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Abstract: In this article, we show how to use the first and second Minkowski Theorems and some
Diophantine geometry to bound explicitly the height of the points of rank N− 1 on transverse curves
in EN , where E is an elliptic curve without Complex Multiplication (CM). We then apply our result to
give a method for finding the rational points on such curves, when E has Q-rank ≤ N − 1. We also
give some explicit examples. This result generalises from rank 1 to rank N − 1 previous results of
S. Checcoli, F. Veneziano and the author.
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1. Introduction

A classical question in the context of Diophantine geometry is to determine the points of a certain
shape, for instance the rational points, on an algebraic curve. Much work has been done in this
direction. By ’variety’, we mean an algebraic variety defined over the algebraic numbers embedded in
some projective space. For k, a number field and V a variety defined over k, we denote by V(k) the set
of k-rational points on V.

The genus of the curve distinguishes three quantitatively different behaviours for its rational
points. For a curve of genus 0, either the set of k-rational points is empty or the curve is isomorphic
to the projective line, whose k-rational points are infinitely many and well-understood. On the other
hand, for genus of at least 2, we have the:

Mordell Conjecture. A curve of genus at least 2 defined over a number field k has only finitely many
k-rational points.

This is a very deep result, first conjectured by Mordell in [1] and now known as Faltings Theorem
after the ground-breaking proof in [2]. The curves of genus 1 can be endowed with the structure of
an abelian group and the set of k-rational points, when not empty, is a finitely generated group. This is
a famous theorem of Mordell, later generalised by Weil to the case of abelian varieties. The number of
generators is called the k-rank of the abelian variety.

Vojta in [3] gave a new proof of the Mordell Conjecture and then Faltings, in [4,5], proved
an analogous statement for rational points on subvarieties of abelian varieties, which generalises to
points in a finitely generated subgroup Γ. Building on these results, Hindry [6] proved the case of Γ of
finite rank, known as the Mordell–Lang Conjecture.

Mordell–Lang Conjecture. Let Γ be a subgroup of finite rank of an abelian variety A. Let V ⊆ A be a proper
subvariety. Then, the set Γ ∩ V is contained in a finite union of translates of proper abelian subvarieties by
elements of Γ.

Unfortunately, even for curves, the different proofs of this theorem are not effective, in the sense
that they prove the finiteness of the desired set, but do not hint at how this set could be determined.
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One of the challenges of the last century has been the search for effective methods, but there is still no
known general method for finding all the rational points on a curve. Most of the known examples are
curves of small genus, often 2 or 3. They rely on the Chabauty-Coleman method (see the articles [7,8])
and on the Manin-Dem’janenko method (see [9,10]). An overview is given by J.P. Serre in his book [11]
in Chapter 5. The Chabauty-Coleman method has been used by Flynn [12] to determine rational
points on some families of hyperelliptic curves with special Jacobians of dimension 2 and rank one,
respectively, of dimension 3 and rank 2. The Manin and Dem’janenko method applies to curves defined
over a number field k that admit m different k-independent morphisms towards an abelian variety
A defined over k with rank of A(k) < m. Some explicit examples are, for instance, given by Kulesz [13]
and Kulesz, Matera and Schost [14] for some families of algebraic curves of genus 2 with Jacobian
isogenous to a product of special elliptic curves of Q-rank one.

Unfortunately, these methods do not give an explicit dependence of the height of the k-rational
points neither in terms of the curve nor in terms of the ambient variety. Thus, to apply the methods,
such a dependence must be elaborated case by case with ad hoc strategies.

The theory of anomalous intersections introduced by Bombieri, Masser and Zannier [15] is
well known to have implications on the Mordell–Lang Conjecture and leads to many new open
conjectures, such as the Torsion Anomalous Conjecture (TAC), which remains open in its generality
(see the book of Zannier [16] and the survey article [17]). The TAC implies the Zilber–Pink Conjecture,
the Manin–Mumford and the Mordell–Lang Conjectures. There are also relations to model theory and
to algebraic dynamics, in the context of the Morton Conjectures. The TAC is essentially only known
for curves in abelian varieties (after work of Bombieri, Masser, Zannier, Rémond, Viada, Galateaux,
Habbeger and Pila and others) and for varieties of codimension 2 embedded in tori (Bombieri, Masser
and Zannier) and in EN (Checcoli, Veneziano, Viada). Many of these results are proven in a non
effective way. However, some methods in the context of anomalous intersections are effective, and this
has some implications on the effective Mordell–Lang Conjecture.

In the last years, together with S. Checcoli and F. Veneziano, we have been working to approach
the problem of anomalous intersections with explicit methods aiming to prove new cases of the explicit
Mordell Conjecture and to eventually find all the rational points on some new families of algebraic
curves. Our setting is compatible with the one of the Manin-Dem’janenko Theorem.

Let us introduce notation and definitions.
We denote by E an elliptic curve and, for any positive integer N, we denote by EN the cartesian

product of N copies of E. We say that a subvariety V ⊂ EN is a translate, respectively, a torsion variety,
if it is a finite union of translates of proper algebraic subgroups of EN by points, respectively by
torsion points.

Furthermore, an irreducible variety V ⊂ EN is transverse, respectively weak-transverse, if it is not
contained in any translate, respectively in any torsion variety.

