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Abstract: This paper proposes an approach for the space-fractional diffusion equation in
one dimension. Since fractional differential operators are non-local, two main difficulties
arise after discretization and solving using Gaussian elimination: how to handle the memory
requirement of O(N2) for storing the dense or even full matrices that arise from application
of numerical methods and how to manage the significant computational work count of
O(N3) per time step, where N is the number of spatial grid points. In this paper, a fast
iterative finite difference method is developed, which has a memory requirement of O(N)

and a computational cost of O(N logN) per iteration. Finally, some numerical results are
shown to verify the accuracy and efficiency of the new method.
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1. Introduction

The history of fractional calculus is almost as long as integer calculus, however it is only in the last
few decades that it has gained much importance. The modeling of a variety of non-classic phenomena,
i.e., anomalous diffusion using fractional differential equations have proven to be promising to describe
processes with memory and hereditary in geophysics [1], physics [2], chemistry [3], biology [4] and
even finance and economics [5]. The primary advantage of such modeling lies in the introduction of
a parameter, namely the fractional order of the equation, which can be used to model non-Markovian
behavior of spatial or temporal processes. While analytical methods, such as the Fourier transform
method, the Laplace transform methods, and the Mellin transform method, have been developed to seek
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closed-form analytical solutions for fractional partial differential equations [6], there are very few cases
in which the closed-form analytical solutions are available, just like in the case of integer-order partial
differential equations. Numerical methods for the fractional partial differential equations, such as finite
difference methods [7], finite element methods [8,9], spectral methods [10], and discontinuous Galerkin
methods [11,12] have recently been developed and remains a relatively new topic of research because of
the difficulties encountered.

Due to the non-local nature of fractional differential operators, numerical methods for fractional
diffusion equations [9,13,14] raise numerical difficulties that were not encountered in the numerical
methods for second-order diffusion equations. A significant obstacle that is the direct result of this
non-local behavior is that these methods generate discrete systems with full or dense coefficient matrices.
Meerschaert and Tadjeran [15,16] utilized a shifted Grünwald-Letnikov difference approximation
to develop an implicit Euler finite difference method for space-fractional diffsuion equation in
one-dimension. Further, they proved that the method is unconditionally stable and has first-order convergence
in space and time. However, these methods were solved via Gaussian elimination, consequently O(N3)

account of operations and O(N2) account of storage are required to solve a problem of size N .
This work focuses on the development of a fast iterative finite difference method for the accurate

and efficient solution of the one-dimensional space-fractional diffusion equation. The immense
computational cost and storage requirement for the one-dimensional space fractional diffusion equation
was broken down recently by the authors of [17]. In [17] they proved that the stiffness matrix of [15,16]
can be decomposed as a sum of diagonal matrix multiplied by a Toepltiz matrix. They utilize this
decomposition and applied an operator splitting technique to the one-dimensional space-fractional
diffusion equation to develop a fast operator-splitting finite difference method for the space-fractional
diffusion equation in one space dimension. However, this method has a computational work account
of O(N log2N) per iteration and has a memory need of O(N logN) per time step, due to the use of
the banded coefficient matrix. While this is a vast improvement from the traditional methods solved
via Gaussian elimination, there is room for improvement. In this paper the proposed method retains the
same accuracy as the regular finite difference methods solved via Gaussian elimination and the resulting
fast algorithm has a computational cost of O(N logN) per iteration at each time step and a memory
requirement of only O(N) per time step.

The rest of this paper is organized as follows. Section 2 outlines the space-fractional diffusion
equation we attempt to solve and presents the corresponding Meerschaert-Tadjeran finite difference
method. Section 3, begins by discussing the impact of the significantly increased computational work
and memory requirement of the traditional implicit finite difference method. Then we continue with the
development of the fast conjugate gradient squared finite difference formulation. This section concludes
by describing how to efficiently store the stiffness matrix and how to implement a fast matrix-vector
multiplication to speed up the iterative scheme. Our work in this section establishes that the fast method
has a computational work of O(N logN) per iteration and a memory requirement of O(N) per time
step, while retaining the same accuracy as the traditional finite difference methods. This is followed by
numerical experiments in Section 4 and concluding remarks in Section 5.
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2. The Implicit Finite Difference Method for Time-Dependent Space Fractional Diffusion Equation

Fractional order partial differential equations are generalizations of classical partial differential
equations. Fractional derivatives in space are used to model anomalous diffusion, where particles spread
either faster or slower than the classical model predicts. When a fractional derivative of order α replaces
the second derivative in a diffusion model, it leads to enhanced diffusion if 1 < α < 2 (a process known
as superdiffusion) or leads to subdiffusion, if 0 < α < 1.

