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Abstract: The classical Lagrange-d’Alembert principle had a decisive influence on formation of
modern analytical mechanics which culminated in modern Hamilton and Poisson mechanics.
Being mainly interested in the geometric interpretation of this principle, we devoted our review
to its deep relationships to modern Lie-algebraic aspects of the integrability theory of nonlinear
heavenly type dynamical systems and its so called Lax-Sato counterpart. We have also analyzed old
and recent investigations of the classical M. A. Buhl problem of describing compatible linear vector
field equations, its general M.G. Pfeiffer and modern Lax-Sato type special solutions. Especially we
analyzed the related Lie-algebraic structures and integrability properties of a very interesting class of
nonlinear dynamical systems called the dispersionless heavenly type equations, which were initiated
by Plebański and later analyzed in a series of articles. As effective tools the AKS-algebraic and
related R-structure schemes are used to study the orbits of the corresponding co-adjoint actions,
which are intimately related to the classical Lie-Poisson structures on them. It is demonstrated
that their compatibility condition coincides with the corresponding heavenly type equations under
consideration. It is also shown that all these equations originate in this way and can be represented
as a Lax-Sato compatibility condition for specially constructed loop vector fields on the torus.
Typical examples of such heavenly type equations, demonstrating in detail their integrability via the
scheme devised herein, are presented.
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1. The Classical Lagrange-d’Alembert Principle

It is well known that modern analytical mechanics was founded mainly by such giants as Newton,
Lagrange, d’Alembert, Posson, Hamilton, Maupertui and Jacobi, whose oevres strongly influenced
the whole modern mechanical and physical sciences. In his book “Mecanique analytique”, v.1–2,
published in 1788 in Paris, J.L. Lagrange formulated one of the basic, most general, differential
variational principles of classical mechanics, expressing necessary and sufficient conditions for the
correspondence of the real motion of a system of material points, subjected by ideal constraints, to the
applied active forces. Within the Lagrange-d’Alembert principle the positions of the system in its real
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motion are compared with infinitely close positions permitted by the constraints at the given moment
of time.

According to the Lagrange–d’Alembert principle, during a real motion of a system of N ∈ Z+

particles with massess mj ∈ R+, j = 1, N, the sum of the elementary works performed by the given
active forces F(j), j = 1, N, and by the forces of inertia for all the possible particle displacements
δx(j) ∈ E3, j = 1, N :

∑
j=1,N

< F(j) −mj
dx(j)

dt
, δx(j) > ≤ 0 (1)

at any moment of time t ∈ R, where < ·, · > denotes the standard scalar product in the
three-dimensional Euclidean space E3. The equality in (1) is valid for the possible reversible
displacements, the symbol ≤ is valid for the possible irreversible displacements δx(j) ∈ E3, j = 1, N.
Equation (1) is the general equation of the dynamics of systems with ideal constraints; it comprises
all the equations and laws of motion, so that one can say that all dynamics is reduced to this single
general formula.

This principle, established by J.L. Lagrange by generalization of the principle of virtual
displacements with the aid of the classical d’Alembert principle. For systems subject to bilateral
constraints J.L. Lagrange based himself on formula (1) to deduce the general properties and laws of
motion of bodies, as well as the equations of motion, which he applied to solve a number of problems
in dynamics including the problems of motions of non-compressible, compressible and elastic liquids,
thus combining “dynamics and hydrodynamics as branches of the same principle and as conclusions drawn
from a single general formula”.

As it was first demonstrated in the work [1], for the last case of generalized reversible motions of
a non-compressible elastic liquid, located in a one-connected open domain Ωt ⊂ Rn, n ∈ Z+, with the
smooth boundary ∂Ωt, t ∈ R, in space Rn, n ∈ Z+, expression (1) can be rewritten as:

δW(t) :=
∫

Ωt
< l(x(t); λ), δx(t) > dnx(t) = 0 (2)

for all t ∈ R, where l(x(t); λ) ∈ T̃∗(Rn) is the corresponding virtual “reaction force”, exerted by the
ambient medium on the liquid and called a seed element, which is here assumed to depend analytically
on a complex parameter λ ∈ C. If now to suppose that the evolution of liquid points x(t) ∈ Ωt is
determined for any parameters λ 6= µ ∈ C by the generating gradient type vector field:

dx(t)
dt

=
µ

µ− λ
∇h(l(µ))(t; x(t)) (3)

and the Cauchy data:
x(t)|t=0 = x(0) ∈ Ω0

for an arbitrarily chosen open one-connected domain Ω0 ⊂ Tn with the smooth boundary ∂Ω0 ⊂ Rn

and a smooth functional h : T̃∗(Rn)→ R, the Lagrange-d’Alembert principle says: the infinitesimal
virtual work (2) equals zero for all moments of time, that is δW(t) = 0 = δW(0) for all t ∈ R. To check
that it is really zero, let us calculate the temporal derivative of the (2):

d
dt δW(t) = d

dt

∫
Ωt

< l(x(t); λ), δx(t) > dnx(t) =

d
dt

∫
Ω0

< l(x(t); λ), δx(t) > | ∂(x(t)
∂x0
|dnx(0) =

∫
Ω0

d
dt (< l(x(t); λ), δx(t) > | ∂(x(t)

∂x0
|)dnx(0) =∫

Ω0
[ d

dt < l(x(t); λ), δx(t) > + < l(x(t); λ), δx(t) > div K̃(µ)]| ∂(x(t)
∂x0
|dnx(0) =∫

Ωt
[ d

dt < l(x(t); λ), δx(t) > + < l(x(t); λ), δx(t) > div K̃(µ)]dnx(t) = 0,

(4)
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if the condition:

d
dt

< l(x(t); λ), δx(t) > + < l(x(t); λ), δx(t) > div K̃(µ; λ) = 0 (5)

holds for all t ∈ R, where:

K̃(µ; λ) :=
µ

µ− λ
∇h(l̃(µ)) =

µ

µ− λ
< ∇h(l(µ)),

d
dx

> (6)

is a vector field on Rn, corresponding to the evolution Equation (3). Taking into account that the full
temporal derivative d/dt := ∂/∂t + LK̃(µ;λ), where LK̃(µ;λ) = iK̃(µ;λ)d + diK̃(µ;λ) denotes the well
known [2–4] Cartan expression for the Lie derivation along the vector field (6), can be represented as
µ, λ→ ∞, |λ/µ| < 1 in the asymptotic form:

d
dt
∼ ∑

j∈Z+

µ−j ∂

∂tj
+ ∑

j∈Z+

µ−j LK̃j(λ)
, (7)

the equality (5) can be equivalently rewritten as an infinite hierarchy of the following evolution equations:

∂ l̃(λ)/∂tj := −ad∗K̃j(λ)+
l̃(λ) (8)

for every j ∈ Z+ on the space of differential 1-forms Λ̃1(Rn) ' G̃∗, where we denoted l̃(λ) :=<

l(x; λ), dx >∈ Λ̃1(Rn) ' G̃∗ with G̃ : = d̃i f f (Rn) being the Lie algebra of the corresponding loop
diffeomorphism group D̃i f f (Rn). As from (6) one easily finds that:

K̃j(λ) = ∇h(j)(l̃) (9)

for λ ∈ C and any j ∈ Z+, the evolution Equation (8) transform equivalently into:

∂ l̃(λ)/∂tj := −ad∗∇h(j)(l̃)+
l̃(λ), (10)

allowing to formulate the following important Adler-Kostant-Symes type [3,5–9] proposition.

