humans negatively affect the infected 

populations. Varying recovery rate of animal (γA) between 0–0.06/day, it can be observed that the 

fraction of individuals in each infected class of humans demonstrate a delayed sigmoidal decrease (IHa, 

IHs, IHp in Figure 6A). Whereas, infected animals and flies demonstrate a rapid exponential decay with 

increase in γA (IA, IF in Figure 6A). Varying γA further leads to an exponential decrease in R0. However, 

in the given parameter ranges of γA, the infection did not die out i.e., R0 was never less than 1. This 

suggested that the animal recovery rate does reduce the occurrence of VL disease among populations 

but does not lead to cessation of disease. Further, the infection that persists in the population is because 

of the infected human populations acting as a sole source of infection. Similarly, varying the recovery 

rate of symptomatic individuals (γHs), it can be observed that there is an exponential decrease in relative 

proportions of all the infected populations considered in the model (Figure 6B). In addition, it can be 

observed that the rate of decrease in the steady state asymptomatic and PKDL-infected populations is 

slower than the rate of decrease in symptomatic populations. A similar behavior can be observed for the 

transient class (TH) also. This suggests the role of IHa, IHp and TH in acting as important sources for VL 

infection for a certain period of time, even after increasing the recovery rate of symptomatic individuals. 

Further, R0 also demonstrates an exponential decrease with increase in γHs. However, in the given 

parameter ranges of γHs, the infection did not die out i.e., R0 was never less than 1. As increasing the 
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recovery rate of animals and humans individually did not lead to cessation of disease spread, it is 

necessary to vary both the parameters and observe its effect on persistence of infection. 

Apart from varying either of the parameters, we also perform variations in the above two parameters 

simultaneously to identify combinatorial ranges of parameters where the infection dies out (Figure 6C). 

We monitor R0 while varying the recovery rates γA and γHS. It can be observed that for  

γA > 0.05 and γHS > 0.04, R0 is less than 1. Thus, for optimal disease control, it is required to develop 

strategies that can maintain high rates of recovery within both animal and host. This also indicates that 

healthy and rapidly recovering animals contribute towards reduction of VL infection by absorbing the 

infection towards itself and thereby reducing the load towards the recovering human population. 

 

Figure 6. Parameter variations in γA and γHs—(A) Effect of γA on equilibrium infection 

dynamics and R0; (B) Effect of γH on equilibrium infection dynamics and R0; (C) Effect of 

simultaneous variations γA and γHs on R0. 

3.8. Testing the Model with Real Data 

The monsoon season with moderate temperature and relative humidity, is the most conducive 

environment for the breeding of sandflies. A significant positive correlation between sandfly density and 

rainfall is known for the sandfly species Phlebotomus papatasi [45]. Further, sandfly abundance is 

known to the highest in monsoon and post-monsoon seasons [46]. With respect to this information, it is 

palpable that seasonal fluctuations like rainfall affect the existence of effective sandfly population. To 

reinforce our model predictions with real data, we intended to include this seasonal effect on sandfly density. 

Thus, in order to test the predictive capability of the model with real population data, we replaced the 

birth rate of sandfly as a binormal distribution function F(t) in the model, which was fitted for the bimodal 

nature of the rainfall distribution in the Muzaffarpur district, Bihar, India for the year 2005 [24]. 
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Here, t denotes the time of the year (in days); a1, a2 gives the peak value of mosquito density in that 

year; c1 and c2 gives the width of the two normal distributions; and b1, b2 denotes the position of the 

peaks. As a case study, the values of a1, a2, b1, b2, c1, and c2 were adjusted so as to appropriately predict 

sandfly density from reported rainfall data [26]. This function was then introduced as sandfly birth-rate 

in the model. To perform this simulation, the default parameter values were retained. For the purpose of 

validation, the behavior of this modified model was scaled and fitted with the number of VL infected 

symptomatic human cases reported for Muzzafarpur district, Bihar, India in the year 2005 [26]. While 

performing simulations, the initial values of the human compartments were varied in proportion so as to 

relatively match the predicted symptomatic cases with the monthly average of January 2005. Using these 

initial values for the human compartments, the model was simulated for the whole year. The average 

number of predicted symptomatic VL cases for each month were then calculated from the model 

simulations, scaled with respect to total number of observed VL infected cases in that year and compared 

with the average number of known cases in each month (for the year 2005). A recent study has reported 

the evidence of zoonotic transmission of visceral leishmaniasis in the state of Bihar, India [47]. Hence, 

to create the actual scenario, we retained the effect of animal populations in the transmission of the 

disease while performing the model simulations. Data in Figure 7B was the average number of 

symptomatically infected humans recorded in that region for each month in the year 2005. The goodness 

of fit of model prediction with real observed data was reasonable (R2 = 0.69) substantiating the strength 

of model to predict the dynamics of VL disease transmission. Since most of the environmental, 

epidemiological and entomological parameters for this specific region were not available, hence we 

restricted ourselves to predict for only one year using the global parameter values for our general model. 