For a one-dimensional fractional diffusion model with constant coefficients, analytic solutions are
available [18] using Fourier transform methods. However many practical problems require a model
with variable coefficients [19,20]. In [18], a space-fractional diffusion equation was used to describe
Lévy flights.

We now proceed to develop a fast numerical method for space-fractional diffusion equations.
Consider the following initial-boundary value problem of a class of time-dependent space-fractional
diffusion of order 1 < α < 2 [15,16,18]

∂u(x, t)

∂t
− d+(x, t)

∂αu(x, t)

∂+xα
− d−(x, t)

∂αu(x, t)

∂−xα
= f(x, t)

xL < x < xR, 0 < t ≤ T

u(xL, t) = 0, u(xR, t) = 0, 0 ≤ t ≤ T

u(x, 0) = u0(x), xL ≤ x ≤ xR

(1)

The case 1 < α < 2 has useful applications [21]. It is also a physically meaningful case, as explained
in [22]. A two-sided fractional partial differential equation allows modeling different flow regime
impacts from either side. Here the left-sided (+) and the right-sided (−) fractional derivatives ∂αu(x,t)

∂+xα

and ∂αu(x,t)
∂−xα

can be defined in the (computationally feasible) Grünwald-Letnikov form [23]

∂αu(x, t)

∂+xα
= lim

h→0+

1

hα

b(x−xL)/hc∑
k=0

g
(α)
k u(x− kh, t)

∂αu(x, t)

∂−x
α = lim

h→0+

1

hα

b(xR−x)/hc∑
k=0

g
(α)
k u(x+ kh, t)

(2)

where bxc represents the floor of x and g
(α)
k = (−1)k

(
α
k

)
with

(
α
k

)
being the fractional binomial

coefficients. We note that the Grünwald weights g(α)k can be evaluated using the recurrence relation

g
(α)
0 = 1, g

(α)
k =

(
1− α + 1

k

)
g
(α)
k−1 for k ≥ 1 (3)

and satisfy the following properties [15,16,23]
g
(α)
0 = 1, g

(α)
1 = −α < 0, 1 ≥ g

(α)
2 ≥ g

(α)
3 ≥ · · · ≥ 0

∞∑
k=0

g
(α)
k = 0,

m∑
k=0

g
(α)
k ≤ 0 (m ≥ 1)

(4)

We also note that the left-handed fractional derivative of u at a point depends on all function values
to the left of that point. Similarly, the right-handed fractional derivatives of u at a point depends on all
function values to the right of this point. In other words, fractional derivatives are non-local operators.
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This paper focuses on the development of a fast numerical method for problem Equation (1). We refer
to [24], for the existence and uniqueness of the weak solution to fractional partial differential equations.

Let N and M be positive integers and h = (xR − xL)/N and ∆t = T/M be the sizes of spatial grid
and time step, respectively. We define a spatial and temporal partition xi = xL + ih for i = 0, 1, . . . , N

and tm = m∆t for m = 0, 1, . . . ,M . Let umi = u(xi, t
m), dm+,i = d+(xi, t

m), dm−,i = d−(xi, t
m),

and fmi = f(xi, t
m).

We discertize the first-order time derivative in Equation (1) by a standard first-order time difference
quotient, but for the discretization of the fractional spatial derivative we use the shifted Grünwald
approximations. Meerschaert and Tadjeran [15,16] showed that a fully implicit finite difference scheme
with a direct truncation of the series in Equation (2) turns out to be unstable! Using the following shifted
Grünwald approximations

∂αu(xi, t
m)

∂+xα
=

1

hα

i+1∑
k=0

g
(α)
k umi−k+1 +O(h)

∂αu(xi, t
m)

∂−xα
=

1

hα

N−i+1∑
k=0

g
(α)
k umi+k−1 +O(h)

(5)

they proved that the corresponding implicit finite difference scheme

um+1
i − umi

∆t
−
dm+1
+,i

hα

i+1∑
k=0

g
(α)
k um+1

i−k+1 −
dm+1
−,i

hα

N−i+1∑
k=0

g
(α)
k um+1

i+k−1 = f m+1
i (6)

is unconditionally stable and convergent. Numerical experiments show that this scheme generates very
satisfactory numerical approximations.