Proposition 1. The evolution Equation (10) are completely integrable commuting to each other Hamiltonian
flows on the adjoint loop space G̃∗ for a seed element l̃(λ) ∈ G̃∗, generated by Casimir functionals h(j) ∈ I(G̃∗),
naturally determined by conditions ad∗∇h(j)(l̃)

l̃(λ) = 0, j ∈ Z+, with respect to the modified Lie-Poisson bracket

on the adjoint space G̃∗:
{(l̃, X̃), (l̃, Ỹ)} := (l̃, [X̃, Ỹ]R),

defined for any X̃, Ỹ ∈ G̃ by means of the canonicalR-structure on the loop Lie algebra G̃ :

[X̃, Ỹ]R := [X̃+, Ỹ+]− [X̃−, Ỹ−], (11)

where Z̃± means the positive (+)/(−)-negative part of a loop Lie algebra element Z̃ ∈ G̃ subject to the loop
parameter λ ∈ C.

If, for instance, to consider the first two flows from (10) in the form:

∂ l̃(λ)/∂t1 := ∂ l̃(λ)/∂y = −ad∗∇h(y)(l̃)+
l̃(λ),

∂ l̃(λ)/∂t2 := ∂ l̃(λ)/∂t = −ad∗∇h(t)(l̃)+
l̃(λ),

(12)

which are, by construction, commuting to each other, from their compatibility condition ensues some
system of nonlinear equations in partial derivatives on the coefficients of the seed element l̃(λ) ∈ G̃∗.
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As the latter is, evidently, equivalent to the Lax–Sato compatibility condition of the corresponding
vector fields ∇h(y)(l̃)+ :=< ∇h(1)(l)+, ∂/∂x >,∇h(t)(l̃)+ :=< ∇h(2)(l)+, ∂/∂x >∈ G̃ :

[∂/∂y +∇h(y)(l̃)+, ∂/∂t +∇h(t)(l̃)+] = 0, (13)

such a resulting system of nonlinear equations in partial derivatives, often called of heavenly type,
was before actively analyzed in a series of articles [10–19] and recently in [10,20–22]. These works are
closely related to the problem of constructing a hierarchy of commuting to each other vector fields,
analytically depending on a complex parameter λ ∈ C.

2. The M.A. Buhl Problem and the Lax-Sato Type Compatible Systems of Linear Vector
Field Equations

It proves that in the classical works [23,24] still in 1928 the French mathematician M.A. Buhl posed
the problem of classifying all infinitesimal symmetries of a given linear vector field equation:

Aψ = 0, (14)

where function ψ ∈ C2(Rn;R), and

A := ∑
j=1,n

aj(x)
∂

∂xj
(15)

is a vector field operator on Rn with coefficients aj ∈ C1(Rn;R), j = 1, n. It is easy to show that the
problem under regard is reduced [25] to describing all possible vector fields:

A(k) := ∑
j=1,n

a(k)j (x)
∂

∂xj
(16)

with coefficients a(k)j ∈ C1(Rn;R), j, k = 1, n, satisfying the Lax type commutator condition:

[A, A(k)] = 0 (17)

for all x ∈ Rn and k = 1, n. The M.A. Buhl problem above was completely solved in 1931 by the
Ukrainian mathematician G. Pfeiffer in the works [25–30], where he has constructed explicitly the
searched set of independent vector fields (16), having made use effectively of the full set of invariants
for the vector field (15) and the related solution set structure of the Jacobi-Mayer system of equations,
naturally following from (17). Some results, yet not complete, were also obtained by C. Popovici
in [31].

Consider for simplicity a vector field X : R×Tn → T(R×Tn) on the (n + 1)-dimensional toroidal
cylinder R×Tn for arbitrary n ∈ Z+, which we will write in the slightly special form:

A =
∂

∂t
+ < a(t, x),

∂

∂x
>, (18)

where (t, x) ∈ R×Tn, a(t, x) ∈ En, ∂
∂x := ( ∂

∂x1
, ∂

∂x2
, ..., ∂

∂xn
)ᵀ and < ·, · > is the standard scalar product

on the Euclidean space En. With the vector field (18), one can associate the linear equation:

Aψ = 0 (19)

for some function ψ ∈ C2(R×Tn;R), which we will call an “invariant” of the vector field.
Next, we study the existence and number of such functionally-independent invariants to the

Equation (19). For this let us pose the following Cauchy problem for Equation (19): Find a function
ψ ∈ C2(R×Tn;R), which at point t(0) ∈ R satisfies the condition ψ(t, x)|t=t(0) = ψ(0)(x), x ∈ Tn,
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for a given function ψ(0) ∈ C2(Tn;R). For the Equation (19) there is a naturally related parametric
vector field on the torus Tn in the form of the ordinary vector differential equation:

dx/dt = a(t, x), (20)

to which there corresponds the following Cauchy problem: find a function x : R→ Tn satisfying:

x(t)|t=t(0) = z (21)

for an arbitrary constant vector z ∈ Tn. Assuming that the vector-function a ∈ C1(R×Tn;En),
it follows from the classical Cauchy theorem [32] on the existence and unicity of the solution to
(20) and (21) that we can obtain a unique solution to the vector Equation (20) as some function
Φ ∈ C1(R×Tn;Tn), x = Φ(t, z), such that the matrix ∂Φ(t, z)/∂z is nondegenerate for all t ∈ R

sufficiently close to t(0) ∈ R. Hence, the Implicit Function Theorem [32,33] implies that there exists a
mapping Ψ : R×Tn → Tn, such that:

Ψ(t, x) = z (22)

for every z ∈ Tn and all t ∈ R sufficiently enough to t(0) ∈ R. Supposing now that the functional vector
Ψ(t, x) = (ψ(1)(t, x), ψ(2)(t, x), ..., ψ(n)(t, x))ᵀ, (t, x) ∈ R×Tn, is constructed, from the arbitrariness of
the parameter z ∈ Tn one can deduce that all functions ψ(j) : R×Tn → T1, j = 1, n, are functionally
independent invariants of the vector field Equation (19), that is Aψ(j) = 0, j = 1, n. Thus, the vector
field Equation (19) has exactly n ∈ Z+ functionally independent invariants, which make it possible,
in particular, to solve the Cauchy problem posed above. Namely, let a mapping α : Tn → R be chosen
such that α(Ψ(t, x))|t=t(0) = ψ(0)(x) for all x ∈ Tn and a fixed t(0) ∈ R. Inasmuch as the superposition
of functions α ◦Ψ : R×Tn → T1 is, evidently, also an invariant for the Equation (19), it provides the
solution to this Cauchy problem, which we can formulate as the following result.

Proposition 2. The linear Equation (19), generated by the vector field (20) on the torus Tn, has exactly n ∈ Z+

functionally independent invariants.