We remember that the rank of an abelian group is the number of generators over Z of its free
part and the k-rank of an elliptic curve E defined over k, for k a number field, is the rank of E(k) as
an abelian group. We introduce here a new concept of rank for a point on EN .

Definition 1. The rank of a point P in EN is the minimal dimension of an algebraic subgroup of EN containing
the point.

The following observation clarifies the definition: the rank of P is equal to the dimension of the
Zariski-closure in EN of the set of all multiples of P, i.e., of the set {[n]P : n ∈ Z}.

In a joint paper with S. Checcoli and F. Veneziano (see [18]), we prove that the points of rank one
on a weak-transverse curve of EN have bounded height and we explicitly bound their height if E is
non CM. We also give a non-density result for the points of rank one on a weak-transverse variety of
EN . In [19], the author extends the method for curves in EN , where E has CM. Unfortunately, these
bounds are much too big to be used to find the rational points on any curve.
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In [20], together with Checcoli and Veneziano we use a different apprach and we provide a new
sharp explicit upper bound for the height of the points on a curve of genus at least 2 in E2, where E
is a non-CM elliptic curve. In particular, we prove the explicit Mordell-Conjecture for such curves,
when E has Q-rank 1. We also present a variety of explicit examples: we give two families of curves of
growing genus in E2, where E is non-CM and of Q-rank 1, for which we can list all the rational points.
Compared to the other effective methods, ours is easier to apply because it provides a simple formula
for the bound for the height of the rational points. Moreover, it applies to curves of any genus and not
only of small genus.

The assumptions in [20] represent the easiest setting in this context: points of rank one. We tested
there the possibility of producing an explicit and even an implementable method for finding the
rational points on some new families of algebraic curves in E2.

In this article, we extend the method introduced in [20] for curves transverse in EN and to points
of rank N − 1 instead of 1, where E is non-CM. We then give some new examples of curves for which
we could determine all the rational points.

To state our main theorem, we first fix the setting (see Section 3 for more details). Let E be
an elliptic curve given in the form:

y2 = x3 + Ax + B.

Via the given equation, we embed EN into PN
2 and via the Segre embedding in P3N−1.

The degree of a curve C ⊆ EN is the degree of its image in P3N−1 and h2(C) is the normalised
height of C, which is defined in terms of the Chow form of the ideal of C, as done in [21]. We denote by
ĥ the canonical Néron–Tate height on EN .

Our main theorem is:

Theorem 2. Let E be an elliptic curve without CM. Let C be a curve transverse in EN . Then, all the points P of
rank at most N − 1 on C have Néron–Tate height bounded as:

ĥ(P) ≤ C1 · h2(C)(deg C)N−1 + C2(E)(deg C)N + NC(E),

where:

C1 = 2N+23N−1(N − 1)!c2(N)N−1,

C2(E) = 2N+23N−1(N − 1)! (NC(E) + C0) c2(N)N−1,

c2(N) =
3N−1N2(N − 1)3(N − 1)!5

4N−2 ,

and C(E) depends only on A and B and is defined in Proposition 6 and C0 = C0(1, N − 1, 3N − 1) is defined
in (8).

We remark that, for k, a number field of the definition of E, if E has k-rank N − 1 (i.e., the rank
of E(k) as an abelian group), then the set of k-rational points C(k) of C ⊂ EN is contained in the set
of points of rank N − 1 (in the sense of Definition 1) and so C(k) has a height bounded as above.
This immediately gives the following:

Corollary 3. Let E be an elliptic curve without CM defined over a number field k. Assume that E has k-rank
< N. Let C be a curve transverse in EN . Then, any k-rational point P ∈ C(k) has Néron–Tate height bounded as:

ĥ(P) ≤ C1 · h2(C)(deg C)N−1 + C2(E)(deg C)N + NC(E),

where the constants are the same as in Theorem 2.



Mathematics 2017, 5, 36 4 of 16

The proof of our main theorem relies basically on the first and second Minkowski theorems,
on Zhang’s inequality and on the Arithmetic Bézout Theorem. Precise estimates for different height
functions must be used as well as computations of degree in some projective spaces.

The independence of the bound on k and on the generators of E(k) is an interesting aspect,
specifically for applications. In the following section, we present one of the possible applications of
our Theorem. These are just examples and many others can be created using the same ideas.

2. An Application to Some Explicit Curves

An interesting feature of our main theorem is that it can be applied to find the rational points on
some new curves. We present here an example. We remark that any curve transverse in E3 with E of
Q-rank ≤ 2 is suitable for further examples of our method.

Let E be an elliptic curve defined over Q. We write:

y2
1 = x3

1 + Ax1 + B,

y2
2 = x3

2 + Ax2 + B,

y2
3 = x3

3 + Ax2 + B,

(1)

for the equations of E3 in P3
2 using affine coordinates (x1, y1)× (x2, y2)× (x3, y3), and we embed E3 in

P26 via the Segre embedding.
In order to apply our main theorem, the elliptic curve E shall be an elliptic curve over Q without

CM and Q-rank 2. Several examples of such E can be easily found in Cremona’s tables [22]. For instance,
we consider the following elliptic curves:

E1 : y2 = x3 − 7x + 10,

E2 : y2 = x3 − 4x + 1,

E3 : y2 = x3 − 19x + 34,

E4 : y2 = x3 − 28x + 52,

E5 : y2 = x3 − 4x + 16.