Let um = [um1 , u
m
2 , . . . , u

m
N−1]

T , fm = [fm1 , f
m
2 , . . . , f

m
N−1]

T , Am = [ami,j]
N−1
i,j=1, and I be the identity

matrix of order N − 1. Then the numerical scheme Equation (6) can be expressed in the following
matrix form

(I +
∆t

hα
Am+1)um+1 = um + ∆tfm+1 (7)

Here the entries of matrix Am+1 are given by

am+1
i,j =



−(dm+1
+,i + dm+1

−,i )g
(α)
1 , j = i

−(dm+1
+,i g

(α)
2 + dm+1

−,i g
(α)
0 ), j = i− 1

−(dm+1
+,i g

(α)
0 + dm+1

−,i g
(α)
2 ), j = i+ 1

−dm+1
+,i g

(α)
i−j+1, j < i− 1

−dm+1
−,i g

(α)
j−i+1, j > i+ 1

(8)

It is clear that am+1
i,j ≤ 0 for all i 6= j. We further conclude from Equations (4) and (8) that the

coefficient matrix I +
∆t

hα
Am+1 is a nonsingular, strictly diagonally dominant M-matrix.

Equation (8) implies that the scheme has a dense coefficient matrix, which has a memory requirement
of O(N2) and computational work of O(N3) per time step. Thus the non-local nature of the fractional
derivatives results in a full coefficient matrix of the system. This is in contrast to numerical methods for
second-order diffusion equations which usually generate banded coefficient matrices of O(N) nonzero
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entries and can be solved by fast solution methods such as multigrid methods, domain decomposition
methods, and wavelet methods. Therefore the development of fast and robust numerical methods with
efficient storage for the space-fractional diffusion equation is crucial for the applications of fractional
diffusion equations.

3. The Fast Conjugate Gradient Squared Method

Since the stiffness matrix Am+1 is dense, solving Equation (7) using Gaussian elimination requires
computational work of O(N3) operations per iteration and memory storage of O(N2) per time step.
For example, each time we reduce the size of the spatial mesh by half, the total number of unknowns
per time step is doubled. As a result, the required memory increases 4 times, and the computational
work increases 8 times. If the time step size is reduced by half too, then we would expect the overall
consumed CPU time for solving the finite difference method to increases 16 times. Because of the
significantly increased computational work and memory requirement of the numerical schemes for
space-fractional diffusion equations, development of fast and reliable numerical methods with efficient
storage mechanism has been of recent interest.

The goal of this paper is to develop a fast solution technique for the one-dimensional space-fractional
diffusion equation via finite difference method Equation (6). Let us begin by recalling the conjugate

gradient squared iterative scheme to solve the system Equation (7): (I +
∆t

hα
Am+1)um+1 = um+ ∆tfm+1

which can be expressed as follows

At each time step tm+1, we choose u(0) = um

Compute r(0) = um + ∆tfm+1 − (u(0) +
∆t

hα
Am+1u(0))

Choose r̃ (for example, r̃ = r(0))
for i = 1, 2, · · ·
ρi−1 = r̃T r(i−1)

if ρi−1 = 0 the method fails
if i = 1

w(1) = r(0)

p(1) = w(1)

else
νi−1 = ρi−1/ρi−2

w(i) = r(i−1) + νi−1q(i−1)

p(i) = w(i) + νi−1(q(i−1) + νi−1p(i−1))

end if
v̂ = p(i) +

∆t

hα
Am+1p(i)

µi = ρi−1/̃rT v̂
q(i) = w(i) − µiv̂
u(i) = u(i−1) + µi(w(i) + q(i))

q̂ = (w(i) + q(i)) +
∆t

hα
Am+1(w(i) + q(i))
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r(i) = r(i−1) − µiq̂
δ = ‖um + ∆tfm+1 − (u(i) +

∆t

hα
Am+1u(i))‖

Check for convergence; continue if necessary
end
um+1 = u(i)

Since the finite difference method has a nonsymmetric coefficient matrix in general, we need to use a
nonsymmetric conjugate gradient method. Here we take the conjugate gradient squared method to solve
the implicit Euler finite difference method Equation (6).

Notice that in the above algorithm, at each time step tm+1, the evaluation of the matrix-vector
multiplication Am+1p(i), Am+1(w(i) + q(i)) and Am+1u(i) costs O(N2) operations, while all others are
already of optimal order computational cost O(N). Further, the storage of the stiffness matrix Am+1

requires O(N2) of memory, while all other operations require only O(N) of memory. Our immediate
goal is to develop a fast conjugate gradient squared method for the efficient solution and storage of the
system Equation (7).