Consider now a Plucker type [22] differential form χ(n) ∈ Λn(Tn) on the torus Tn as:

χ(n) := dψ(1) ∧ dψ(2) ∧ ...∧ dψ(n), (23)

generated by the vector Ψ : Rn ×Tn → Tn of independent invariants (22), depending additionally on
n ∈ Z+ parameters t ∈ Rn, where by definition, for any k = 1, n

dψ(k) := ∑
j=1,n

∂ψ(k)

∂xj
dxj (24)

on the manifold Tn. As follows from the Frobenius theorem [4,22,32], the Plucker type differential
form (23) is for all fixed parameters t ∈ Rn nonzero on the manifold Tn owing to the functional
independence of the invariants (22). It is easy to see that at the fixed parameters t ∈ Rn the
following [30] Jacobi-Mayer type relationship:∣∣∣∣∂Ψ

∂x

∣∣∣∣−1
dψ(1) ∧ dψ(2) ∧ ...∧ dψ(n) = dx1 ∧ dx2 ∧ ...∧ dxn (25)

holds for k = 1, n on the manifold Tn, where
∣∣∣ ∂Ψ

∂x

∣∣∣ is the determinant of the Jacobi mapping ∂Ψ
∂x :

T(Tn) → T(Tn) of the mapping (22) subject to the torus variables x ∈ Tn. On the right-hand side
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of (25) one has the volume measure on the torus Tn, which is naturally dependent on t ∈ Rn owing to
the general vector field relationships (20). Taking into account that for all k = 1, n the full differentials:

dψ(k) = ∑
s=1,n

∂ψ(k)

∂ts
dts + dψ(k) = 0, (26)

that is vanishing on Rn × Tn, the corresponding substitution of the reduced differentials
dψ(k) ∈ C2(Rn; Λ1(Tn)), k = 1, n, into (25) easily gives rise, in particular, to the following set of
the compatible vector field relationships:

∂Ψ
∂ts
− ∑

j,k=1,n

[(
∂Ψ
∂x

)−1

jk

∂ψ(k)

∂ts

]
∂Ψ
∂xj

= 0, (27)

for all s = 1, n. The latter property, as it was demonstrated by M.G. Pfeiffer in [30], makes it possible
to solve effectively the M.A. Buhl problem and has interesting applications [10,22] in the theory of
completely integrable dynamical systems of heavenly type, whose examples are considered in the
next section.

Vector FIeld Hierarchies on the Torus with “Spectral” Parameter and the Lax-Sato Integrable Heavenly
Dynamical Systems

Consider some naturally ordered infinite set of parametric vector fields (18) on the infinite
dimensional toroidal manifold RZ+×Tn in the form:

A(k) =
∂

∂tk
+ < a(k) (t, x; λ),

∂

∂x
> + a(k)0 (t, x; λ)

∂

∂λ
:=

∂

∂tk
+ A(k), (28)

where tk ∈ R, k ∈ Z+, (t, x; λ) ∈ (RZ+ ×Tn)×C are the evolution parameters, and the dependence
of smooth vectors (a(k)0 , a(k))ᵀ ∈ E×En , k ∈ Z+, on the “spectral” parameter λ ∈ C is assumed to be
holomorphic. Suppose now that the infinite hierarchy of linear equations:

A(k)ψ = 0 (29)

for k ∈ Z+ has exactly n + 1 ∈ Z+ common functionally independent invariants ψ(j) (λ) ∈ C2(RZ+ ×
Tn;C), j = 0, n on the torus Tn, suitably depending on the parameter λ ∈ C. Then, owing to the
existence theory [32,33] for ordinary differential equations depending on the “spectral” parameter
λ ∈ C, these invariants may be assumed to be such that allow analytical continuation in the parameter
λ ∈ C both inside S1

+ ⊂ C of some circle S1 ⊂ C and subject to the parameter λ−1 ∈ C, |λ| → ∞,
outside S1

− ⊂ C of this circle S1 ⊂ C. This means that as |λ| → ∞ we have the following expansions:

ψ(0)(λ) ∼ λ + ∑∞
k=0 ψ

(0)
k (τ, x)λ−k,

ψ(1)(λ) ∼ ∑∞
k=0 τ

(1)
k (t, x)ψ0(λ)

k + ∑∞
k=1 ψ

(1)
k (τ, x)ψ0(λ)

−k,

ψ(2)(λ) ∼ ∑∞
k=0 τ

(2)
k (t, x)ψ0(λ)

k + ∑∞
k=1 ψ

(2)
k (τ, x)ψ0(λ)

−k,

...

ψ(n)(λ) ∼ ∑∞
k=0 τ

(n)
k (t, x)ψ0(λ)

k + ∑∞
k=1 ψ

(n)
k (τ, x)ψ0(λ)

−k,

(30)

where we took into account that ψ(0)(λ) ∈ C2(RZ+ ×Tn;C), λ ∈ C, is the basic invariant solution to
the Equation (29), the functions τ ∈ C2(RZ+ ×Tn;Rn×Z+) for all s = 1, n, l ∈ Z+, are assumed to be



Mathematics 2017, 5, 75 7 of 20

independent and ψ
(j)
k ∈ C2(RZ+ × Tn;R) for all k ∈ N , j = 0, n, are arbitrary. Write down now the

condition (25) on the manifold C×Tn in the form λ ∈ C

|∂Ψ
∂x
|−1dψ(0) ∧ dψ(1) ∧ dψ(2) ∧ ...∧ dψ(n) = dλ ∧ dx1 ∧ dx2 ∧ ...∧ dxn, (31)

where x := (λ, x) ∈ C × Tn, | ∂Ψ
∂x | is the Jacobi determinant of the mapping

Ψ := (ψ(0), ψ(1), ψ(2), ..., ψ(n))ᵀ ∈ C2(C× (RZ+ × Tn);Cn+1) on the manifold C×Tn. Inasmuch this
mapping subject to the parameter λ ∈ C has analytical continuation [33] inside S1

+ ⊂ C of the circle
S1 ⊂ C and subject to the parameter λ−1 ∈ C as |λ| → ∞ outside S1

− ⊂ C of this circle S1 ⊂ C,
one can easily obtain from the vanishing differential expressions:

dψ(j) = dψ(j) +
∞

∑
k=0

∂ψ(j)

∂τ
(j)
k

dτ
(j)
k = 0 (32)

for all j = 1, n and the relationship (31) on the manifold C × Tn of the independent variables
x ∈ C×Tn, evolving analytically with respect to the parameters τ

(j)
k ∈ R, j = 1, n, k ∈ Z+,

the following Lax-Sato criterion:(
|∂Ψ

∂x
|−1dψ(0) ∧ dψ(1) ∧ dψ(2) ∧ ...∧ dψ(n)

)
−
= 0, (33)

where (...)− means the asymptotic part of an expression in the bracket, depending on the parameter
λ−1 ∈ C as |λ| → ∞. The substitution of expressions (32) into (33) easily yields:

∂Ψ

∂τ
(j)
k

=

[(
∂Ψ
∂x

)−1

0j
ψ(0)(λ)k

]
+

∂Ψ
∂λ

+
n

∑
s=1

[(
∂Ψ
∂x

)−1

sj
ψ(0)(λ)k

]
+

∂Ψ
∂xs

(34)

for all k ∈ Z+, j = 1, n. These relationships (34) comprise an infinite hierarchy of Lax-Sato
compatible [18,19] linear equations, where (...)+ denotes the asymptotic part of an expression in the
bracket, depending on nonnegative powers of the complex parameter λ ∈ C. As for the independent
functional parameters τ

(j)
k ∈ C2(RZ+ × Tn;R) for all k ∈ Z+, j = 1, n, one can state their functional

independence by taking into account their a priori linear dependence on the independent evolution
parameters tk ∈ R, k ∈ Z+. On the other hand, taking into account the explicit form of the hierarchy
of Equation (34), following [10], it is not hard to show that the corresponding vector fields:

A(j)
k :=

[(
∂Ψ
∂x

)−1

0j
ψ(0)(λ)k

]
+

∂

∂λ
+

n

∑
s=1

[(
∂Ψ
∂x

)−1

sj
ψ(0)(λ)k

]
+

∂

∂xs
(35)

on the manifold C×Tn satisfy for all k, m ∈ Z+, j, l = 1, n, the Lax-Sato compatibility conditions:

∂A(l)
m

∂τ
(j)
k

−
∂A(j)

k

∂τ
(l)
m

= [A(j)
k , A(l)

m ], (36)

which are equivalent to the independence of the all functional parameters τ
(j)
k ∈ C1(RZ+ × Tn;R),

k ∈ Z+, j = 1, n. As a corollary of the analysis above, one can show that the infinite hierarchy of
vector fields (28) is a linear combination of the basic vector fields (35) and also satisfies the Lax
type compatibility condition (36). Inasmuch the coefficients of vector fields (35) are suitably smooth
functions on the manifold RZ+ × Tn, the compatibility conditions (36) yield the corresponding
sets of differential-algebraic relationships on their coefficients, which have the common infinite set
of invariants, thereby comprising an infinite hierarchy of completely integrable so called heavenly
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nonlinear dynamical systems on the corresponding multidimensional functional manifolds. That is,
all of the above can be considered as an introduction to a recently devised [10,18,19,21] constructive
algorithm for generating infinite hierarchies of completely integrable nonlinear dynamical systems
of heavenly type on functional manifolds of arbitrary dimension. It is worthwhile to stress here that
the above constructive algorithm for generating completely integrable nonlinear multidimensional
dynamical systems still does not make it possible to directly show they are Hamiltonian and
construct other related mathematical structures. This important problem is solved by employing
other mathematical theories; for example, the analytical properties of the related loop diffeomorphisms
groups generated by the hierarchy of vector fields (28).

Remark 1. The compatibility condition (36) allows an alternative differential-geometric description based on the
Lie-algebraic properties of the basic vector fields (35). Namely, consider the manifold Rn×Z+ , as the base manifold
of the vector bundle E(Rn×Z+ , G), E = ∪τ∈ Rn×Z+ {(G∗ ⊗ τ)/ρ}, G∗ := {ϕ∗ : ϕ∗β(1) := α(1) ◦ ϕ, β(1) ∈
Λ̃(1)(C×Tn;C), ϕ ∈ G} for an equivalence relation ρ and the (holomorphic in λ ∈ S1

+ ∪ S1
− ⊂ C) structure

group G = Di f fhol(C×Tn), naturally acting on the vector space E. The structure group can be endowed with
a connection Υ by means of a mapping dh : Γ(E)→ Γ(T∗(Rn×Z+)⊗ E) ∼= Γ(Hom(T(Rn×Z+); E)), where:

dh ϕ∗τ := ∑
j∈Z+

dτ
(k)
j ⊗

∂

∂τ
(k)
j

◦ ϕ∗τ + ϕ∗τ◦ < α(1),
∂

∂x
>, (37)

α(1) := ∑j∈Z+
a(k)j dτ

(k)
j ∈ Λ(Rn×Z+)⊗ Γ(E), which is defined for any cotangent diffeomorphism ϕ∗τ ∈ E,

τ ∈ Rn×Z+ , generated by the set of parametric vector fields (35), and naturally acting on any mapping
ψ ∈ C2(Rn×Z+ × (C×Tn);C) as ϕ∗τ ◦ ψ(τ, x) := ψ(τ, ϕτ(x)), (τ, x) ∈ Rn×Z+ × Tn. It is easy now to
see that the corresponding to (37) zero curvature condition d2

h = 0 is equivalent to the set of compatibility
Equation (36). Moreover, the parallel transport equation:

dh ϕ∗τ ◦ ψ = 0 (38)

coincides exactly with the infinite hierarchy of linear vector field Equation (34), where ψ ∈ C2(Rn×Z+ ×Tn;R)
is their invariant. Conversely, the Cartan integrable ideal of differential forms h(α) ∈ Λ(Rn×Z+ ×
Tn) ⊗ Γ(T∗(Rn×Z+)), which is equivalent to the zero curvature condition d2

h = 0, makes it possible to
retrieve [3,34] the corresponding connection Υ by constructing a mapping dh : Γ(E)→ Γ(T∗(Rn×Z+)⊗ E)
∼= Γ(Hom(T(Rn×Z+); E)) in the form (37). These and other interesting related aspects of the integrable
heavenly dynamical systems shall be investigated separately elsewhere.

3. Examples: Integrable Heavenly Type Nonlinear Dynamical Systems

3.1. The Mikhalev-Pavlov Equation and Its Vector Field Representation

The Mikhalev-Pavlov equation was first constructed in [14,35] and has the form:

uxt + uyy = uyuxx − uxuxy, (39)

where u ∈ C∞(R2 × T1;R) and (t, y; x) ∈ R2 × T1. Assume now [10] that the following two
smooth functions:

ψ(0) = λ, ψ(1) ∼
∞

∑
k=3

λkτk − λ2t + λy + x +
∞

∑
j=1

ψ
(1)
j (t, y, τ; x) λ−j, (40)
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where ψ
(1)
1 (t, y, τ; x) = u, (t, y, τ; x) ∈ R2 ×R∞ ×T1, are invariants of the set of vector fields (29) for

an infinite set of constant parameters τk ∈ R, k = 3, ∞, as the complex parameter λ→ ∞. By applying
to the invariants (40) the criterion (33), (32) in the form:

((∂ψ(1)/∂x)−1dψ(1))− = 0, (41)

one can easily obtain the following compatible linear vector field equations:

∂ψ

∂t
+ (λ2 + λux − uy)

∂ψ

∂x
= 0

∂ψ

∂y
+ (λ + ux)

∂ψ

∂x
= 0,

...

∂ψ

∂τk
+ Pk(u; λ)

∂ψ

∂x
= 0,

(42)

where Pk(u; λ), k = 3, ∞, are independent differential-algebraic polynomials in the variable
u ∈ C∞(R2 ×R∞ ×T1) and algebraic polynomials in the spectral parameter λ ∈ C, calculated from

the expressions (34). Moreover, as one can check, the compatibility condition (36) for the first two
vector field equations of (42) yields exactly the Mikhalev–Pavlov Equation (39).