(2)

These are five elliptic curves without CM, of rank two over Q and with trivial torsion. The generators are:

(5,−10); (−2, 4) for E1,

(−1, 2); (0, 1) for E2,

(11, 34); (−3, 8) for E3,

(−4, 10); (−2, 10) for E4,

(−2, 4); (0, 4) for E5.

While the constant C(E) appearing in our main theorem is bounded as follows:

C(E1) ≤ 20; C(E2) ≤ 16 C(E3) ≤ 24; C(E4) ≤ 24; C(E5) ≤ 12.

We then consider the following family of curves that extend the one considered in [20].
There, however, we could only cut curves on E2 with E of Q-rank 1.

Definition 4. Let {Cn}n be the family of projective curves in E3 with affine part defined for n ≥ 1 via the
additional equations:

xn
1 = y2 and x2 = y3.
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We remark that our curve Cn is the intersection in P26 of a hypersurface X ⊂ P26 and a surface
Sn ⊂ E3, where X is given in P26 by the linear equation w1 = w2 with w1 = x1x2z3 and w2 = x1z2y3

under the Segre embedding of P2×P2×P2 in P26. Thus:

deg X = 1.

Moreover, Sn is the projective closures in E3 of the surface defined for n ≥ 1 via the additional
equation xn

1 = y2. Thus, the Sn are of the form Cn× E for Cn the curves defined in [20] (Definition 1.4),
i.e., Cn ⊂ E2 × 0 given by the additional equation xn

1 = y2. From [20] Corollary 7.1, we know that
deg Cn = 6n + 9. Thus, Cn has bidegree (6n + 9, 3) in P8 × P2. Recall that P8 × P2 has degree 10!

8!2! in
P26. Thus:

deg Sn ≤ 3(6n+ 9)325.

By Bézout’s Theorem:

degCn ≤ deg(Sn ∩X) ≤ deg(Sn)deg X ≤ 345(2n+ 3).

We now want to estimate the height of Cn. We use the same idea as in [20] (Theorem 6.2).
By Zhang’s inequality (9), we have h2(Cn) ≤ 2 degCnµ2(Cn). An upper bound for µ2(Cn) is given by
constructing an infinite set of points on Cn of bounded height. Let Qζ = ((ζ, y1), (x2, y2), (x3, y3)) ∈ Cn,
where ζ ∈ Q is a root of unity. Clearly there exist infinitely many such points on Cn. Using the equations
of Cn and classical estimates on the Weil height, for all points Qζ, we have:

h2(Qζ) = h2(ζ, y1) + h2(x2, ζn) + h2(x3, x2).

By the proof of [20] (Theorem 6.2), we know that:

h2(ζ, y1) ≤ c6(E),

h2(x2, ζn) ≤ c6(E),

where c6(E) =
log(3+|A|+|B|)

2 . By [20] (Lemma 3.1), we get:

h2(x3, x2) ≤ 2c6(E).

Thus:
µ2(Cn) ≤ 2 log(3+ |A|+ |B|)

and by Zhang’s inequality:

h2(Cn) ≤ 22345(2n+ 3) log(3+ |A|+ |B|).

A similar argumentation as in [20], Lemma 7.2 shows that the genus of the curves Cn is increasing
and it is greater than 1, so the Cn are not traslates of an elliptic curve. Unlike in [20], this is not sufficient
to conclude that the curves are transverse. In fact, curves of any genus are contained in E2× 0, and they
are not even weak-transverse. Therefore, in order to apply our main Theorem, we shall now show
that the Cn are transverse in E3. We remark that, if not, then Cn ⊂ G + p for some algebraic subgroup
G of dimension 2 and a point p ∈ E3. Moreover, Cn− p is transverse in G because the genus of Cn is
not 1. Thus, Cn + Cn = G + 2p and deg G ≤ 23(degCn)2, where 23 is a bound for the sum morphism.
Therefore, G is defined by an equation a1X1 + a2X2 + a3X3 = 0 with ai ∈ Z. Let a = (a1, a2, a3) ∈ Z3, and
then ||a||2 ≤ deg G ≤ 23(degCn)2.

It follows that there are only finitely many possibilities for such an a and so for G. To check that
Cn is not contained in any such G + p, it is then sufficient to show that the morphisms a : E3 → E with
||a||2 ≤ 23(degCn)2 are not constant when restricted to Cn. Remark that the fiber in Cn of a point is
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either Cn or at most m = degCn deg G points. Let P0, . . . Pm be m+ 1 distinct points on Cn (defined over
any field). If there exists at least one index 1 ≤ i ≤ m such that the images a(P0− Pi) 6= 0, then the
morphism a is not constant and Cn is transverse. For n ≤ 100, this is checked with an algorithmic
implementation. Thus, for n ≤ 100, the Cn are transverse. We can now apply our Corollary 3 with
N = 3 to the curves Cn for n ≤ 100. We obtain:

Theorem 5. Let E be an elliptic curve without CM and such that E has Q-rank 2. For n ≤ 100, the rational
points on Cn ⊂ E3 have Néron–Tate height bounded as:

ĥ(P) ≤ 218311 · h2(Cn)(degCn)
2 + 218311

(
3C(E) +C0

)
(degCn)

3 + 3C(E),

where:

degCn ≤ 345(2n+ 3),

h2(Cn) ≤ 22345(2n+ 3) log(3+ |A|+ |B|),

and C(E) is defined in Proposition 6 and C0 = C0(1, 2, 26) ≤ 19 is defined in (8).

