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Abstract: The modified differential transform method (MDTM), Laplace transform and Padé
approximants are used to investigate a semi-analytic form of solutions of nonlinear oscillators
in a large time domain. Forced Duffing and forced van der Pol oscillators under damping effect
are studied to investigate semi-analytic forms of solutions. Moreover, solutions of the suggested
nonlinear oscillators are obtained using the fourth-order Runge-Kutta numerical solution method. A
comparison of the result by the numerical Runge-Kutta fourth-order accuracy method is compared
with the result by the MDTM and plotted in a long time domain.

Keywords: forced duffing oscillator; forced van der Pol Oscillator; Padé approximant;
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1. Introduction

Our concern in this work is to give semi-analytic solutions of excited Duffing and excited van der
Pol oscillators under damping effect which are given in the forms

Duffing equation
d2x
dt2 + η

dx
dt

+ ω2x + αx3 = A sin(Ω t) (1a)

van der Pol equation
d2x
dt2 − ε(1− x2)

dx
dt

+ ω2x = A sin(Ω t) (1b)

where x is the position coordinate which is a function of the time t, ω is the system’s natural frequency,
η is a scalar parameter indicating the damping factor in Duffing equation, ε the nonlinearity and
strength of the damping in van der Pol equation, respectively. α is a nonlinear parameter factor, A and
Ω are the forcing amplitude and frequency, respectively.

Those two considered nonlinear oscillators have received remarkable attention in recent decades
due to the variety of their engineering applications. For example, Duffing Equation (1a) used in
studying the magneto-elastic mechanical systems [1], nonlinear vibrations of beams and plates [2,3]
and vibrations induced by fluid flow [4] which are modeled by the nonlinear Duffing equation.

On the other hand, during the first half of the twentieth century, Balthazar van der Pol pioneered
the fields of radio and telecommunications [5–10]. In an era when these areas were much less advanced
than they are today, vacuum tubes were used to control the flow of electricity of transmitters and
receivers. Simultaneously with Lorenz, Thompson, and Appleton, van der Pol experimented with
oscillations in a vacuum tube triode circuit and concluded that all initial conditions converged to the
same orbit of a finite amplitude. Since this behavior is different from the behavior of solutions of linear
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equations, van der Pol proposed a nonlinear differential Equation (1b) without excitation force, i.e.,
A = 0, commonly referred to as the (unforced) van der Pol equation [8], as a model for the behavior
observed in the experiment. In studying the case η << 1, van der Pol discovered the importance of
what has become known as relaxation oscillations [8].

The most common methods for constructing approximate analytical solutions to the nonlinear
oscillator’s equations are the perturbation methods [11]. These methods include the harmonic
balance method, the elliptic Lindstedt-Poincaré method [11–13]. The Krylov Bogoliubov Mitropolsky
method [14,15], the averaging [11–16] and multiple scales method [12] are widely used to obtain
approximate solutions of nonlinear oscillators. A general common factor to all of these methods is that
they solve weakly the nonlinear systems by using perturbation techniques to reduce the system into
simpler equations which transform the physical problem into a purely mathematical one, for which a
solution is readily available.

This work is the derivation to obtain approximate analytical oscillatory solutions for the nonlinear
oscillator Equations (1a) and (1b) with initial conditions x(0) = a and ẋ(0) = b using the modified
differential transform method. This is a powerful method for solving linear and nonlinear differential
equations. This method was at first used as differential transform method in the engineering domain
by Zhou [17] and in fluid flow problems [18–25]. The differential transform solution diverges by using
finite number of terms. To solve this problem the modified differential transform method [26–30] was
developed by combining the differential transform method (DTM) with the Laplace transform and
Padé approximant [31] which can successfully predict the solution of differential equations with finite
numbers of terms [32,33].

2. Differential Transform Method

A brief explanation of the differential transform method (DTM) is given in [27–31]; for an analytic
function x(t) in domain G, which can be represented by a power series around any arbitrary point in
this domain. The differential transform of x(t) is defined as follows:

X(k) =
1
k!