3.2. The Mikhalev–Pavlov Equation and Its Lie-Algebraic Structure

Let us set G̃∗ := d̃i f f
∗
(R1) and take the corresponding seed element l̃ ∈ G̃∗ as:

l̃ = (λ− 2ux)dx . (43)

It generates a Casimir invariant h ∈ I(G̃∗), which as |λ| → ∞ is given by the asymptotic series:

∇h(l) ∼ 1 + ux/λ− uy/λ2 + O(1/λ3) (44)

and so on. If further to define:

∇h(2)(l)+ := (λ2∇h)+ = λ2 + λux − uy,

∇h(1)(l)+ := (λ1∇h)+ = λ + ux,
(45)

it is easy to verify that vector fields:

∇h(t)(l̃)+ :=< ∇h(2)(l)+, ∂
∂x >= (λ2 + λux − uy)

∂
∂x ,

∇h(y)(l̃)+ :=< ∇h(1)(l)+, ∂
∂x >= (λ + ux)

∂
∂x

(46)

generate commuting flows (12) on G̃∗, retrieving the equivalent to the Mikhalev–Pavlov [14]
Equation (39) vector field compatibility relationships:

∂ψ

∂t
+ (λ2 + λux − uy)

∂ψ

∂x
= 0,

∂ψ

∂y
+ (λ + ux)

∂ψ

∂x
= 0, (47)

satisfied for ψ ∈ C2(R2 ×T1;C), any (y, t; x) ∈ R2×T1 and all λ ∈ C.

3.3. The Dunajski Metric Nonlinear Equation

The equations for the Dunajski metric [36] are:

ux1t + uyx2 + ux1x1 ux2x2 − ux1x2 − v = 0,
vx1t + vx2y + ux1x1 vx2x2 − 2ux1x2 vx1x2 = 0,

(48)
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where (u, v) ∈ C∞(R2 × T2;R2), (y, t; x1, x2) ∈ R2 × T2. One can construct now, by definition, the
following asymptotic expansions:

ψ(0) ∼ λ +
∞

∑
j=1

ψ
(0)
j (τ, y; x)λ−j,

ψ(1) ∼
∞

∑
k=2

(ψ(0))kτ
(1)
k − ψ(0)y + x1 +

∞

∑
j=1

ψ
(1)
j (τ, y; x) (ψ(0))−j,

ψ(2) ∼
∞

∑
k=2

(ψ(0))kτ
(2)
k + ψ(0)t + x2 +

∞

∑
j=1

ψ
(1)
j (τ, y; x) (ψ(0))−j,

(49)

where ∂u/∂x1 := ψ
(2)
1 , ∂u/∂x2 := ψ

(1)
1 , v := ψ

(0)
1 and τ

(s)
k ∈ R, s = 1, 2, k = 2, ∞, are constant

parameters. Then the Lax-Sato conditions (33) and (32)∣∣∣∣∣∂(ψ(0), ψ(1), ψ(2))

∂(λ, x1, x2)

∣∣∣∣∣
−1

dψ(0) ∧ dψ(1) ∧ dψ(2)


−

= 0 (50)

yield a compatible hierarchy of the following linear vector field equations:

A(t0)ψ := ∂ψ
∂t + A(t0)ψ = 0, A(t0) := ux2x2

∂
∂x1
− (λ + ux1x2)

∂
∂x2

+ vx2
∂

∂λ = 0,

A(t1)ψ := ∂ψ
∂y + A(t1)ψ = 0, A(t1) := (λ− ux1x2)

∂
∂x1

+ ux1x1
∂

∂x2
− vx1

∂
∂λ = 0,

A(tk)ψ := ∂ψ
∂τs

k
+ Ps

k (u; λ) ∂ψ
∂x = 0,

(51)

where Ps
k (u, v; λ), s = 1, 2, k ∈ N\{1}, are some independent differential-algebraic polynomials [21]

in the variables (u, v) ∈ C∞(R2 ×RZ+ ×T2;R2) and algebraic polynomials in the spectral parameter
λ ∈ C, calculated from the expressions (34). In particular, the compatibility condition (36) for the first
two equations of (50) is equivalent to the Dunajski metric nonlinear Equation (48).

The description of the Lax-Sato equations presented above, especially their alternative
differential-geometric interpretation (37) and (38), makes it possible to realize that the structure
group Di f fhol(C×Tn) should play an important role in unveiling the hidden Lie-algebraic nature of
the integrable heavenly dynamical systems.

3.4. The Witham Heavenly Type Equation

Consider the following [37–41] heavenly type equation:

uty = uxuxy − uyuxx, (52)

where u ∈ C2(R2 ×R1;R) and (t, y; x) ∈ R2 ×R1. To prove the Lax-Sato type integrability of (52),
let us take a seed element l̃ ∈ G̃∗, defined as:

l̃ = (u−2
y λ−1 + 2ux + λ)dx, (53)

where λ ∈ C\{0} is a complex parameter. The following asymptotic expressions are gradients of the
Casimir functionals h(t), h(y) ∈ I(G̃∗), related with the holomorphic loop Lie algebra G̃ = d̃i f f (R1) :

∇h(t) ∼ λ[(uxλ−1 − 1) + O(1/λ), (54)

as λ→ ∞, and
∇h(y) ∼ uyλ−1 + O(λ2), (55)
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as λ→ 0. Based on the expressions (54) and (55), one can construct [42] the following commuting to
each other Hamiltonian flows:

∂

∂y
l̃ = −ad∗∇h(y)(l̃)−

l̃,
∂

∂t
l̃ = −ad∗∇h(t)(l̃)+

l̃ (56)

with respect to the evolution parameters y, t ∈ R, which give rise, in part, to the following equations:

uyt = uxuxy − uyuxx,

ut = −u−2
y /2 + 3u2

x/2,

uyy = −u3
y[(uxuy)x + uxuxy],

(57)

where the projected gradients ∇h(y)(l̃)−,∇h(t)(l̃)+ ∈ G̃ are equal to the loop vector fields:

∇h(t)(l̃)+ = (ux − λ)
∂

∂x
, ∇h(y)(l̃)− =

uy

λ

∂

∂x
, (58)

satisfying for evolution parameters y, t ∈ R2 the Lax-Sato vector field compatibility condition:

∂

∂y
∇h(t)(l̃)+ −

∂

∂t
∇h(y)(l̃)− + [∇h(t)(l̃)+,∇h(y)(l̃)−] = 0. (59)

As a simple consequence of the condition one finds exactly the first equation of the (57),
coinciding with the heavenly type Equation (52). Thereby, we have stated that this equation is a
completely integrable heavenly type dynamical system with respect to both evolution parameters.

Remark 2. It is worth to observe that the third equation of (57) entails the interesting relationship

∂

∂y
(1/uy) =

∂

∂x
(uxu2

y), (60)

whose compatibility makes it possible to introduce a new function v ∈ C2(S1;R), satisfying the next
differential expressions:

vx = 1/uy, vy = uxu2
y, (61)

which hold for all (x, y) ∈ S1 ×R. Based on (61) the seed element (53) is rewritten as:

l̃ = (v2
xλ−1 + 2ux + λ)dx, (62)

and the vector fields (58) are rewritten as:

∇h(t)(l̃)+ = (ux − λ)
∂

∂x
, ∇h(y)(l̃)− =

1
vxλ

∂

∂x
, (63)

whose compatibility condition (59) gives rise to the following system of heavenly type nonliner integrable flows:

vy = uxv−2
x , vxt = uxvxy + uxxvx,

uy = 1/vx, ut = −v2
x/2 + 3u2

x/2,
(64)

compatible for arbitrary evolution parameters y, t ∈ R.