In light of our goal, the rest of this section addresses the following important issues: (i) an efficient
storage of the coefficient matrix Am+1 with memory requirement of O(N) and (ii) how to perform an
efficient matrix-vector multiplication Am+1u with a general vector u in O(N logN) operations.

3.1. An Efficient O(N) Storage of the Stiffness Matrix

To develop a fast solution method with minimal memory requirement, we carefully explore the
structure of the coefficient matrices.

Theorem 1. The total memory requirement for storing the coefficient matrix Am+1 is O(N).

Proof. We conclude from Equation (8) that the stiffness matrix Am+1 can be decomposed as follows

Am+1 = −diag
(
dm+1
+

)
AL − diag

(
dm+1
−
)

AR (9)

Here diag
(
dm+1
+

)
, diag

(
dm+1
−
)
, are diagonal matrices of order N − 1 with their ith entries dm+1

+,i ,
dm+1
−,i , for i = 1, 2, . . . , N − 1. The matrices AL and AR are matrices of order N − 1 and are defined by

AL =



g
(α)
1 g

(α)
0 0 . . . 0 0

g
(α)
2 g

(α)
1 g

(α)
0

. . . . . . 0
... g

(α)
2 g

(α)
1

. . . . . . ...
... . . . . . . . . . . . . 0

g
(α)
N−2

. . . . . . . . . g
(α)
1 g

(α)
0

g
(α)
N−1 g

(α)
N−2 . . . . . . g

(α)
2 g

(α)
1


AR =



g
(α)
1 g

(α)
2 . . . . . . g

(α)
N−2 g

(α)
N−1

g
(α)
0 g

(α)
1 g

(α)
2 . . .

. . . g
(α)
N−2

0 g
(α)
0 g

(α)
1

. . . . . . ...
... . . . . . . . . . . . . ...

0 . . . 0
. . . g

(α)
1 g

(α)
2

0 0 . . . 0 g
(α)
0 g

(α)
1


(10)

Thus, instead of storing the full matrix Am+1 which have (N − 1)2 parameters we need only store
the 3N − 2 parameters, dm+1

+ =
[
dm+1
+,1 , d

m+1
+,2 , . . . , d

m+1
+,N−1

]T , dm+1
− =

[
dm+1
−,1 , d

m+1
−,2 , . . . , d

m+1
−,N−1

]T ,

and g(α) =
[
g
(α)
0 , g

(α)
1 , . . . , g

(α)
N−1
]T . In particular, the fractional binomial coefficient vector g(α) depends
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only on the size of the spatial partition and the order of the anomalous diffusion but is independent of
time or space. So it can be preprocessed and stored in advance.

3.2. Toeplitz and Circulant Matrix

In order to explain the fast algorithm, we define the terms Toeplitz matrix and circulant matrix.
A Toeplitz matrix is a matrix in which each descending diagonal from left to right is constant. Clearly,
both matrices AL and AR are Toeplitz matrices. Also, AR = (AL)T is the transpose of AL.

A circulant matrix is a matrix in which each row vector is rotated one element to the right relative to
the preceding row vector. It is clear that a circulant matrix is a Toeplitz matrix, but the converse is not
true. Note that the Toeplitz matrices AL and AR can be embedded into (2N − 2) × (2N − 2) circulant
matrices C2N−2,L and C2N−2,R as:

C2N−2,L =

[
AL BL

BL AL

]
,C2N−2,R =

[
AR BR

BR AR

]
(11)

where

BL =



0 g
(α)
N−1 . . . . . . g

(α)
3 g

(α)
2

0 0 g
(α)
N−1 . . .

. . . g
(α)
3

0 0 0
. . . . . . ...

... . . . . . . . . . . . . ...

0 . . . 0
. . . 0 g

(α)
N−1

g
(α)
0 0 . . . 0 0 0


(12)

and

BR =



0 0 0 . . . 0 g
(α)
0

g
(α)
N−1 0 0 . . .

