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Abstract: In this paper, we demonstrate that anti-synchronization (AS) phenomena of 

chaotic systems with different dimensions can coexist in the finite-time with under the 

effect of both unknown model uncertainty and external disturbance. Based on the  

finite-time stability theory and using the master-slave system AS scheme, a generalized 

approach for the finite-time AS is proposed that guarantee the global stability of the 

closed-loop for reduced order and increased order AS in the finite time. Numerical 

simulation results further verify the robustness and effectiveness of the proposed  

finite-time reduced order and increased order AS schemes. 

Keywords: anti-synchronization; finite-time stability theory; chaotic Lu system; 

hyperchaotic Li system 

 

1. Introduction 

In the last two decades, synchronization and anti-synchronization (AS) of chaotic systems have 

attracted considerable attention due to the potential applications in different scientific areas, such as 

secure communications [1], image encryption [2], laser technology [3], physical systems [4], and 
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artificial neural networks [5]. As a result, a wide range of synchronization and AS control techniques 

and methods have been proposed. These include sliding mode control [6], active control [7], non-linear 

control [8], periodically intermittent control [9], adaptive control [10], H-∞ synchronization [11], 

projective synchronization [12], and generalized synchronization [13], etc. Anti-synchronization (AS) 

is a special form of generalized synchronization. AS is a mechanism in which the state vectors of the  

two synchronized chaotic systems have the same amplitude but opposite signs. That is, the sum of  

two signals converges to zero when the AS phenomenon appears. AS has successful applications in 

different scientific disciplines [14,15]. It has been experimentally, as well as numerically confirmed, 

that the two coupled chaotic systems can achieve AS [16,17]. The AS phenomenon in non-equilibrium 

systems suggests that it can be used as a technique for particle separation in a mixture of interacting 

particles [17]. A current study of using AS control of lasers, one can generate not only drop-outs in 

intensity but also short high-intensity pulses, and this results in pulses of particular shapes [18]. 

In recent years, anti-synchronization of chaotic systems with different dimensions has been reported 

in the literature [19–21]. Two types of AS have been discussed, namely reduced order AS [20] and 

increased order AS [21]. Mossa and Noorani [20] presented the idea of reduced order AS of chaotic 

systems with uncertain parameters. Using the adaptive control strategy based on the Lyapunov stability 

theory [22], the same authors [21] studied the increased order AS of uncertain hyperchaotic Lu and 

chaotic Lu systems. 

However, the finding of these results [20,21] are limited to the asymptotic stability of the resulting 

AS behavior. This means that the corresponding state trajectories of the two coupled chaotic systems 

are anti-synchronized in an infinite settling time. In addition, the proposed reduced (increased) order 

AS of chaotic systems has been achieved without considering the effect of both model uncertainties 

and external disturbances. These results [20,21] would have been more interesting if it had included 

the finite-time AS behavior rather than merely asymptotic stability under the effect of both model 

uncertainties and external disturbances. 

In real applications, it has been reported [22] that the finite-time AS stability is important to chaotic 

systems as the systems are required for AS quickly as possible. In case of chaotic systems with 

different dimensions, both systems have different topological properties and the traces changes in their 

respective trajectories with time are different. These properties of chaotic systems with different 

dimensions increase security in the communication channel and, therefore, require an effective 

approach to anti-synchronize chaotic systems with different dimensions in a finite-time. 

Motivated by the aforesaid discussion, the purpose of this article is to make an innovative contribution 

in this direction. In this article, the authors study finite-time reduced (increased)-order AS behavior 

between two chaotic systems under the effect of both unknown model uncertainties and external 

disturbances. Using the master-slave system AS scheme, a generalized feedback control scheme will 

be proposed that would guarantee finite-time reduced (increased) order AS globally. Two illustrative 

examples are given to verify the robustness and performance of the proposed finite-time AS approach: 

finite-time reduced order AS between the hyperchaotic Li [23] and the chaotic Lu [24] systems and 

finite-time increased order AS between the chaotic Lu and the hyperchaotic Li systems. To the best of 

the authors’ knowledge, no attempt has been made for the robust finite-time AS scheme for chaotic 

systems with different dimensions and this has remained an open problem. 
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The remainder of the paper is organized as follows: Section 2 presents a brief descriptions of the 

hyperchaotic Li and the chaotic Lu systems. In Section 3, the problem of finite-time reduced-order AS 

between the hyperchaotic Li and the chaotic Lu systems is solved. Accordingly, Section 4 is devoted to 

solve the finite-time increased-order AS problem between the chaotic Lu and the hyperchaotic Li 

systems. The paper concludes in Section 5. 