3.5. The Hirota Heavenly Equation

The Hirota equation describes [43,44] three-dimensional Veronese webs and reads as:

αuxuyt + βuyuxt + γutuxy = 0 (65)
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for any evolution parameters t, y ∈ R and the spatial variable x ∈ T1, where α, β and γ ∈ R are
arbitrary constants, satisfying the numerical constraint:

α + β + γ = 0. (66)

To demonstrate the Lax-type integrability of the Hirota Equation (65) we choose a seed vector
field l̃ ∈ G̃∗ := d̃i f f

∗
(R1) in the following rational form:

l̃ =

(
u2

x

u2
t (λ + α)

−
u2

x(u2
y + u2

t )

2αu2
t u2

y
+

u2
x

u2
y(λ− α)

)
dx. (67)

The corresponding gradients for the Casimir invariants γ(j) ∈ I(G̃∗), j = 1, 2, are given by the
following asymptotic expansions:

∇γ(1)(l) ∼ ∑
j∈Z+

∇γ
(1)
j (l)µj, (68)

as λ + α := µ→ 0, and
∇γ(2)(l) ∼ ∑

j∈Z+

∇γ
(2)
j (l)µj, (69)

as λ− α = µ→ 0. For the first case (68) one easily obtains that:

∇γ(1)(l) ∼ −2γ
ut

ux
+ O(µ2), (70)

and for the second one (69) one obtains:

∇γ(2)(l) ∼ 2β
uy

ux
+ O(µ2), (71)

where we took into account that the following two Hamiltonian flows on G̃∗

dl̃/dy = ad∗∇h(t)(l̃)−
l̃, dl̃/dt = ad∗∇h(t)(l̃)−

l̃ (72)

with respect to the evolution parameters y, t ∈ R hold for the following conservation laws gradients:

∇h(t)(l)− := µ(µ−2∇γ(1)(l))−
∣∣
µ=λ+α

=
−2γ

(λ + α)

ut

ux
,

∇h(y)(l)− := µ(µ−2∇γ(2)(l))−
∣∣
µ=λ−α

=
2β

(λ− α)

uy

ux
.

(73)

It is easy now to check that the compatibility (105) for a set of the vector fields (106) gives rise to the
Hirota heavenly Equation (65), whose equivalent Lax-Sato vector field representation reads as a system
of the linear vector field equations:

∂ψ

∂t
− 2γut

ux(λ + α)

∂ψ

∂x
= 0,

∂ψ

∂y
+

2βuy

ux(λ− α)

∂ψ

∂x
= 0, (74)

satisfied for ψ ∈ C∞(R2 ×T1;C) for all (y, t; x) ∈ R2 ×T1 and λ ∈ C\{±α}.

3.6. A Generalized Liouville Type Equation

In the work [20], devoted to studying Grassmannians, closed differential forms and related
N-dimensional integrable systems, authors have presented in particular a Lax-Sato type representation
for the well known Liouville equation:
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∂2 ϕ/∂y∂t = exp ϕ (75)

written down in the so called “laboratory” coordinates y, t ∈ R2 for a function ϕ ∈ C2(R2;R) and
having different geometric interpretations. Their related result, obtained via some completely formal
calculations, reads as follows: a system of the linear vector field equations:

∂ψ/∂y + (λ2 + vλ + 1)∂ψ/∂λ = 0,

∂ψ/∂t− u∂ψ/∂λ = 0
(76)

for a function ψ ∈ C2(R2;C) is compatible for all y, t ∈ R2, where u, v ∈ C2(R2;R) are functional
coefficients and λ ∈ C is a complex parameter. Under the simple reduction u = 1/2 exp ϕ the
compatibility condition for (76) coincides exactly with the Liouville Equation (75).

Being interested in the deepest Lie-algebraic nature of the Lax-Sato representation (76) for
the Liouville Equation (75), we have posed the following problem: to find a root element for the
complex torus diffeomorphism group Di f f (T1

C), whose specially chosen coadjoint orbits generate the
compatible system of linear vector field Equation (76).

As a first step for solving this problem one needs to take the corresponding Lie algebra
Ḡ := di f f (T1

C) and its decomposition into the direct sum of subalgebras:

Ḡ = Ḡ+ ⊕ Ḡ− (77)

of Laurent series with positive as z→ 0 and strongly negative as z→ ∞ degrees, respectively. Then,
owing to thew classical Adler-Costant-Symes theory [2,3,8,9], for any element l̄ ∈ Ḡ∗ ' Λ1(T1

C) the
following formally constructed flows:

dl̄/dy = −ad∗∇h(y)(l̄)+
l̄, dl̄/dt = −ad∗∇h(t)(l̄)+

l̄ (78)

along the evolution parameters y, t ∈ R2 are always compatible, if h(y) and h(t) ∈ I(Ḡ∗) are
arbitrarily chosen functionally independent Casimir functionals on Ḡ∗, and ∇h(y)(l̄)+,∇h(t)(l̄)+ are
their gradients, suitably projected on the subalgebra Ḡ+. Keeping in mind the mentioned above result,
consider the Casimir functional h(y) on Ḡ∗, whose gradient ∇h(y)(l̄) := ∇h(y)(l)∂/∂z as z → ∞ is
taken, for simplicity:

∇h(y)(l̄) = (w2z2 + w1z + w0 + w−1z−1)∂/∂z ∈ Ḡ, (79)

giving rise to the gradient projection∇h(y)(l̄)+ = (w2z2 +w1z+w0)∂/∂z ∈ Ḡ+, where z ∈ T1
C, z→ ∞,

is a complex torus parameter and wj ∈ C2(R2;R), j = −1, 2, are some functional parameters. As the
root element l̄ = l(y, t; z)dz satisfies, by definition, the differential equation:

d
dz

[l(y, t; z)(∇h(y)(l))2] = 0, (80)

we obtain from (80) and (79) that the element:

l(y, t; z) =
c(y, t)2

(∇h(y)(l))2
= (v2z2 + v1z + v0 + v−1z−1)−2, (81)

where c ∈ C2(R2;R) is an arbitrary function and vj := wj/c ∈ C2(R2;R), j = −1, 2. If to put for brevity
that v2 := 1, the element (81) becomes:

l(y, t; z) = (z2 + v1z + v0 + v−1z−1)−2 (82)

Observe now that the relationship (80) makes it possible to formulate the following lemma.
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Lemma 1. The set I(G̃∗) of the functionally independent Casimir invariants is one-dimensional.