With an algorithm similar to the one presented in [20], we can finally check if any rational point
of height bounded as above belongs to the curve Cn ⊂ E3

i , where Ei for i = 1, 2, 3, 4, 5 are the elliptic
curves given in relation (2) above. For any i, we obtain bounds for the height of the rational points
between 22332353 for the curves of lowest degree and 22532359 for the ones of largest degree.

3. Preliminaries

In this section, we introduce the notations and we recall several explicit relations between different
height functions. We also recall some basic results in arithmetic geometry that play an important role
in our proofs, such as the Arithmetic Bézout Theorem and the Zhang Inequality.

The word rank is used with several different meanings. For clarity, we remember that the rank of
an abelian group is the number of generators over Z of its free part; the rank of an R-module M for R a
ring with field of franction frac(R) is the dimension of the vector space M⊗R frac(R); the k-rank of an
abelian variety A defined over k, for k a number field, is the rank of A(k) as an abelian group; and the
rank of a point on an abelian variety A is the only new concept introduced in Definition 1.

Let E be an elliptic curve defined over a number field k by a fixed Weierstrass equation:

E : y2 = x3 + Ax + B, (3)

with A and B in the ring of integers of k (this assumption is not restrictive). We denote the discriminant
of E by:

∆ = −16(4A3 + 27B2)

and the j-invariant by:

j =
−1728(4A)3

∆
.

We consider EN embedded in P3N−1 via the following composition map:

EN ↪→ PN
2 ↪→ P3N−1, (4)

where the first map sends a point (X1, . . . , XN) to ((x1, y1), . . . , (xN, yN)) (the (xi, yi) being the affine
coordinates of Xi in the Weierstrass form of E) and the second map is the Segre embedding. Degrees
and heights are computed with respect to this fixed embedding.
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3.1. Algebraic Subgroups

By the uniformisation theorem, there exists a unique lattice Λ0 ⊂ C such that C/Λ0
∼→ E(C) as

complex Lie groups.
By [23] (Chapter 8), the set of abelian subvarieties of EN of codimension r is in natural bijection

with the set of complex vector subspaces W ⊂ CN of codimension r for which W ∩Λ0
N is a lattice of

full rank in W. Therefore, W is given by a linear system of rank r with matrix of the coefficients ϕB
in Matr×N(End(E)). We identify ϕB with the induced morphism ϕB : EN → Er. On the other hand,
a matrix in Matr×N(End(E)) of rank r defines an algebraic subgroup of codimension r. Recall that in
the non-CM case End(E) ∼= Z.

The orthogonal complement of an abelian subvariety B ⊂ EN with Lie algebra WB ⊂ CN is the
abelian subvariety B⊥ with Lie algebra W⊥B , where W⊥B denotes the orthogonal complement of WB with
respect to the canonical Hermitian structure of CN.

3.2. Heights of Points

If P = (P1 : . . . : Pn) ∈ Pn(Q) is a point in the projective space, then the absolute logarithmic Weil
height of P is defined as:

hW(P) = ∑
v∈MK

[Kv : Qv]

[K : Q]
log max

i
{|Pi|v},

where K is a field of definition for P andMK is its set of places. If α ∈ Q, then the Weil height of α is
defined as hW(α) = hW(1 : α).

We also define another height that differs from the Weil height at the Archimedean places:

h2(P) = ∑
v finite

[Kv : Qv]

[K : Q]
log max

i
{|Pi|v}+ ∑

v infinite

[Kv : Qv]

[K : Q]
log

(
∑

i
|Pi|2v

)1/2

. (5)

For a point P ∈ E, we denote by ĥ(P) its Néron–Tate height as defined in [24] (which is one third
of the usual Néron–Tate height used also in [18]).

If P = (P1, . . . , PN) ∈ EN, then for h equal to hW, h2 and ĥ, we define:

h(P) =
N

∑
i=1

h(Pi).

The following proposition directly follows from [25], Theorem 1.1 and [20], Proposition 3.2.

Proposition 6. For P ∈ EN, then:

−NC(E) ≤ h2(P)− ĥ(P) ≤ NC(E),

where:

C(E) =
hW(∆) + 3hW(j)

4
+

hW(A) + hW(B)
2

+ 4.

Further details on the relations between the different height functions defined above can be found
in [20], Section 3.

3.3. Heights of Varieties

For a subvariety V ⊂ Pm, we denote by h2(V) the normalised height of V defined in terms of the
Chow form of the ideal of V, as done in [21]. This height extends the height h2 defined for points by
formula (5) (see [26], Equation (3.1.6)). We also consider the canonical height h(V), as defined in [24];
when the variety V reduces to a point P, then h(P) = ĥ(P) (see [24], Proposition 9).
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3.4. The Degree of Varieties

The degree of an irreducible variety V ⊂ Pm is the maximal cardinality of a finite intersection
V ∩ L, with L a linear subspace of dimension equal to the codimension of V. The degree is often
conveniently computed as an intersection product.