It is worthy to note that even if the model is general in nature it is still able to capture the trend of the 

disease for a specific region and the predictions are also reasonable. This confers the model with wide 

applicability to different epidemiological situations and ability to predict disease incidence if all the 

realistic parameter values are available along with the information of rainfall for a specific region. 

Further, to exhibit the strength of the model (in which sandfly density was fitted for rainfall 

distribution) to predict control scenarios, the sensitive parameter values (β, μF, γA and γHs) identified in 

the previous analysis were fixed to regimes where R0 was predicted to be less than 1 in the previous 

analysis, and the simulations were performed for 12 months (Figure 7C). The population proportions 

were then scaled according to the VL infected cases in the year 2005 to understand the control effects 

on real population. It can be observed that the given combination of β and μF parameter values imposed 

the greatest degree of control in VL infected cases (two-fold reduction in the peak number of cases as 

compared to the default situation) as compared to their singular controls. Similarly, the given 

combination of γA and γHs parameters reduced the VL infected cases to relatively low values as compared 

to their singular controls (around 1.7-fold reduction in the peak number of cases as compared to the 

default situation). This extended analysis further demonstrates the usage of the model in predicting the 

control measures for yearly VL infection. 
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Figure 7. Testing model with real data—(A) Monthly average sandfly density versus 

monthly average rainfall in 2005; (B) Observed (actual) VL-infected cases in the Muzzafarpur 

district, Bihar, India (2005) vs. predicted VL infected cases from the model. R2 indicates the 

goodness of fit of the predicted cases to the actual population data; (C) Control situations for 

previously considered parameters in the model (modified to accommodate the sandfly 

density function) and their effects on VL-infected populations. 

4. Conclusions 

In this study, we propose a compartment-based mathematical model that explains the visceral 

leishmaniasis transmission process in three distinct populations—the human, sandfly and the animal 

considering the detailed division of the human infected population into the symptomatic, asymptomatic 

and PKDL-infected classes. Our model is unique as compared to other models of visceral leishmaniasis 

as it integrates the detailed classification of the human infected population along with other 

heterogeneous populations (vector and animal) to study their combined effect on disease transmission. 

Further, the proposed model is generic for VL disease transmission and can be applied to any 

region/conditions by introduction of region-specific parameter values and conditions. However, the 

model of this scale posed a challenging task for analytical study and estimation of different epidemic 

thresholds, including basic reproduction number. We could analyze the model both analytically and 

numerically in different diseased and disease-free scenarios, to understand the equilibrium prevalence 

of infection in different populations of the model under various situations. In addition, performing 

parameter sensitivity, biting rate of the sandfly, birth rate of sandflies, recovery rates of symptomatic 

humans and animals were identified to be the most sensitive parameters. One of the interesting outcomes 

of this analysis was to establish the fact that rapidly recovering animal populations may act as absorbers 

of VL infection. In addition, through our model parameter variation analyses, we demonstrate the 
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potency of the model in enumerating equilibrium thresholds for different model parameters and hence, 

suggest solutions for curbing disease spread among populations. The predictions from the model 

suggests that measures should be taken to either control infected sandfly populations by eradicating their 

populace through external perturbations, like insecticide sprays or by avoiding contact of human or 

animal populations with the infected sandflies. Further, the drain of the infected human or animal 

populations into the recovered state can be accelerated by discovery of vaccines or drugs that can 

increase the rate of their transition from infected to recovered class. Through our parameter variation 

analysis, the role of asymptomatic, PKDL and transiently infected classes as constant sources for 

infection has been established and further suggest the requirement of a mass-identification programme 

to identify the total number of individuals belonging to these classes and thereby design control strategies 

to target each of these individual classes. Through our analysis, we prominently stress on the control of 

a combination of parameters (in ranges where R0 is less than 1), as the most optimal method to control 

VL disease spread. As an important measure to effectively reduce the VL disease spread, a combinatorial 

control strategy that can reduce biting rate of sandflies and increase mortality rate of sandflies needs to 

be implemented. In contrast to zoonotic disease control for visceral leishmaniasis, like culling of  

animals [48,49], we observed that VL spread among human population decreases in the presence of 

animal population. Thus, a combinatorial strategy to target both animal and human recovery rates can 

highly contribute to the disease elimination programme. Model predictions were also comparable to real 

infected population data demonstrating the applicability of our model to predict the region-specific 

nature of the VL infection. This also emphasizes the importance of our model in predicting the expected 

number of asymptomatic, PKDL, transient and recovery classes of human hosts while comparing the 

predicted number of asymptomatic cases with actual reported VL symptomatically infected cases. 

Through our generic model analysis and predictions, we conjecture that our generic model can be used 

to understand the disease dynamics and spread as well as may be useful to provide practical solutions to 

effectively control visceral leishmaniasis in the human population. 
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