2. Systems Descriptions 

2.1. Hyperchaotic Li System 

The vector form of the hyperchaotic Li system [23] which is described as follows: 

 
 
 
 

 
 
 
 

   
   

0 0 0

0 0 1

0 0 1

1 0 0 0

x t x ta a

y t y tb x t z t

c x t y tz t z t

dw t w t

                                         








 (1)

where,         4,  ,  ,  
T

x t y t z t w t R    are the state variables and 0,  0,  0,  0,a b c d     are the 

corresponding parameters of the system (1). The hyperchaotic Li system (1) exhibits a chaotic attractor 
for the parameters values: 10,  35,  1.4  and  5a b c d     as shown in the following Figure 1. 

 

Figure 1. (a) 3D projection of the hyperchaotic Li system, and (b) time series of the state 

trajectories of the hyperchaotic Li system. 

2.2. Chaotic Lu System 

The vector form of the chaotic Lu system [24] which is described as follows: 

 
 
 

 
 
 

   
   

0 0

0 0

0 0

x t x t

y t y t x t z t

z t x t y tz t

        
               
            






 (2)
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where,       3x t , y t , z t R    are the state variables and 0,  0,  0 and      0         are the 

corresponding parameters of the system Equation (2). The chaotic Lu system exhibits a chaotic 
attractor with the parameter values: 36,  3,  20       as shown in the following Figure 2. 

 

Figure 2. (a) 3D projection of the chaotic Lu attractor, and (b) time series of the state 

trajectories for the chaotic Lu system. 

3. Finite-Time Reduced Order Anti-Synchronization Scheme 

3.1. Some Basic Preliminaries and Lemmas 

Lemma 1 [25]. For any R  and ,  X Y R , the following inequality holds true: 

2 1 22 X Y X Y    

Proof of Lemma 1. Consider the following inequality: 

2 ,    0,  0A G A G A GM M M M M M      (3)

Which holds true for  and A GM M  being the arithmetic and geometric means respectively.  

Now substituting 2 1 2 and A GM X M Y     to the above inequality Equation (3) that yields the 

following form: 

2 2 2 1 22 2X Y X Y X Y     

Lemma 2. If  0,  1  and  ,  0p a b  , then, the following inequality holds true: 

  p p pa b a b    (4)

Proof of Lemma 2. Let us assumed the following function defined as: 

   1 1 ,   for  0
p pf t t t t      (5)

then, 

    1 11 0
p pf t p t pt
      , for all  0,  t   (6)
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Since  0 0f  , it follows that    0 on 0,  f t   . 

If ,  0,a b   then, substituting 
a

t
b

  in Equation (6) that yields: 

1 1 0
p p

a a

b b
         
   

 

 1 0
p p

a b a

b b

        
   

 

     0
p p pa b a b     

   p p pa b a b    

Lemma 3 [26]. Assume that there exists a continuous positive definite function   : n nV t R R  

such that  V t  is radially unbounded and satisfies the following differential inequality: 

      0 0,    0,  V t V t V t t t


      (7)

where 0   and 0 1    are two constant numbers. Then, for any  0 ,  t V t  satisfies the  

following inequality: 

      1 1

0 0 0 11 ,    V t V t t t t t T
        (8)

and 

  10,    V t t T    

Then, the origin is globally stable in the finite-time 1T . The settling time 1T  is given as follows: 

   11 0 0

1

1
T t V t

 
 

 (9)