[
dkx(t)

dtk

]
t=0

(2)

In Equation (2), x(t) is the original function and X(k) is the transformed corresponding function. The
inverse transform of X(k) is defined as

x(t) =
∞

∑
k=0

X(k)tk (3)

Combining equations (2) and (3), we obtain the following equation

x(t) =
∞

∑
k=0

tk

k!

[
dkx(t)

dtk

]
t=0

(4)

In applications, x(t) takes finite number of terms and Equation (4) can be written as

x(t) =
N

∑
k=0

tk

k!

[
dkx(t)

dtk

]
t=0

(5)

Some basic transformation rules of the differential transform method which are used in this work
are tabulated in Table 1.



Mathematics 2016, 4, 11 3 of 12

Table 1. The fundamental operations of the differential transform method (DTM).

Original Function Transformed Function

αu(t)± βv(t) αU(k)± βV(t)

u(t) v(t) ∑k
t=0 U(l)V(k− l)

u(t) v(t)w(t) ∑k
s=0 ∑k−s

m=0 U(s)V(m)W(k− s−m)

dmu(t)
dtm

(k + m)!
k!

U(k + m)

exp(t)
1
k!

sin(ωt + α)
ωk

k!
sin(kπ/2 + α)

cos(ωt + α)
ωk

k!
cos(kπ/2 + α)

Now, we will apply the MDTM to obtain semi-analytic solutions for forced nonlinear Duffing and
van der Pol differential equations under damping effect.

3. Forced Duffing Oscillator under Damping Effect

Consider a nonlinear differential Equation (1a) which describes the forced Duffing oscillator with
damping effect and initial conditions x(0) = a and ẋ(0) = b. The differential transform of this equation
gives the recurrence relation

(k + 2)(k + 1)X(k + 2) + ω2X(k) + η(k + 1)X(k + 1)

+α
k

∑
n=0

n

∑
m=0

X(m)X(n−m)X(k− n)− A Ωk

k!
sin kπ/2 = 0 (6)

X(0) = a, X(1) = b (7)

The recursive equations deduced from Equations (6) and (7) for different values of k is obtained
as follows:

k = 0 : 2X(2) + η b + α a3 + ω2a = 0 (8)

k = 1 : 6X(3) + 2 η X(2) + (ω2 + 3 α a2) b− A Ω = 0 (9)

k = 2 : 12X(4) + ω2X(2) + 3 η X(3) + 3 α a(b2 + aX(2)) = 0 (10)

and so on.
The recursive relation in Equations (8)–(10) can be solved successively and then by taking the

inverse differential transform x(t) is obtained.

3.1. Example 1: Free Duffing Oscillator under Damping Effect

Let
a = 1.0, b = 0.0, ω = 1, η = 0.05, α = 0.15, A = 0 (11)

The analytic expansion x(t) of Equation (1a) for the given values in (11) is given as follows:

x(t) = 1.0− 0.575 t2 + 0.00958333 t3 + 0.0693594 t4

−0.00138839 t5 − 0.00830017 t6

+0.0002253 t7 + 0.00136295 t8 + · · · (12)
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Figure 1 shows the comparison between the results obtained using the DTM, Equation (12), and
the numerical results obtained by Runge-Kutta fourth-order accuracy method. It is clear that the results
using the DTM have a reasonable agreement with the results obtained using only the fourth-order
Runge-Kutta numerical method in a small range of the solution domain.

Figure 1. The red curve is the numerical solution and the dashed blue curve is the solution by
the DTM.

Now we are improving the accuracy of the differential transform solution using the MDTM [22].
We first apply Laplace transform to the series solution given by Equation (12) to obtain

L[x(t)] =
54.954

s9 +
1.1355

s8 − 5.9761
s7 − 0.1666

s6

+
1.6646

s5 +
0.0575

s4 − 1.15
s3 +

1
s

(13)

As the first step of the procedure of the MDTM [22] replacing s by 1/t, calculating the Padé approximant
of [4/4] and letting t = 1/s gives the following:[

4
4

]
=

0.5525 + 10.6558 s + 0.16667 s2 + s3

11.9025 + 0.6867 s + 11.8058 s2 + 0.16667 s3 + s4 (14)

Taking the inverse Laplace transform to the Padé approximant [4/4], Equation (14), to obtain the
solution by the MDTM as follows:

x(t) = 0.9962 e−0.0262 t cos(1.0551 t) + 0.0038 e−0.0572 t cos(3.2685 t) (15)

Figure 2 depicts the comparison between the MDTM results obtained by the Padé approximant of [4/4]
and the results obtained using the fourth-order Runge-Kutta numerical method. It is clear that the
MDTM result obtained by the real part of Padé approximate gives an excellent agreement with the
result obtained using the fourth-order Runge-Kutta numerical method.