As a consequence of the Lemma above we state that in the case of the element l̄ = ldz ∈ Ḡ∗,
generated by the expression (81), there exists the only flow on Ḡ∗ from (78) with respect to the evolution
variable y ∈ R :

dl/dy = ∇h(y)(l)−1
+

∂

∂z
[l(y, t; z)∇h(y)(l)+]2. (83)

Concerning the flow from (78) with respect to the evolution variable t ∈ R one can take the constant
functional h(t) := const ∈ I(Ḡ∗),∇h(t)(l) = 0, and construct the trivial flow on Ḡ∗ as:

dl/dt = ∇h(t)(l)+
∂l
∂z

+ 2l
∂

∂z
(∇h(t)(l)+) = 0. (84)

What is now important to observe that the compatibility condition of these two flows for all
y, t ∈ R is equivalent to the following system of two a priori compatible linear vector field equations

∂ψ

∂y
+∇h(y)(l)+

∂ψ

∂z
= 0,

∂ψ

∂t
+∇h(t)(l)+

∂ψ

∂z
= 0, (85)

or
∂ψ

∂y
+ (z2 + v1z + v0)

∂ψ

∂z
= 0,

∂ψ

∂t
+ 0

∂ψ

∂z
= 0 (86)

for a smooth function ψ ∈ C2(R2;C), meaning, in particular, that the complex parameter z ∈ T1
C

is constant with respect to the evolution parameter t ∈ R. The linear Equation (86) are, evidently,
equivalent to the a priori compatible system of vector fields:

dz/dy = ∇h(y)(l)+ = z2 + v1z + v0, dz/dt = ∇h(y)(l)+ = 0 (87)

on the complex torus T1
C, which can be rewritten subject to the following diffeomorphic mapping

T1
C 3 z→ z− α(t, y) := λ ∈ T1

C generated by an arbitrary smooth function α ∈ C3(R2;R) :

dλ/dy = λ2 + λ(2α + v1) + (α2 + αv1 + v0 − ∂α/∂y), dλ/dt = −∂α/∂t. (88)

This system is, evidently, also compatible for all y, t ∈ R and can be expressed as:

dλ/dy = λ2 + λv + w, dλ/dt = −u, (89)

where we put, by definition:

2α + v1 := v, α2 + αv1 + v0 − ∂α/∂y := w, ∂α/∂t := u. (90)

Moreover, the a priori compatible system of linear vector field Equation (86) can be suitably
rewritten as:

∂ψ

∂y
+ (λ2 + vλ + w)

∂ψ

∂λ
= 0,

∂ψ

∂y
− u

∂ψ

∂λ
= 0 (91)

for the corresponding function ψ ∈ C2(R2;C), giving rise to the following system of heavenly type
nonlinear equations:

vt − 2u = 0, uy − uv + wt = 0. (92)

The latter can be, in particular, parametrized by means of the substitution u := 1/2 exp ϕ

as follows:
ϕyt = exp ϕ− (2wt exp(−ϕ))t. (93)
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The next reductions w := const = 1 or w := − 1
2 exp ϕ give rise to the well known

Liouville equations:
ϕyt = exp ϕ, ϕyt − ϕtt = exp ϕ, (94)

respectively, which, as is well known, possess [45] standard Lax type iso-spectral representations.
As a result of the reasonings above one formulate as the next proposition.

Proposition 3. The system (92) of heavenly type nonlinear equations possesses the Lax-Sato type compatible
vector field representation (91), whose Lie-algebraic structure is governed by the classical Adler-Costant-Symes
theory, as it was recently developed in [42].

Concerning the starting root element l̄ = l(y, t; λ)dλ ∈ Ḡ∗ we can take into account the
relationships (90) and find from (82) that:

l(y, t; λ) = (λ2 + λv + w + v−1(λ + α)−1)−2, (95)

where the coefficient v−1 ∈ C2(R2;R) and mapping α ∈ C3(R2;R) are arbitrary functional parameters.

Remark 3. The above presented analysis can be equivalently developed for the following regularized
seed-element:

l̄(y; z) = z−4[1− 2vz−1 + (3v2 − 2w)z−2 ]dz ∈ Ḡ∗, (96)

where z ∈ C and coefficients v, w ∈ C2(R2;R). The gradient of the corresponding Casimir invariant h ∈ I(Ḡ∗)
allows the asymptotic as |z| → ∞ series representation:

∇h(l) ∼ z2 + vz + w + w−1z−1 + w−2z−2 + ...., (97)

whose projection on the Lie subalgebra Ḡ+ gives rise to the nontrivial evolution equation:

∂l̄/∂y = −ad∗∇h(l̄)+
l̄, (98)

where, by definition, ∇h(l̄)+ := ∇h(l)+∂/∂z, and which generates the related vector fields:

dz/dy = ∇h(l)+ = z2 + vz + w, dz/dt = 0 (99)

with respect to the evolution veriables y, t ∈ R. Having now made the usual change of variables z := λ− α(y, t)
for some mapping α ∈ C3(R2;R), one can easily derive from (99) the compatible system of linear Equation (91)
with the same coefficient u = ∂α/∂t.

Remark 4. The same way as above one can describe in detail the Lie-algebraic structure for other generalized
Liouville type heavenly equations, presented in the work [20] for a higher order in λ ∈ T1

C system of linear
vector field Equation (85).

3.7. The First Reduced Shabat Type Heavenly Equation

The entitled above equation [46] reads as:

uyt + utuxy − uxtuy = 0 (100)

for a function u ∈ C∞(R2 ×R1;R), where (y, t; x) ∈ R2 ×R1. To show the Lax-Sato integrability of the
Equation (100), take a seed element l̃ ∈ G̃∗ := d̃i f f

∗
(R1) in the following form:

l̃ =

(
u−2

t
λ + 1

+
u2

t − u2
y

u2
yu2

t
+

u−2
y

λ

)
dx, (101)
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where λ ∈ C\{0,−1}. This element generates two independent hierarchies of Casimir functionals
γ(1), γ(2) ∈ I(G̃∗), whose gradient expansions are given by the following asymptotic expansions:

∇γ(1)(l) ∼ ut + O(µ2), (102)

as λ + 1 := µ→ 0, and
∇γ(2)(l) ∼ uy + O(µ2), (103)

as λ := µ→ 0. Having put now, by definition:

∇h(t)(l)− := µ(µ−2∇γ(1)(l))−
∣∣
µ=λ+1, ∇h(y)(l)− := µ(µ−2∇γ(2)(l))−

∣∣
µ=λ

, (104)

one easily ensues from the compatibility condition:

∂

∂t
∇h(y)(l̃)− −

∂

∂y
∇h(t)(l̃)− = [∇h(y)(l̃)−,∇h(t)(l̃)−], (105)

for a set of the vector fields:

∇h(t)(l̃)− := ∇h(t)− (l)+
∂

∂x
, ∇h(y)(l̃)+ := ∇h(y)− (l)

∂

∂x
(106)

a compatible Lax-Sato representation as the following system of vector field equations:

∂ψ

∂t
+

ut

λ + 1
∂ψ

∂x
= 0,

∂ψ

∂y
+

uy

λ

∂ψ

∂x
= 0, (107)

satisfied for ψ ∈ C∞(R2 ×R1;C), any (t, y; x) ∈ R2 ×R1 and all λ ∈ C\{0,−1}.