3.2. Problem Statement 

To achieve finite-time reduced-order AS between the hyperchaotic Li and chaotic Lu systems, it is 

assumed that the projection part of the hyperchaotic Li system is considered as the master system and 

is described as follows: 

 
         
            
            

1 1 1 1 1

1 1 1 1 1 2 1

1 1 1 1 1 3 1

Master system

x t a y t x t D x t

y t bx t w t x t z t D y t

z t cz t w t x t y t D z t




   


    
     







 (10)

where         4
1 1 1 1,  ,  ,  

T
x t y t z t w t R    are the state variables, ,  ,   and a b c d  are the corresponding 

control parameters of the master system Equation (10), respectively.  1,  2,  3iD i   are the unknown 
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model uncertainties and external disturbances present in the master system. Likewise, the Lu chaotic 

system is considered as the slave system and is described as follows: 

 
           
            
            

2 2 2 1 2 1

2 2 2 2 2 2 2

2 2 2 2 3 2 3

Slave system

x t y t x t d x t u t

y t y t x t z t d y t u t

z t z t x t y t d z t u t




     


     
     







 (11)

where       3
2 2 2,  ,  

T
x t y t z t R    are the state variables, ,  ,       are the corresponding control 

parameters of the slave system respectively.  1,  2,  3id i   are the unknown model uncertainties and 

external disturbances present in the slave system, and   3t Ru  is the control input that is yet to be deigned. 

Let         3,?   t X t Y t t R  e e  be the AS error vector. Then, the time varying AS error system 

of the master (10) and slave (11) systems is described as below: 

                     
                      

    
                         

2 1 1 1 1 2 1 1 1

1 2 1 1 2 3 2 1 1 2 2

2 1

3 3

1

2

2

1 1 2 2 1 1 3 2 3 1 3

           

e t

e t

u

e t e t a y t x t d x t D x t u t

be t e t z t e t x t e t bx t y t w t d y t

D y t

e e t y t e

t

t ut x t e t c z t w t d z t D tz t

      


          


 




 



         







(12)

Under these circumstances, it is desired to design a feedback controller that synthesis a smooth 
control input  tu . This control inputs accomplishes the reduced order AS within finite-time 

  1 1 0 0T T e . 

The reduced order AS objectives are summarized as follows: 

Objective 1. The reduced order AS scheme accomplishes if: 

               

       
1 1 1 1

1 1

1 1 2 2 1 2

3 1 2

lim lim 0 ,  lim lim 0 ,  

lim lim 0

t T t T t T t T

t T t T

e t x t x t e t y t y t

e t z t z t

   

 

                   

        
 

Objective 2. The reduced order AS error dynamical system (12) are globally stable in the finite-time 

1T  given by Equation (16). 

Assumption 1. Since chaotic trajectories are always bounded, there exist a positive constant U  

such that [25]: 

,  ,  ,    1,  2x i y i z i w iU x U y U z U w i      

Assumption 2. It is assumed that the unknown model uncertainties and external disturbances are 

Norm-bounded [27]. That is: 

           
        

1 1 1 2 1 2 3 1 3 4 1 4

1 2 1 2 2 2 3 2 3

,  ,  ,  ,

,  ,  

D x t D y t D z t D w t

d x t d y t d z t

       

     
 (13)

Accordingly, it is concluded that:  
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                 1 2 1 1 1 2 2 2 1 2 3 2 3 1 3,  ,  d x t D x t d y t D y t d z t D z t          (14)

where ,   and i i i    are unknown positive constants. 

3.3. Controller Design 

Theorem 1. For the arbitrary initial conditions, 

              4 3
1 1 1 1 2 2 20 ,  0 ,  0 ,  0 0 ,  0 ,   0x y z w R x y z R   ; of the master and slave systems 

respectively, the error system Equation (12) will converge to zero globally under the control law  
given by: 

            
           
           

1 1 1 1 1 1 1

2 2 1 1 2 2 2 2

3 1 1 3 3 3 3

u t a x t y t l e t e t

u t bx t y t w t l e t e t

u t c z t w t l e t e t







     
       
      

 (15)

in the finite-time 1T  determined by the following: 

            
1

1
2 2 2

1 1 2 3 1

1 1
2 0 0 0 ,    0,   

1 2
T e e e t t T


  

        
e  (16)

Then, objectives one and two are accomplished. 