Figure 2. The red curve is the numerical solution and the dashed blue curve is the solution by the
modified differential to transform method (MDTM) in Equation (15).
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3.2. Example 2: Forced Nonlinear Duffing Oscillator with Damping Effect

In Equation (1a) let

a = 1.0, b = 0.0, η = 0.03, α = 0.03, A = 0.15, ω = 1.0, and Ω = 0.8 (16)

In this case the analytic expansion takes the form:

x(t) = 1.0− 0.515 t2 + 0.02515 t3 + 0.0440155 t4 − 0.00219932 t5

−0.0015002 t6 + 0.0000701175 t7 + 0.0000273301 t8 + · · · (17)

Figure 3 illustrates the comparison of results obtained by the differential transform method which
given by Equation (17) and the fourth-order Runge-Kutta numerical method. Clearly, the weakness of
accuracy of the DTM result even for short time domain.

Figure 3. The red curve is the numerical solution and the dashed blue curve is the solution by the
DTM in Equation (17).

To apply the modified differential transform method, we first get the Laplace transform to the
time series solution which is given by Equation (17), yields

L[x(t)] =
1
s
− 1.03

s3 +
0.1509

s4 +
1.0564

s5 − 0.2639
s6

−1.08015
s7 +

0.3534
s8 − 1.10195

s9 (18)

Using the concept of the MDTM [22]. Replace s by 1/t in Equation (18), calculate the Padé
approximant of [4/4] and after that let t = 1/s which gives the following:[

4
4

]
=

0.1392 + 0.64 s + 0.03 s2 + s3

0.6592 + 0.0192 s + 1.67 s2 + 0.03s3 + s4 (19)

Applying the inverse Laplace transform to the Padé approximant of [4/4] in Equation (19) to obtain
the solution by the MDTM in the form:

x(t) = −0.0236 cos(0.8 t) + 0.3832 sin(0.8 t)

+e−0.015 t(1.0236 cos(1.0148 t)− 0.287 sin(1.0148 t)
)

(20)

Figure 4 shows the comparison between the MDTM result obtained by the Padé approximant
of [4/4] and the result obtained using the fourth-order Runge-Kutta numerical method. The MDTM
results obtained by the real part of the Padé approximant of [4/4] are clearly in excellent agreement
with the result obtained using Runge-Kutta fourth-order accuracy numerical method.
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Figure 4. The red curve is the numerical result and the dashed blue curve is the solution by the DTM
given in Equation (20).

4. Forced van der Pol Oscillator under Damping Effect

Nayfeh and Mook from [12] derived the Rayleigh equation in the form

y′′ + ε
[1

3
(y′)2 − 1

]
y′ + y = 0, with y′ = dy/dτ (21)

Setting x = y′ we find the van der Pol equation

x′′ + ε
[
x2 − 1

]
x + x = 0 with x = dx/dτ (22)

which arises in the study of circuits containing vacuum tubes and given by Equation (1b) with A = 0.
Electrical circuit involving a triode results a forced van der Pol oscillator Equation (1b) where

A 6= 0, see Figure 5. The circuit contains: a triode, a resistor R, a coupled inductor L and mutual
inductance M. In the serial RCL circuit there is a current i, and towards the triode anode (plate) a
current ia, while there is a voltage ug on the triode control grid, see Figure 5. The van der Pol oscillator
is forced by an AC voltage source Es.

Figure 5. Electrical circuit involving a triode, resulting in a forced van der Pol oscillator.