. . . 0

g
(α)
N−2 g

(α)
N−1 0

. . . . . . ...
... . . . . . . . . . . . . 0

g
(α)
3 . . . 0

. . . 0 0

g
(α)
2 g

(α)
3 . . . 0 g

(α)
N−1 0


. (13)

Again, note that BR = (BL)T is the transpose of BL.
It is known that a circulant matrix Cn can be decomposed as follows [25,26]

Cn = F−1n diag(Fnc) Fn (14)

where c = [c0, cn−1, cn−2, · · · , c2, c1]T is the first column vector of Cn and Fn is the n×n discrete Fourier
transform matrix in which the (j, l)-entry Fn(j, l) of the matrix Fn is given by

Fn(j, l) =
1√
n

exp
(
−2π i j l

n

)
0 ≤ j, l ≤ n− 1 (15)

where i =
√
−1.
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We make use of the above decomposition property of circulant matrices to efficiently execute all
matrix-vector multiplications Am+1p(i), Am+1(w(i)+q(i)) and Am+1u(i) of the conjugate gradient squared
method above.

3.3. A Fast O(N logN) Matrix-Vector Multiplication Algorithm

We now shift our focus to the efficient operation of the numerical scheme. To efficiently execute the
matrix-vector multiplications Am+1p(i), Am+1(w(i)+q(i)) and Am+1u(i) of the conjugate gradient squared
method, we use the following O(N logN) algorithm, based on the decomposition Equation (9) of the
matrix Am+1, the diagonalization Equation (14) of a circulant matrix and the embedding Equation (11).

Theorem 2. Let Am+1 be the stiffness matrix as Equation (8). Let u be any N dimensional vector.
Then Am+1u can be performed in O(N logN) operations.

Proof. We explain the operation count of O(N logN) by executing the following steps:

1. Introduce two (2N − 2)× (2N − 2) matrices and one 2N − 2 vector

C2N−2,L =

[
AL BL

BL AL

]
,C2N−2,R =

[
AR BR

BR AR

]
, u2N−2 =

[
u

0

]
(16)

Here BL and BR are defined as in Equations (12) and (13) and AL and AR as in Equation (10)
respectively. It is clear that

C2N−2,Lu2N−2 =

[
ALu

BLu

]
, C2N−2,Ru2N−2 =

[
ARu

BRu

]
(17)

Thus, the matrix-vector products ALu and ARu can be obtained as the first half of the matrix-vector
products C2N−2,Lu2N−2 and C2N−2,Ru2N−2, respectively.

2. Evaluate the matrix-vector products w2N−2 = F2N−2u2N−2 in O(N logN) operations.
In fact, F2N−2u2N−2 is the discrete Fourier transform of u2N−2, which can be achieved in
O((2N) log(2N)) = O(N logN) operations via the fast Fourier transform (FFT).

3. Similarly evaluate v2N−2,L = F2N−2c2N−2,L and v2N−2,R = F2N−2c2N−2,R in O(N logN)

operations, where c2N−2,L and c2N−2,R are the first column vectors of C2N−2,L and
C2N−2,R, respectively.

4. Evaluate the Hadamard products z2N−2,L = w2N−2 · v2N−2,L = [w1v1,L, · · · , w2N−2v2N−2,L]T and
z2N−2,R = w2N−2 · v2N−2,R = [w1v1,R, · · · ,w2N−2v2N−2,R]T in O(N) operations.

5. Evaluate y2N−2,L = F−12N−2z2N−2,L and y2N−2,R = F−12N−2z2N−2,R in O(N logN) operations via
inverse FFT. Combining Equations (16) and (17) yields that

y2N−2,L =

[
yL

y′L

]
= C2N−2,Lu2N−2 =

[
ALu

BLu

]

y2N−2,R =

[
yR

y′R

]
= C2N−2,Ru2N−2 =

[
ARu

BRu

] (18)
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6. Evaluate the Hadamard products uL = dm+1
+ · yL and uR = dm+1

− · yR in O(N) operations.
Use Equation (9) to evaluate Am+1u = −uL − uR in O(N) operations.

4. Numerical Experiments

In this section we carry out numerical experiments to study the performance of the fast conjugate
gradient squared finite difference method developed in this paper and to compare its performance with
the finite difference methods with full coefficient matrices which were developed in [15,16].