Proof of Theorem 1. Construct a Lyapunov function candidate as follows: 

      
3

1

1
0

2
T
i iV t e t e t

   
 
e  (17)

where   V te  is a positive definite function. Now calculate the time derivatives of   V te  along the 

trajectories of the error system Equation (12) that yields: 

  

 
           
       

 
           
             

 
             
         

2 1 1 1

1

1 2 1 1 1

1 2 1 1 2 3

2

2 1 1 2 1 2 1

3 1 1 2 2 1

3

1 3 1 33 1

2

e t e t a y t x t
e t

d x t D x t u t

be t e t z t e t x t e t
V e t e t

bx t y t w t d y t D y t

e t y t e t x t e t c z t
e t

w t d z t D z t

u t

u t

     
   
      
      
   

         
      
  
       

  (18)

Now introducing the control inputs,   ,  1,  2,  3,iu t i   Equation (15) to the right hand side of 

Equation (18) yields: 
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2 1 1 1 1 2 1 1

1

1 1 1 1 1 1

1 2 1 1 2 3 2 1 1

2

2 2 2 1 2 1 1 2 2 2 2

3 1 1 2 2 1 1

3

3 2

e t e t a y t x t d x t D x t
e t

a x t y t l e t e t

be t e t z t e t x t e t bx t y t w t
V e t e t

d y t D y t bx t y t w t l e t e t

e t y t e t x t e t w t c z t
e t

d z





      
  
       

        
  
          
      





               3 1 1 1 3 3 3 3t D z t w t c z t l e t e t

 
 
 
 
 
 
 
 
  
  
          

  

    
           

              

2 2 2
1 1 2 2 3 3

3
1

1 1 2 1 1 3
1

i

l e t l e t l e t

V e t
b z t e t e t y t e t e t e t

       
        






   

    
           

             

2 2 2
1 1 2 2 3 3

3
1

1 2 1 3
1

z y i

l e t l e t l e t

V e t
b U e t e t U t e t e t e t

       
        



 


  

(19)

Using Lemma 1, Equation (19) yields: 

  

   

   

   

2 1 2
21

1

21
1 2

2 2

2 3
1 2 1

2
1

3 3
1

2 2

2

2

yz

z

y
i

Ub U
l

b U
V e t l e

U
l e t

e t

t

e t







   
   

 
 
    

      
 
 

 
 
 
 
 
 
 
 
 
 
  

 
    
 



  (20)

where 1 2 and    are two positive constants. Let us choose 1 2 3,   and l l l  as follows:  

   2 21 2 21
2 21 1

1 2 3,   and  
2 2 2 2

y yz zU Ub U b U
l l l

         
         
 
 

 (21)

Using Equation (21), then, Equation (20) becomes as follows: 

          1 1 1
1 2 3V e t e t e t e t        

          
1 1 1

1
2 2 2

2 2 22
1 2 3

1 1 1
2

2 2 2
V e t e t e t e t

  
  

                    
 

  
(22)

Using Lemma 2 to the above Equation (22), we obtain the following inequality: 

         
1

1
2

2 2 22
1 2 3

1
2

2
V e t e t e t e t


      

 
   

        
11

222 0V e t V e t


    

(23)
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Thus, according to Lemma 3, the AS error system Equation (12) will converge to zero in the finite-time 

1T . Accordingly, the slave chaotic Lu system will synchronize globally with the projection part of the 

hyperchaotic Li system in the finite-time 1T . 