If X(E, N) is the image of EN in P3N−1 via the above map, then by [18], Lemma 2.1, we have:

deg X(E, N) = 3NN!. (6)

In [20] Section 2.1, it is shown that the degree of an algebraic subgroup H of EN defined by
α1X1 + · · ·αNXN = O is given as the sum of the degrees of the projections of H to the coordinates
elliptic curves E, that is, the sum of the intersection numbers of H with the coordinate hyperplanes in
EN. In view of (6), we see that the degree of such projections is 3N−1(N− 1)!|αi|2. This gives:

deg H = 3N−1(N− 1)!
N

∑
i=1
|αi|2 . (7)

3.5. The Arithmetic Bézout Theorem

The following explicit result is proven by Philippon in [21], Théorème 3. It describes the behavior
of the height for intersections.

Theorem 7 (Arithmetic Bézout theorem). Let X and Y be irreducible closed subvarieties of Pm defined over
the algebraic numbers. If Z1, . . . , Zg are the irreducible components of X∩Y, then:

g

∑
i=1

h2(Zi) ≤ deg(X)h2(Y) +deg(Y)h2(X) +C0(dim X, dimY, m)deg(X)deg(Y),

where:

C0(d1, d2, m) =

(
d1

∑
i=0

d2

∑
j=0

1
2(i+ j+ 1)

)
+

(
m− d1 + d2

2

)
log 2. (8)

3.6. The Zhang Inequality

In order to state Zhang’s inequality, we define the essential minimum µ2(X) of an irreducible
algebraic subvariety X ⊂ Pm as:

µ2(X) = inf{θ ∈ R | {P ∈ X | h2(P) ≤ θ} is Zariski dense in X}.

The following result is due to Zhang [27], Theorem 5.2:

Theorem 8 (Zhang inequality). Let X ⊂ Pm be an irreducible algebraic subvariety. Then:

µ2(X) ≤ h2(X)

deg X
≤ (1+dim X)µ2(X). (9)

We also define a different essential minimum for subvarieties of EN, relative to the height function ĥ:

µ̂(X) = inf
{

θ ∈ R |
{

P ∈ X | ĥ(P) ≤ θ
}

is Zariski dense in X
}

.

Using the definitions and a simple limit argument, one sees that Zhang’s inequality holds also
with µ̂, namely:

µ̂(X) ≤ h(X)

deg X
≤ (1+ dim X)µ̂(X). (10)
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If X is an irreducible subvariety in EN , using Proposition 6, we have:

− NC(E) ≤ µ2(X)− µ̂(X) ≤ NC(E), (11)

where the constant C(E) is defined in Proposition 6.

4. Bounds for the Height and the Degree of the Auxiliary Translate

In this section, we want to produce an auxiliary translate H that has a bounded degree and is close
to our point P, where close means that the height of H + P is not too big with respect to the height of P.
This is proven in Proposition 13, which follows from the Proposition and Lemmas presented below.

4.1. Bounds for the Height and Degree of a Translate

Here, we prove some general bounds for the degree and the height of a proper translate H + P
in EN of codimension 1 in terms of ĥ(P) and of the coefficients of the equation defining the algebraic
subgroup H. We use some linear algebra, the Cauchy–Binet formula and some bounds on heights from
Section 3. When not otherwise specified, we use the canonical basis. We now extend [20] Proposition 5.1
for an arbitrary N.

Proposition 9. Let P be a point in EN , where E is without CM. Let H be a component of the algebraic subgroup
in EN defined by the equation α1X1 + α2X2 + · · ·+ αNXN = O, with u = (α1, . . . , αN) ∈ ZN \ {0}. Then:

deg(H + P) ≤ 3N−1(N− 1)!||u||2,

where ‖u‖ denotes the Euclidean norm of u, and:

h2(H + P) ≤ 3N−1N!
(

ĥ(u(P)) + NC(E) ‖u‖2
)

,

where u(P) = α1P1 + · · ·+ αNPN .

Proof. Let u = u1 ∈ ZN . Let Λ = 〈u〉Z ⊆ RN be a lattice and let Λ⊥ be its orthogonal lattice in RN .
Let u2, . . . , uN be a basis of Λ⊥. The (N− 1)× N matrix with rows u2, . . . , uN defines an algebraic

subgroup H⊥, given by the N− 1 equations ui(X) = O for i = 2, . . . , N. Then, for any point P ∈ EN ,
there are two points P0 ∈ H, P⊥ ∈ H⊥, unique up to torsion points in H ∩ H⊥, such that P = P0 + P⊥.