We consider the fractional diffusion equation Equation (1) with an anomalous diffusion of order
α = 1.8 and the left-sided and right-sided diffusion coefficients

d+(x, t) = 1.32Γ(1.2)x1.8, d−(x, t) = 1.32Γ(1.2)(1− x)1.8 (19)

The spatial domain is [xL, xR] = [0, 1], the time interval is [0, T ] = [0, 1]. The source term and the initial
condition are given by

f(x, t) = −16e1−t
[
x2(1− x2) + 2.64(x2 + (1− x)2)

−13.2
(
x3 + (1− x)3

)
+ 12

(
x4 + (1− x)4

)]
u0(x) = 16ex2(1− x)2

(20)

The true solution to the corresponding fractional diffusion equation Equation (1) is given by [16]

u(x, t) = 16e1−tx2(1− x)2 (21)

In the numerical experiments, we solve the problem by both the fast conjugate squared (iterative)
finite difference method and the regular finite difference method Equation (6) and denote their solutions
by umFIFD and umFD, respectively. Let um be the numerical solution umFIFD or umFD at time step tm and
u(x, tm) be the true solution to problem Equation (1).

In Table 1 we present the errors ‖uMFIFD − u(·, tM)‖L∞ and ‖uMFD − u(·, tM)‖L∞ for different spatial
mesh sizes and time steps. These results are very encouraging and show that fast conjugate gradient
squared finite difference method developed in this paper generates numerical solutions with same
accuracy as the regular finite difference method, despite the fact that the former has significantly reduced
the storage and computational cost of the latter from O(N2) and O(N3) to O(N) and O(N logN),
respectively. We also present a representative plot with N = M = 128 in Figure 1, which shows that the
fast conjugate gradient squared finite difference solution and the regular finite difference solution both
sit on the curve of the true solution without stark differences.

The numerical experiment carried out in this section shows the significant reduction in computational
time which coincides with the theoretical analysis. For example, withN = 1024 nodes the fast conjugate
gradient finite difference scheme developed in this paper has about 280 times of CPU reduction than the
standard finite difference scheme solved with Gaussian elimination. This is on top of the significant
reduction in storage. This demonstrates the strong potential of the method.
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Table 1. Comparison of the fast iterative finite difference (FIFD) method with the regular
finite difference (FD) method in the simulation of the fractional diffusion problem with a
known analytical solution.

N = M ERROR ‖ · ‖L∞ CPU (Seconds)

FD

26 1.38160× 10−2 7.41

27 6.46640× 10−3 5.79× 10

28 3.07995× 10−3 4.38× 102

29 1.41210× 10−3 3.52× 103

210 6.60815× 10−4 2.27× 104

FIFD

26 4.91910× 10−3 .04

27 2.46266× 10−3 1.30

28 1.23210× 10−3 5.12

29 6.16248× 10−4 20.14

210 3.08172× 10−4 80.89

Figure 1. The true solution u (marked by “—”), the fast iterative finite difference solution
uFIFD (marked by “∗”), in §4 at time T = 1 with h = 1

128
and ∆t = 1

128
.

5. Concluding Remarks and Future Work

This paper develops a fast solution method for the implicit finite difference scheme Equation (6) for
the one-dimensional space-fractional diffusion equation developed by Meerschaert and Tadjeran in [15,16].
The fast method consists of carefully analyzing the structure of the coefficient matrix resulting from the
finite difference method, delicately decomposing the coefficient matrix into a combination of sparse and
structured dense matrices and applying an iterative scheme, in this case the conjugate gradient squared
method. Over the past decade many numerical methods have been developed for space-fractional
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diffusion equations, however all of them present major computational obstacles in realistic numerical
simulation because of the significant computational cost and memory requirement. The fast conjugate
gradient squared method developed in this paper keeps the same accuracy as the finite difference
method [15,16] with Guassian elimination but has a memory requirement of only O(N) per time step
and a computational work of O(N logN) per iteration.

Numerical computations were carried out using MATLAB. Furthermore, in order to use the fast
conjugate gradient squared finite difference method, users need only rewrite a module to replace the
matrix-vector multiplication module in traditional conjugate gradient method software. And this fast
matrix-vector multiplication is based on FFT, which is readily available in MATLAB. Thus, the fast
method virtually does not require any additional coding work to implement.

The idea of fast solution developed in this paper can be applied to other numerical methods. A fast
solution method for a second-order Crank-Nicolson finite difference method was developed in [27] for
space-fractional diffusion equations in one dimension.

The reader should also note that a large diffusion coefficient could potentially lead to a large
condition number of the coefficient matrix. This would in turn increase the number of iterations in the
conjugate gradient squared method. Circulant preconditioners [28,29] and multigrid methods [30] have
been developed for some model problems which have shown significant improvements, under special
conditions. The trade-off in forming and applying a preconditioner also needs to be examined. This can
be an avenue for further research for this class of problems.
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