To investigate a semi-analytic solution of forced van der Pol oscillator under damping effect
we apply the MDTM to Equation (1b) with initial conditions x(0) = a and ẋ = b. The differential
transform of this equation has the recurrence relation



Mathematics 2016, 4, 11 7 of 12

(k + 2)(k + 1)X(k + 2) + ω2X(k) + ε
[
(k + 1)X(k + 1)

−
k

∑
n=0

n

∑
m=0

(k− n + 1)X(m)X(n−m)X(k− n + 1)
]

−A Ωk

k!
sin
(

kπ

2

)
= 0 (23)

X(0) = a, X(1) = b (24)

The recursive equations deduced from Equations (23) and (24) for k = 0, 1, 2 are obtained as follows:

k = 0 : 2X(2) + ω2a + ε (a2 − 1)b = 0 (25)

k = 1 : 6X(3) + ω2b + 2 ε X(2)(a2 − 1) + 2 ε a b2 − A Ω = 0 (26)

k = 2 : 12X(4) + ω2X(2) + ε[3(a2 − 1)X(3) + 6 a b X(2) + b3] = 0 (27)

and so on.

4.1. Example 3:

Let

a = 1.0, b = 0.0, ω = 1.0, ε = 0.04, A = 0.04, and Ω = 1.4 (28)

For the values given in Equation (28) the analytic expansion of the nonlinear van der Pol
Equation (1b) is given by:

x(t) = 1.0− 0.5 t2 + 0.009333 t3 + 0.041667 t4t4 − 0.003381 t5

−0.001327 t6 + 0.000599 t7 − .000009 t8 + · · · (29)

To use the modified differential transform method we take the Laplace transform of the series
solution in Equation (29), yields:

L[x(t)] =
1
s
− 1

s3 +
0.056

s4 +
1
s5 −

0.40576
s6 − 0.9552

s7 +
3.01838

s8

−0.353677
s9 − 25.0076

s10 +
31.4072

s11 (30)

Forthwith as in [22] we replace s by 1/t, calculating the Padé approximant of [3/3] and [4/4] and
letting t = 1/s gives us the following:[

3
3

]
=

5.24571 + 93.6735 s + s2

93.6175 + 6.24571 s + 93.6735 s2 + s3 (31)

[
4
4

]
=

0.13895 + 7.72697 s + 0.168318 s2 + s3

7.71754 + 0.251268 s + 8.72697 s2 + 0.168318 s3 + s4 (32)
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Taking the inverse Laplace transform of the Padé approximant of [3/3] and [4/4] in Equations (31)
and (32) we obtain the semi-analytic solutions respectively, as follows:

x(t) ≈ e−0.02802 t(cos t + 0.02803 sin t), (33)

x(t) ≈ e−0.0062 t(cos t + 0.01264 sin t)

+e−0.07798 t(0.0003 cos(2.7785 t)− 0.0023 sin(2.7785 t)) (34)

Figure 6a illustrated to show a comparison of the solution by the differential transform method,
Equation (29), and the numerical solution by the fourth-order Runge-Kutta method. It is clear that, the
result obtained by DTM have not reasonable agreement with the numerical result by Runge-Kutta for
a long time domain.

Figure 6b shows the comparison between the MDTM results obtained by the real part of Padé
approximant of orders [3/3] and [4/4] whose given by Equations (33) and (34), respectively, and the
result obtained by the fourth-order Runge-Kutta numerical method. The MDTM result obtained by
the real part of Padé approximant [3/3] in Equation (33) shows some discrepancies in comparison to
the result obtained using the fourth-order Runge-Kuta numerical method. However, it is clear that
the result of the result of the MDTM by the real part of Padé approximant [4/4] in Equation (34) has
excellent agreement and seems to coincide with the numerical result.

(a) (b)

Figure 6. Example 3. (a) The black curve is the numerical solution and the dashed blue curve is
the solution by the DTM given by Equation (29); (b) The dashed blue curve is the solution by the
MDTM and Padé [3/3] approximant solution. The dashed red curve is the solution by the MDTM and
Padé [4/4] approximant. The black curve is the numerical solution.