Let U be the N× N matrix with rows u = u1, . . . , uN , and let ∆ be its determinant.
Notice that, for ut the transpose of u, we have:

det Λ =
√

u · ut = ‖u‖

and:
|∆| = det Λ · det Λ⊥ (12)

because Λ and Λ⊥ are orthogonal.
We remark that u(P0) = 0 because P0 ∈ H, and ui(P⊥) = 0 for all i = 2, . . . , N because P⊥ ∈ H⊥.
Therefore:

UP⊥ =


u(P⊥)

0
...
0

 =


u(P0 + P⊥)

0
...
0

 =


u(P)

0
...
0

 ;
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hence:

[∆]P⊥ = U∗UP⊥ = U∗


u(P)

0
...
0

 ,

where U∗ is the adjugate matrix of U.
Computing canonical heights and applying the Cauchy–Binet formula, we obtain:

|∆|2 ĥ(P⊥) = ĥ([∆]P⊥) = det(Λ⊥)2ĥ(u(P)),

so by (12):

ĥ(P⊥) =
ĥ(u(P))

‖u‖2 .

Recall inequality (11), which gives:

µ2(H + P) ≤ µ̂(H + P) + NC(E).

By [28], we know that:
µ̂(H + P) = ĥ(P⊥)

and, therefore, by Zhang’s inequality:

h2(H + P) ≤ N(deg H)µ2(H + P) ≤
≤ N(deg H)(µ̂(H + P) + NC(E)) =

= N(deg H)(ĥ(P⊥) + NC(E)) =

= N(deg H)

(
ĥ(u(P))

‖u‖2 + NC(E)

)
. (13)

By (7), we get:
deg H ≤ 3N−1(N− 1)! ‖u‖2 ,

so (13) becomes:
h2(H + P) ≤ 3N−1N!

(
ĥ(u(P)) + NC(E) ‖u‖2

)
.

4.2. Geometry of Numbers

In this section, the geometry of numbers plays a central role. It is thanks to Minkowski’s first
and second Theorems that one can prove the existence of an auxiliary translate passing through our
starting point P of rank N− 1, so that both its degree and height are “small”. As usual in diophantine
approximation, “small” means depending on some parameters. At the end, we will show that a good
choice of the parameters gives the desired bound on the height of P.

A central result in our approach is Lemma 7.5 of [18], which, in turn, is a consequence of [29],
Lemma 3. This is a typical application of the second Minkowski Theorem to the lattice given by
the group ΓP generated by the coordinates of the point P. Similar results have been introduced by
Bombieri, Masser and Zannier in [15]. For clarity, we recall these results here.

Lemma 10. Let Γ be a finitely generated subgroup of E of rank m over Z. Then, there are elements
g1, . . . , gm ∈ Γ that generate a subgroup isomorphic to Γ/Tor(Γ) and such that:

ĥ
(
∑ aigi

)
≥ c(m)

(
∑ |ai|2ĥ(gi)

)
,
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with ai ∈ Z and c(m) = 22m−2/m2(m!)4.

Proof. From [30] Proposition 9.6, we know that the height function ĥ extends on ΓR := Γ ⊗Z R
to the square of a norm. In particular there is an inner product 〈P, Q〉 = ĥ(P + Q)− ĥ(P)− ĥ(Q)

and ||P||2 = 2ĥ(P). The group Γ/Tor(Γ) is a lattice in ΓR. Let p̃1, . . . , p̃m be liftings on Γ of integral
generators p1, . . . , pm of Γ/Tor(Γ). We identify Rm and ΓR via the isomorphism defined by the choice
of the basis p1, . . . , pm. Let V := vol(p1, . . . pm) be the volume of a fundamental domain of Γ/Tor(Γ).
Let B := {x ∈ Rm : ||x|| ≤ 1} be the closed ball of radius 1. Let λ1, . . . λm be the successive minima of B
with respect to the lattice Γ/Tor(Γ). By Minkowski’s second fundamental Theorem, we have:

λ1, . . . λmvol(B) ≤ 2mV. (14)

A Theorem of Mahler, [31] §V, Lemma 8, shows that there is a basis v1, . . . , vm of Γ/Tor(Γ) such that:

λi ≤ ||vi|| ≤ max(1, i/2)λi. (15)

Let vi = ∑m
j=1 vij pi = (vi1, . . . , vim). Since v1, . . . , vm is a basis, we have:

|det(v1, . . . , vm)| = V. (16)

We write:
wi =

vi
||vi||

(17)

and we define B∗ to be:

B∗ = {y ∈ Rm : ||y1w1 + y2w2 + · · ·+ ymwm|| ≤ 1}, (18)

where y = y1p1 + y2p2 + · · ·+ ym pm. Since B is the image of B∗ by the linear map y = y1p1 + y2p2 +

· · ·+ ym pm 7→ y1w1 + y2w2 + · · ·+ ymwm, we have, by (14)–(17), the upper bound:

vol(B∗) =
vol(B)

|det(w1, w2, . . . , wm)|
=

vol(B)
V

m

∏
i=1
||vi|| ≤ 2m!. (19)

A lower bound is obtained as follows.
Let ej, j = 1, . . . , m be the standard basis in Rm. Let y be a boundary point of B∗, then, for each i,

the set B∗ contains the convex closure of the points ±y and ±ej, j = 1, . . . , i− 1, i + 1, . . . m. This set is
the union of 2m simplices of volume |yi|/m!. Therefore, we get the lower bound:

|yi|
2m

m!
≤ vol(B∗),

which, combined with (19), gives:

m

∑
i=1
|yi| ≤ 2−m+1m(m!)2

∣∣∣∣∣
∣∣∣∣∣ m

∑
i=1

yiwi

∣∣∣∣∣
∣∣∣∣∣ , (20)

where the norm on the right is 1 because y is a boundary point of B∗. Now, from (17), we may rewrite
(20) as: ∣∣∣∣∣