3.4. Simulation and Results 

In this sub-section of the article, numerical simulation results using Mathematica 10v (Nizwa, 

Oman) are provided to verify the robustness and effectiveness of the proposed finite-time reduced 

order AS approach. Parameters of the hyperchaotic Li Equation (1) and the chaotic Lu Equation (2) 
systems which are set as: 10,  35,  1.4, 5 and 36,  3,  20a b c d          , respectively. The 

initial states of the master and slave systems being taken as: 

         1 1 1 10 ,  0 ,  0 ,  0 1, 2, 3, 4
T T

x y z w     and        2 2 20 ,  0 ,   0 2,  1,  1
T T

x y z      

respectively. According to the Theorem 1, the linear controller gains 1 2 3,   and l l l  are chosen as 

1 2 330,  =35 and 25l l l   and the constant number   being taken as 
7

10
  . In numerical simulation, 

the following unknown model uncertainties and external disturbances are applied to the master 

Equation (10) and slave Equation (11) systems respectively: 

               
               
               

1 1 1 1 2 2

2 1 1 2 2 2

3 1 1 3 2 2

0.3cos 5 0.2sin 6 ,       0.25cos 5 0.3cos 3

0.25sin 3 0.15cos 5 ,   0.2sin 4 0.15sin 5

0.35sin 4 0.3sin 7 ,      0.3sin 5 0.2cos 4

D x t x t t d x t x t t

D y t y t t d y t y t t

D z t z t t d z t z t t

    

    

    

 

As a result, one can obtain 1 2 30.55,  0.4 and  0.6      . The corresponding numerical results 

are as follows. 

Figure 3, depicts the time series of the convergence of the reduce order AS error signals to the zero 

state. As expected, one can observe that the AS error signals converged to the zero state quickly, which 

demonstrates the robustness and performance of the control action Equation (15) for the  
finite-time reduced-order AS scheme. Figure 4, illustrates the time series of the finite-time 1T   

Equation (16). From the main Theorem 1, it can be checked that slave system Equation (11) is  

anti-synchronized with the projection part of the master system Equation (10) in the finite-time, when 

the control inputs are activated at 0.3t s . Time series of the control inputs are depicted in Figures 5–7. 

 

Figure 3. Times series of the AS error signals. 
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Figure 4. Time series of the estimated finite-time 1T . 

 

Figure 5. Times series of the control input  1u t . 

 

Figure 6. Time series of the control input  2u t . 
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Figure 7. Times series of the control input  3u t . 

4. Finite-Time Increased Order Anti-Synchronization Scheme 

4.1. Problem Statement 

To achieve the finite-time increased order AS, the chaotic Lu system is considered as the master 

system and the hyperchaotic Li system as the slave system. Let us consider the following master-slave 

system increased order AS scheme between the chaotic Lu and the hyperchaotic Li systems as: 

 
         
          
          

 
           
              
              
          

1 1 1 1 1

1 1 1 1 2 1

1 1 1 1 3 1

2 2 2 1 2 1

2 2 2 2 2 2 2 2

2 2 2 2 2 3 2 3

2 2 2 4 2 4

Master system

Slave system

x t y t x t d x t

y t y t x t z t d y t

z t z t x t y t d z t

x t a y t x t D x t u t

y t bx t w t x t z t D y t u t

z t cz t w t x t y t D z t u t

w t dx t y t D w t u t




    

   

   



   

    

     

   






























 (24)

where              3 4
1 1 1 2 2 2 2,  ,   and ,  ,  ,  

T T
x t y t z t R x t y t z t w t R         are the state variables, 

,  ,      and ,  ,  ,? a b c d  are the control parameters of the master and slave systems alternatively. 

 1,  2,  3jd j   and   1,  2,  3,  4iD i   are the unknown model uncertainties and external disturbances 

present in the master and slave systems respectively and   4t Ru is the control input. The error 

system for the increased order AS scheme Equation (24) is described as follows:  
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2 1 1 1 1 2 1 1 1

2 1 1 2 3 2 2 2 2 2

2 1

3 3 1 1 2 2 2 2 3 2 3 1

4 1 1

1

2

2

3

2 4 2 4

           

e t e t a y t x t D x t d x t u t

e t z t e t x t e t bx t y t w t D y t

d y t

e e t y t e t x t e t c z t w t D z t

e t

e t

u t

t u t

t

d z t

e de t dx t y t D w t u t

 







      


        
  


         


    









(25)

Under these conditions, it is desired to design a controller that synthesis a smooth control input 

 tu . This control inputs accomplishes the increased order AS within finite-time   2 2 0 0T T e . 