3.8. The Second Reduced Shabat Type Heavenly Equation

The entitled above equation [46] reads as:

uyy − uxtuy + utuxy = 0 (108)

for a function u ∈ C∞(R2 × R1;R), where (y, t; x) ∈ R2 × T1. In this case for demonstrating the
Lax-Sato integrability of the Equation (108) we will take a seed element l̃ ∈ G̃∗ := d̃i f f

∗
(T1) as:

l̃ = (λu−2
y + 2(ut + u2

y)u
−3
y + λ−1ut(3ut + 4uy)u−4

y )dx, (109)

giving rise to two independent Casimir functionals γ(1), γ(2) ∈ I(G̃∗), whose gradient expansions are
given by the following asymptotic expansions:

∇γ(1)(l) ∼ −λuy + ut + O(1/λ2),

∇γ(2)(l) ∼ λuy − (ut + uy) + O(1/λ2)
(110)

as λ→ ∞. Having put now, by definition:

∇h(t)+ (l) := (λ∇γ(1)(l))|+ = λut − λ2uy,

∇h(y)+ (l) := −(λ∇γ(1)(l) + λ∇γ(2)(l)|+ = λuy,
(111)

one obtains from (105) and (106) for the heavenly Equation (100) the following compatible Lax-Sato
vector field representation:
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∂ψ

∂t
+ (λut − λ2uy)

∂ψ

∂x
= 0,

∂ψ

∂y
+ λuy

∂ψ

∂x
= 0, (112)

satisfied for ψ ∈ C∞(R2 ×R1;C), any (t, y; x) ∈ R2 ×R1 and all λ ∈ C.

3.9. The Alonso-Shabat Heavenly Equation

This equation [46] has the form:

uyx2 − utuyx1 + uyutx1 = 0, (113)

where u ∈ C∞(R2 × T2;R), (y, t) ∈ R2 and (x1, x2) ∈ T2. To prove its Lax integrability, we define a
seed element l̃ ∈ G̃∗ := d̃i f f

∗
(T2) of the form:

l̃ = v2
x1
(λ + 1)dx1 + vx1 vx2(λ + 1)dx2, (114)

for a fixed function v ∈ C∞(T2;R). Then one easily obtains asymptotic expansionsas |λ| → ∞ for
coefficients of the two independent Casimir functionals h1, h2 ∈ I(G̃∗) gradients:

∇h1(l) ∼ (1/vx1 + kvx2 /vx1 ,−k)ᵀ + O(1/λ2),

∇h2(l) ∼ (vx2 /vx1 ,−1)ᵀ + O(1/λ2),
(115)

where k 6= 1 is a constant and α1, α2 ∈ C∞(T1;R) are different functions. Using the Casimir functional
gradients (115), one can construct the simplest two commuting flows:

∂l̃/∂y = −ad∗∇h(y)(l̃)+
l̃, ∂l̃/∂t = −ad∗∇h(y)(l̃)+

l̃ (116)

with respect to the evolution parameters y, t ∈ R, where:

∇h(y)(l)+ := (λ∇h1(l))+ = (λ/vx1 + λkvx2 /vx1 ,−λk)ᵀ := (λuy,−λk)ᵀ,

∇h(t)(l)+ := (λ∇h2(l))+ = (λvx2 /vx1 ,−λ)ᵀ := (λut,−λ)ᵀ
(117)

for some function u ∈ C∞(R2 ×T2;R). From relationships (117), as a result of the commutativity of
the flows (116), one derives the equivalent Lax type relationship (13) for the vector fields, namely:

∇h(y)(l̃)+ = λuy∂/∂x1 − kλ∂/∂x2, ∇h(t)(l̃)+ = λut∂/∂x1 − λ∂/∂x2, (118)

which can be rewritten as the compatibility condition for the following vector field equations:

∂ψ

∂t
+ λut

∂ψ

∂x1
− λ

∂ψ

∂x2
= 0,

∂ψ

∂y
+ λuy

∂ψ

∂x1
− kλ

∂ψ

∂x2
= 0, (119)

satisfied for ψ ∈ C∞(R2 × T2;C), any (t, y; x1, x2) ∈ R2 × T2 and all λ ∈ C. The resulting equation
is then:

uyx2 − utuyx1 + uyutx1 + kutx2 = 0, (120)

which reduces at k = 0 to the Alonso-Shabat heavenly Equation (113).

3.10. Plebański Heavenly Equation

This equation [47] is:
utx1 − uyx2 + ux1x1 ux2x2 − u2

x1x2
= 0 (121)

for a function u ∈ C∞(R2;T2), where (y, t; x1, x2) ∈ R2 × T2. We set G̃∗ := d̃i f f
∗
(T2) and take the

corresponding seed element l̃ ∈ G̃∗ as
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l̃ = (λ− ux1x2 + ux1x1)dx1 + (λ− ux2x2 + ux1x2)dx2. (122)

This generates two independent Casimir functionals h(1), h(2) ∈ I(G̃∗), whose gradient expansions
as |λ| → ∞ are given by the expressions:

∇h(1)(l) ∼ (0, 1)ᵀ + (ux2x2 ,−ux1x2)
ᵀλ−1 + O(λ−2),

∇h(2)(l) ∼ (1, 0)ᵀ + (ux1x2 ,−ux1x2)
ᵀλ−1 + O(λ−2),

(123)

and so on. Now, by defining:

∇h(y)(l)+ := (λ∇h(1)(l))+ = (ux2x2 , λ− ux1x2)
ᵀ,

∇h(t)(l)+ := (λ∇h(2)(l))+ = (λ + ux1x2 ,−ux1x1)
ᵀ,

(124)

one obtains for (121) the following [47] vector Lax-Sato type field representation:

∂ψ

∂t
+ ux1x1

∂ψ

∂x1
+ (λ− ux1x2)

∂ψ

∂x2
= 0,

∂ψ

∂z
+ (λ + ux1x2)

∂ψ

∂x1
− ux1x1

∂ψ

∂x2
= 0,

(125)

satisfied for ψ ∈ C∞(R2 ×T2;C), any (t, y; x1, x2) ∈ R2 ×T2 and all λ ∈ C.

Remark 5. It is interesting to observe that the seed elements l̃ ∈ G̃∗ of the examples presented above have the
differential geometric structure:

l̃ = η dρ, (126)

where η and ρ ∈ C∞(R2 × (C×T2);C) are some smooth functions. For instance:

l̃ = d(λx− 2u )—Mikhalev–Pavlov equation,

l̃ = d(λx1 + λx2 − ux2 + ux1)—Plebański heavenly equation,

l̃ = ux1x2 ξdux2 , ξ :=
(

µ [γ(µ + β)]−1 + α−1 − µ[β(µ− γ)]−1
)

—general heavenly equation,

l̃ = (λ + 1)vx1 dv—Alonso–Shabat heavenly equation.

4. Conclusions

The classical Lagrange-d’Alembert principle proves to be a very effective and powerful
tool for constructing completely integrable heavenly type multidimensional Hamiltonian systems.
The mathematical structure, devised in the report, can serve as a source of a new inverse scattering
transform method for constructing exact solutions to a wide class of completely integrable heavenly
type multidimensional dynamical systems. Deep albeit still hidden algebro-geometric properties, lying
in the background of the developed approach, can shed a new light on the way how to build a general
theory of completely integrable spatially multidimensional dynamical systems.
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