∣∣∣∣∣ m

∑
i=1

xivi

∣∣∣∣∣
∣∣∣∣∣ ≥ c0(m)

m

∑
i=1
|xi| · ||vi||, (21)
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where xi = yi/||vi|| and c0(m) = 2m−1/m(m!)2. Finally, we define generators gi for a subgroup Γ of Γ
isomorphic to Γ/Tor(Γ), by setting:

gi =
m

∑
j=1

vij p̃j,

where vi = (vi1, . . . , vim) and p̃1, . . . , p̃m are liftings on Γ of the generators p1, . . . , pm of Γ/Tor(Γ).
Thus, we have:

2ĥ(
m

∑
i=1

aigi) = ||aiv1 + · · ·+ amvm||2.

Since ||vi||2 = 2ĥ(gi), Lemma 10 follows from (21).

We now apply this basic Lemma to our situation. We obtain:

Lemma 11. Let 1 ≤ m ≤ N be integers and let P = (P1, . . . , PN) ∈ B ⊆ EN , where B is a torsion variety of
dimension ≤ m and E is non CM.

There exist linear forms L1, . . . , Lm ∈ R[X1, . . . , XN] such that ||Lj|| ≤ 1 ∀j, where ||Lj|| is the Euclidean
norm of the vector of the coefficients of Lj, and:

ĥ(t1P1 + · · ·+ tNPN) ≤ c1(N, m) max
1≤j≤m

{|Lj(t)|2}ĥ(P)

for all t = (t1, . . . , tN) ∈ ZN . The constant c1(N, m) is given by:

c1(N, m) =
m3(m!)4N

4m−1 .

Proof. The points Pi lie in a finitely generated subgroup of E of rank at most m.
By Lemma 10, there are elements g1, . . . , gm ∈ E, and torsion points ζ1, . . . , ζN ∈ E, such that:

Pi = ζi + vi1g1 · · ·+ vimgm for i = 1, . . . , N and some vij ∈ Z

and:

ĥ(b1g1 + · · ·+ bmgm) ≥
22m−2

m2(m!)4 max
1≤i≤m

{|bi|2ĥ(gi)} ∀b ∈ Zm.

Let A = maxi,j{|vij|2ĥ(gj)} and define:

L̃j = v1jX1 + · · ·+ vNjXN, j = 1, . . . , m,

Lj =

(
ĥ(gj)

NA

) 1
2

L̃j, j = 1, . . . , m.

Notice that we can assume A > 0; otherwise, the point P would be a torsion point, and the thesis of
the lemma would be trivially true. Notice also that |Lj| ≤ 1.

With these definitions, for every t ∈ ZN, we have that:

t1P1 + · · ·+ tNPN = ξ +
m

∑
i=1

L̃j(t)gj,

where ξ is a torsion point. Therefore:
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ĥ(t1P1 + · · ·+ tNPN) = ĥ

(
m

∑
j=1

L̃j(t)gj

)
≤

m

∑
j=1
|L̃j(t)|2ĥ(gj) =

= NA
m

∑
j=1
|Lj(t)|2 ≤ mNA max

1≤j≤m
{|Lj(t)|2}. (22)

If i0, j0 are the indices for which the maximum is attained in the definition of A, then:

22m−2

m2(m!)4 A =
22m−2

m2(m!)4 |vi0 j0 |
2ĥ(gj0) ≤ ĥ(Pi0) ≤ ĥ(P).

We conclude combining this with inequality (22).

We now extend the use of Minkowski’s first Theorem as done in [20] for the case of dimension 2
to the case of dimension N.

Lemma 12. Let Li ∈ R[X1, . . . , XN], i = 1, . . . , N − 1 be N − 1 independent linear form and let κ ≥ 2
1

N−1

and T ≥ 4. Then, there exists u ∈ ZN \ {0} such that:

||u||2 ≤ T2,

|Li(u)| ≤
κ

T
1

N−1
‖Li‖ ,

where ||u|| denotes the Euclidean norm of u, ||L|| the Euclidean norm of the vector of the coefficients of L and
|L(u)| is the absolute value of L(u).

Proof. Let ST ⊆ RN be the set of points (x1, . . . , xN) satisfying the inequalities:

x2
1 + · · ·+ x2

N ≤ T2,

|Li(x1 . . . , xN)| ≤ κ||Li||/T
1

N−1 .

Geometrically, ST is the intersection between a ball and the N − 1 “slices” determined by the

κ/T
1

N−1 -neighbourhoods of the hyperplanes defined by the Li. We shall show that ST ∩ZN 6= {0}.
ST is clearly convex and symmetric with respect to the origin, so by Minkowski’s Convex Body
Theorem if the set ST has a volume bigger than 2N , then the intersection ST ∩ZN contains points other
than the origin.

The volume of ST is lower bounded by the volume of 2N hyperprismas with N− 1 sides of length
κ/T1/N−1 and one of length T sin θ, where cos θ = κ/T1/N−1 Therefore, for T ≥ 2κN−1, the whole
volume can be bounded from below as:

2N−1κN−1,

and the hypothesis of Minkowski’s theorem are satisfied as soon as κ ≥ 2
1

N−1 .