The increased order AS objectives are summarized as follows: 

Objective 3. The increased order AS scheme is accomplished if: 

               

               
2 2 2 2

2 2 2 2

1 1 2 2 1 2

3 1 2 4 1 2

lim lim 0 ,  lim lim 0 ,  

lim lim 0 ,  lim lim 0

t T t T t T t T

t T t T t T t T

e t x t x t e t y t y t

e t z t z t e t w t w t

   

   

                   

                   
 

Objective 4. The AS error dynamical system Equation (24) is globally stable in the finite time 2T  

given by Equation (27). 

4.2. Controller Design 

Theorem 2. For the arbitrary initial conditions: 

              3 4
1 1 1 2 2 2 20 ,  0 ,  0 0 ,  0 ,   0 ,  0x y z R x y z w R   ; of the master and slave systems 

respectively, the error system Equation (25) will converge to zero globally under the control law given by: 

            
           
           
         

1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 2 2 3 3 3 3

4 1 2 4 4 4 4  

u t a x t y t l e t e t

u t bx t y t w t l e t e t

u t c z t w t l e t e t

u t dx t y t l e t e t









     


        


      
     

 (26)

in the finite-time 2T , determined by:  

              
1

1
2 2 2 2

2 1 2 3 4 2

1 1
2 0 0 0 0 , 0,   

1 2
T e e e e t t T







  

          
e  (27)

Then, the objectives 3 and 4 are accomplished. 

Proof of Theorem 2. Construct a Lyapunov function candidate as follows: 

      
4

1

1
0

2
T
i iV t e t e t

   
 
e  (28)

Now calculate the time derivatives of   V te  along the trajectories of the error system Equation (25) 

that yields: 
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1 2 1 1 1 1 1 1 1 1

2 1 1 2 3 2 2

2

2 2 1 2 2

3 1 1 2 2 2 2

3

3 1 3 2

4 1 1 2 4 2 4

2

3

e t e t e t a y t x t d x t D x t u t

e t z t e t x t e t bx t y t
e t

w t d y t D y t
V e t

e t y t e t x t e t c z t w t
e t

d z t D z t

e t de t dx t y t D w

u t

t u

u

t

t

         
       
  

     
      

  
    



      







 
 
 
 
 
 
 
 



 (29)

Now introducing the control inputs   ,  1,  2,  3,  4,iu t i   Equation (26) to the right hand side of 

Equation (29) that yields: 

   

 
                 

          

 
               

             
   

 
               

2 1 1 1 1 2 1 1

1

1 1 1 1 1 1

2 1 1 2 3 2 2 2

2 2 2 2 1 2 2 2 2 2

2 2 2

3 1 1 2 2 2 2

3

e t e t a y t x t d x t D x t
e t

a x t y t l e t e t

e t z t e t x t e t bx t y t w t

e t d y t D y t w t bx t y t w t
V e t

l e t e t

e t y t e t x t e t c z t w t
e t

d





      
 
       
       
 

          
 

  
     









               

                  
3 2 3 1 2 2 3 3 3 3

4 1 1 2 4 2 1 2 4 4 4 4

z t D z t c z t w t l e t e t

e t de t dx t y t d w t dx t y t l e t e t





 
 
 
 
 
 
 
 
 
 
  
  
          
          


 

 

   
             

                  

2 2 2 2
1 2 31 2 3 4 4

4
1

1 1 2 1 1 3 1 4
1

i

e t e t l e t l e t

V e t
z t e t e t y t e t e t de t e t e t

l l



      
      

 


 

 
   

   
             

               

2 2 2 2
1 2 3 3 4 4

4
1

1

1

2 1

2

3 1 4
1

z y i

e t e t l e t l e t

V e t
U e t e t U e t e t d e t e t

l

e

l

t

      

 


       
 


  

(30)

Using Lemma 1, then, Equation (30) yields as follows: 

  