4.2. Example 4:

Let

a = 1.0, b = 0.0, ε = 0.004, A = 0.9, ω = 2.0 and Ω = 1.4 (35)

The nonlinear differential Equation (1b) in this case has the analytic solution in the form:

x(t) = 1− 2 t2 + 0.21 t3 + 0.666667 t4 − 0.06578 t5 − 0.088329‘ t6

+0.010248 t7 + 0.005618 t8 − 0.002084 t9 + 0.000145 t10

+0.000545 t11 − 0.000143 t12 + · · · (36)
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To apply the MDTM we first take Laplace transform of the DTM solution given in Equation (36), yields:

L[x(t)] =
1
s
− 4

s2 +
1.26
s4 +

16
s5 −

7.8936
s6 − 63.5968

s7 +
51.647808

s8

+
226.503501

s9 − 756.140505
s10 +

524.935235
s11

+
21755.582199

s12 − 68682.662616
s13 (37)

Replace s by 1/t in Equation (37) and calculate the Padé approximants [4/4] and [6/6] and after that
let t = 1/s to obtain [

4
4

]
=

0.554007 + 3.493991 s− 0.860981 s2 − s
15.0608− 1.629917 s− 0.506009 s2 − 0.860981 s3 − s4 (38)

[
6
6

]
=

45.6864 + 71.9781 s + 3.2114 s2 + 38.5489 s3 + 0.7508 s4 + s5

283.4087 + 7.7739s + 225.2278s2 + 4.9547s3 + 42.5489s4 + 0.7508s5 + s6 (39)

The inverse Laplace transform of (38) and (39), respectively, gives the semi-analytical solutions
as follows:

x(t) = −0.0058 e−2.2603 t + 0.01583 e1.6398 t

+e−0.12024 t(0.9899 cos(2.0122 t) + 0.0394 sin(2.0122 t)) (40)

x(t) = e−0.00698 t(0.0091 cos(1.3895 t) + 0.4314 sin(1.3895 t))

+e−0.00015 t(cos(2.00267 t)− 0.29905 sin 92.00267 t)) (41)

Figure 7 illustrates the comparison of the fourth-order Runge-Kutta numerical solution and the
solution of the MDTM by the real part of the Padé approximant of order [4/4]. In Figure 8, it is clear
that the solution by the MDTM is unstable. For this reason we have another attempt to obtain a more
accurate and stable semi-analytical solution. To resolve this problem we use again the MDTM but with
the real part of the Padé approximant of order [6/6] given by Equation (41).

Figure 7. The red curve is the numerical solution and the dashed blue curve is the DTM solution in
Equation (36).

Example 4 shows that the solution by the MDTM with the real part of the Padé approximant [6/6]
not only matches perfectly with the numerical solution for a long time domain, as in Figure 8, but also
shows that the phase plane given by the two methods seems to be identical, show Figure 9.
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Figure 8. The red curve is the numerical solution and the dashed blue curve is the MDTM solution by
Padé approximant [6/6] in Equation (41).

Figure 9. Red plot is the numerical solution and the blue plot is the Padé approximant solution of
order [6/6] given by Equation (41).

5. Conclusions
The main goal of researchers who are interested in solving nonlinear differential equations is to

obtain analytical solutions along with numerical solutions. These researchers have relied on some
methods such as the multiple time scales method and the harmonic balance method and others. Other
researchers have taken another turn and used the modified differential to transform method (MDTM)
to obtain semi-analytic solutions of free non-linear oscillation by adding Laplace transform and Padé
approximant [4/4]. Here, we extend their studies and provided semi-analytical solutions of forced
oscillations of Duffing and van der Pol under damping effects.
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Through some applications, we have provided records to indicate the success of the
semi-analytical solution by the MDTM of nonlinear differential equations. The study focused on
van der Pol and Duffing nonlinear oscillators under damping effects, due to their importance in science
and engineering.

The numerical results demonstrate the validity and applicability of analytic solutions that we
obtained by using the MDTM with appropriate values of parameters. This assures us the extent
of success of using the modified differential to transform method to obtain analytical solutions of
non-linear differential equations.

To get the analytical solution using the MDTM method one can obtain the result of the real
part of Padé approximant of any order like [3/3], [4/4], [5/5] and higher where at least one of these
approximant gives a satisfactory accurate analytic solution.

Conflicts of Interest: The authors declare no conflict of interest.
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