4.3. Bounds for the Auxiliary Translate

We can now sum up all our Lemmas to construct the auxiliary translate and prove the central
proposition of this section. This will play a crucial role in the proof of our main theorem.

Proposition 13. Let E be an elliptic curve without CM. Let P = (P1, . . . , PN) ∈ B ⊂ EN , where B is a torsion
variety of dimension N− 1. Let T ≥ 24, κ ≥ 2

2
N−1 be real numbers.
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Then, there exists an abelian subvariety H ⊂ EN of codimension 1 such that:

deg(H + P) ≤3N−1(N− 1)!T,

h2(H + P) ≤c2(N)
κ

T
1

N−1
ĥ(P) + c3(N, E)T,

where:

c2(N) =
3N−1N2(N− 1)3(N− 1)!5

4N−2 ,

c3(N, E) = N3N−1(N− 1)!C(E),

and C(E) is defined in Proposition 6.

Proof. Let L1, . . . , LN−1 be the linear forms obtained from Lemma 11 with m = N− 1. Then, for all j,
we have:

||Lj|| ≤ 1

and for all t = (t1, . . . , tN) ∈ ZN , we have:

ĥ(t1P1 + · · ·+ tNPN) ≤
(N− 1)3(N− 1)!4N

4N−2 max
j
{|Lj(t)|2}ĥ(P). (23)

Apply Lemma 12 with the just constructed Li and κ and T equal to the square roots of the κ and T
in the statement. Let u = (α1, . . . , αN) ∈ ZN be the vector obtained from Lemma 12. Then:

||u||2 ≤ T,

|Li(u)| ≤
κ1/2

T
1

2N−2
‖Li‖ ≤

κ1/2

T
1

2N−2
,

where the last bound is due to the fact that the Lj have norm at most 1. Therefore, the relation (23)
implies:

ĥ(u(P)) ≤ (N− 1)3(N− 1)!4N
4N−2

κ

T
1

N−1
ĥ(P). (24)

Let H the zero component of the algebraic subgroup defined by the equation α1X1 + · · ·+αNXN = O.
The thesis follows from Proposition 9 and the above estimate.

5. The Proof of the Main Theorem 2

We can now proceed to the proof of our main theorem and compute all the constants.
For simplicity, we recall the statement here.

Theorem 14. Let E be an elliptic curve without CM. Let C be a curve transverse in EN . Then, all the points P
of rank at most N− 1 on C have Néron–Tate height bounded as:

ĥ(P) ≤ C1 · h2(C)(degC)N−1 + C2(E)(degC)N + NC(E),

where:

C1 = 2N+23N−1(N− 1)!c2(N)N−1,

C2(E) = 2N+23N−1(N− 1)! (NC(E) + C0) c2(N)N−1,

c2(N) =
3N−1N2(N− 1)3(N− 1)!5

4N−2 ,

and C(E) is defined in Proposition 6 and C0 = C0(1, N− 1, 3N − 1) is defined in (8).
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Proof. If P has rank zero, then its height is zero and the statement is true.
Let T ≥ 24, κ ≥ 22/N−1 be real numbers. We apply Proposition 13 to the point P of rank ≤ N− 1.

Thus, we obtain a abelian variety H of codimension 1 in EN with:

deg(H + P) ≤3N−1(N− 1)!T , and

h2(H + P) ≤c2(N)
κ

T
1

N−1
ĥ(P) + c3(N, E)T,

(25)

where:

c2(N) =
3N−1N2(N− 1)3(N− 1)!5

4N−2 ,

c3(N, E) = N3N−1(N− 1)!C(E),

and C(E) is defined in Proposition 6.
We now want to bound ĥ(P) in terms of deg(H + P) and h2(H + P).
Notice that the point P is a component of the intersection C ∩ (H + P) because, otherwise, C ⊆

H + P, contradicting the fact that C is transverse. We apply the Arithmetic Bézout Theorem 7 to the
intersection C ∩ (H + P) in P3N−1, obtaining:

h2(P) ≤ h2(C)deg H + h2(H + P)degC + C0(1, N− 1, 3N − 1)deg H degC.

By Proposition 6, we have ĥ(P) ≤ h2(P) + 2C(E) so, using the bounds in formula (25), we get:

ĥ(P) ≤ c5
κ

T
1

N−1
ĥ(P) + c6T + c7 (26)

with:

c5(C) = c2(N)degC,

c6(C, E) = 3N−1(N− 1)!h2(C) + c3(N, E)degC + C03N−1(N− 1)! degC,

c7(C, E) = NC(E).

We set:
T = (2c5κ)N−1 and κ = 2

2
N−1 ,

so that the conditions on T, κ are largely satisfied. Moreover, the choice of T is done to make the
coefficient of ĥ(P) on the right-hand side of (26) equal to 1/2. Thus, we can bring it to the left-hand
side and express ĥ(P) in terms of the rest. After simplification, (26) becomes:

ĥ(P) ≤ 2N+2cN−1
5 c6κ + 2c7, (27)

which gives the bound in the theorem.
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