       

   

2 22 2 22
21 2 2

2

2 2 4
1 2 2 1

3

2
1

4

1 2

3 4
1

2 2 2 2

2 2

yz z

y
i

UU Ud
e

V e t

l

U d
l e t l

t

e e t

e l t
 



    
       

   
    
 

    
   

 
 

 
 
 
 
 

      
  



  (31)

where 1 2 and    are two positive constants. Let us choose 1 2 3 4,  ,   and l l l l  such that:  
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Using Equation (32), then, Equation (31)   

           1 1 1 1
1 2 3 4V e t e t e t e t e t          

           
1 1 1 1

1
2 2 2 2

2 2 2 22
1 2 3 4

1 1 1 1
2

2 2 2 2
V e t e t e t e t e t

   
  

                           
 

  
(33)

Using Lemma 2, Equation (33) yields: 

            
1

1
2

2 2 2 22
1 2 3 4

1
2

2
V e t e t e t e t e t


       

 
  (34)

Using Lemma 3, yields the following inequality: 

      
11

222 0V e t V e t


    (35)

Hence, the closed-loop system Equation (25) is globally stable in the finite-time 2T . This completes 

the proof. 

4.3. Simulation and Results 

The parameters and initial conditions for the hyperchaotic Li and chaotic Lu systems are selected in 
the same way as in Sub-Section 3.3. The linear controller gains 1 2 3,   and l l l  are chosen as 

1 2 3 435,  =30,  =20  and 17l l l l   and the constant number   being taken as 
7

10
  . In simulation,  

the following model uncertainties and external disturbances are applied to the master and slave  

systems respectively. 

               
               
               

1 1 1 1 2 2

2 1 1 2 2 2

3 1 1 3 2 2

0.35sin 7 0.25cos 10 ,      0.2sin 5 0.25sin 3

0.2cos 5 0.15sin 5 ,         0.25sin 3 0.15cos 5

0.3sin 4 0.25cos 5 ,          3cos 4 0.2sin 5

                

d x t x t t D x t x t t

d y t y t t D y t y t t

d z t z t t D z t z t t

    

    

    

       4 1 2                                                            0.2sin 2 0.25sin 3D w t w t t 

 

As a result, one can see that 1 2 3 40.5,  0.4,  0.6 and 0.45        . The corresponding numerical 

results are as follows: 

Time series of the increased order AS error signals is depicted in Figure 8. As expected, one can 

observe that the AS error signals converged to zero state quickly with small amplitude of the oscillations. 
Figure 9, shows the time series of the finite-time 2T  Equation (27). From the main Theorem 2, it 

can be checked that the slave hyperchaotic Li system is anti-synchronized with the master chaotic Lu 

system under the control action Equation (26) in the finite-time, when the control inputs are activated 

at 0.3 t s . Times series of the control inputs are depicted in Figures 10–13. 
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Figure 8. Times series of the AS error signals. 

 

Figure 9. Time series of the estimated finite time 2T . 

 

Figure 10. Times series of the control input  1u t . 
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Figure 11. Times series of the control input  2u t . 

 

Figure 12. Times series of the control input  3u t . 

 

Figure 13. Times series of the control input  4u t . 



Mathematics 2015, 3 1238 

 

 

5. Conclusions 

In this article, it has been established that the finite-time reduced order and increased order AS of 

chaotic systems can be accomplished. Sufficient conditions for the controller parameter design are 

derived. The closed-loop systems are then simulated and the anti-synchronization behavior is analyzed. 

The simulation results fully verify the analytical findings. The obtained results show that the proposed 

finite-time reduced order and increased order AS schemes are comparable with the published notable 

results in terms of AS speed and quality under the effect of both unknown model uncertainties and 

external disturbances. It has been confirmed that the reduced order and increased order AS error 

signals converged to the equilibrium point in the finite time with smaller amplitude of the oscillations. 

In practical applications, it is difficult to exactly fix the values of the systems parameters in 

advance, which is a limitation of the proposed finite-time AS approach and will be addressed in our 

next research article or elsewhere. 
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